### WORLD METEOROLOGICAL ORGANIZATION

### **GLOBAL ATMOSPHERE WATCH**

### WORLD DATA CENTRE FOR GREENHOUSE GASES



ATMOSPHERE WATCH

# WMO WDCGG DATA SUMMARY

## WDCGG No. 42

## **GAW DATA**

Volume IV-Greenhouse Gases and Other Atmospheric Gases

PUBLISHED BY JAPAN METEOROLOGICAL AGENCY IN CO-OPERATION WITH WORLD METEOROLOGICAL ORGANIZATION

### OCTOBER 2018



#### Acknowledgments

This issue of Data Summary reports the latest status of greenhouse gases and carbon monoxide in the global atmosphere. This Data Summary has been prepared by the World Data Centre for Greenhouse Gases (WDCGG), established under the Global Atmosphere Watch (GAW) Programme of the World Meteorological Organization (WMO) and operated by the Japan Meteorological Agency (JMA). This Data Summary is based on the data submitted by many contributors worldwide (Appendix: LIST OF CONTRIBUTORS). These contributors include both organizations and individuals involved in observations and research of greenhouse and related gases at stations and laboratories operating within the framework of GAW and some other monitoring and research programmes. The WDCGG thanks all these organizations and individuals, including those from the Global Monitoring Division of the National Oceanic and Atmospheric Administration (NOAA), for their efforts in maintaining the observation programme and continuous provision of observational data. Not all of the contributors may be explicitly acknowledged in this publication, owing to lack of space, but all the organizations and individuals that have submitted data to the WDCGG are nevertheless here acknowledged as invaluable contributors to this latest issue of Data Summary.

|                                              | Page |
|----------------------------------------------|------|
| SUMMARY                                      | 1    |
| 1. INTRODUCTION                              | 3    |
| 2. ANALYSIS                                  | 5    |
| 3. CARBON DIOXIDE                            | 7    |
| 4. METHANE                                   | 15   |
| 5. NITROUS OXIDE                             | 21   |
| 6. HALOCARBONS AND OTHER HALOGENATED SPECIES | 27   |
| 7. CARBON MONOXIDE                           | 35   |
| APPENDICES                                   | 41   |
| CALIBRATION AND STANDARD SCALES              | 42   |
| LIST OF OBSERVATIONAL STATIONS               | 51   |
| LIST OF CONTRIBUTORS                         | 62   |
| LIST OF ABBREVIATIONS                        | 87   |
| LIST OF WMO/ WDCGG PUBLICATIONS              | 91   |
| REFERENCES                                   | 93   |

### CONTENTS

iii

#### SUMMARY

This Data Summary reports the analysis results of the data on main greenhouse gases and carbon monoxide submitted to the WMO World Data Centre for Greenhouse Gases (WDCGG) by contributing organizations and individuals. This issue covers observations from 1968 through 2016, based on data reported to the WDCGG by September 2017. The Data Summary includes analyses of global, hemispheric and latitudinal monthly mean mole fractions of greenhouse gases and carbon monoxide calculated using data from observations at the current surface-based stations, and provides information on the state of mole fractions of these gases.

Although monthly mean mole fractions were mainly used for the analyses, the WDCGG greatly appreciates those stations that submit daily, hourly and occasional mean mole fractions, which are important for analysis of variations on shorter time scales. All data submitted to the WDCGG are available on its website, https://gaw.kishou.go.jp/. In this Data Summary, data are reported as dry air mole fractions defined as the number of molecules of a target gas species divided by the number of all molecules in the air including the target itself, but excluding water vapor. Mole fractions are expressed as parts per million (ppm), parts per billion (ppb), and parts per trillion (ppt), which correspond to the SI units of µmol/mol, nmol/mol and pmol/mol, respectively.

Variations in the mole fractions of some gases are presented in this report as combinations of seasonal cycles and deseasonalized long-term trends. Growth rates are presented as time derivatives of the long-term trends. Global average mole fractions are presented with accompanying uncertainty at 68% confidence level. The analytical results are summarized below for each greenhouse gas and for carbon monoxide.

#### Carbon Dioxide (CO<sub>2</sub>)

The level of carbon dioxide (CO<sub>2</sub>), which contributes the most to the increase in anthropogenic radiative forcing, has been increasing since the beginning of the industrial era. The global average mole fraction of CO<sub>2</sub> reached a new high of  $403.3\pm0.1$  ppm in 2016, which is 145% of the pre-industrial level (in 1750). The record increase of 3.3 ppm in the annual mean from 2015 to 2016 was greater than the previous record increase from 2012 to 2013 and 50% above the average growth rate over the last decade (about 2.2 ppm/year).

The global growth rate of CO<sub>2</sub> shows significant interannual variability driven by natural processes. Large interannual changes in 1987/1988, 1997/1998, 2002/2003, 2009/2010 and 2015 partly resulted from

warmer conditions caused by El Niño-Southern Oscillation (ENSO) events. The exceptionally low growth rate in 1992, including negative values in northern high latitudes, may have been due to low global temperatures following the eruption of Mount Pinatubo in 1991.

Variations in  $CO_2$  mole fraction can be seen on seasonal scales. The seasonal amplitudes are large in northern high and mid-latitudes. In the Southern Hemisphere the seasonal cycle is very weak.

#### Methane (CH<sub>4</sub>)

Methane (CH<sub>4</sub>) is the second most significant greenhouse gas which is largely influenced by anthropogenic activity and whose level has been increasing since the beginning of the industrial era. The annual average mole fraction was  $1853\pm2$  ppb in 2016, an increase of 9 ppb since 2015. The mean annual absolute increase during the last 10 years was 6.8 ppb/year. The mole fraction is now 257% of that in the pre-industrial period.

The latitudinal gradient of  $CH_4$  mole fraction is large from the northern mid-latitudes to the tropics, suggesting that the major sources of  $CH_4$  are located in the Northern Hemisphere.

 $CH_4$  growth rates decreased significantly in all latitudinal zones in the 1990s. However, both hemispheres experienced high growth rates in 1998, caused by the higher than average global mean temperature. The global growth rates were generally low from 1999 to 2006, except during the El Niño event of 2002/2003, but since 2007 the renewed increase in  $CH_4$  mole fractions is observed.

 $CH_4$  mole fractions vary seasonally, being relatively high in winter and low in summer. The seasonal amplitudes of  $CH_4$  are large, not only in the Northern Hemisphere but also in southern high and mid-latitudes which are associated with methane sinks.

#### Nitrous Oxide (N<sub>2</sub>O)

Nitrous oxide (N<sub>2</sub>O) is an important greenhouse gas whose level is increasing globally. N<sub>2</sub>O data submitted to the WDCGG show that mole fractions are increasing in both hemispheres. The global mean mole fraction reached a new high of 328.9±0.1 ppb in 2016, which is 0.8 ppb higher than that in the previous year. This increase is comparable with the mean annual absolute increase during the last 10 years (0.90 ppb/year). The 2016 mole fraction corresponds to 122% of that in the pre-industrial period. The interhemispheric difference in mole fraction is 1.0 ppb (averaged over the years 1980 to 2016), indicating that the majority of N<sub>2</sub>O sources are situated in the Northern Hemisphere.

#### Halocarbons and Other Halogenated Species

Halocarbons, most of which are anthropogenic and generated since the 20th century, are potent greenhouse gases, with some also acting as ozone-depleting compounds. Levels of some halocarbons (*e.g.* CFCs) increased in the 1970s and 1980s, but this increase has almost ceased by now, due to the production and consumption control of halocarbons under the Montreal Protocol on Substances that Deplete the Ozone Layer and its subsequent Adjustments and Amendments. However, some substances targeted by the Kyoto Protocol but not regulated by the Montreal Protocol, such as HFCs and SF<sub>6</sub>, are increasing.

The mole fraction of CFC-11 peaked around 1992 and then started decreasing. The mole fraction of CFC-12 increased until around 2003 and then started decreasing gradually. The mole fraction of CFC-113 stopped increasing in the 1990s, followed by a slight decrease over about twenty years. The mole fractions of HCFCs, which are used mainly as substitutes for CFCs, have increased significantly during the last two decades. However, the growth of HCFC-141b and HCFC-142b mole fractions has decelerated over the last decade. The mole fraction of Halon-1211 has decreased since 2005, and the growth of Halon-1301 mole fractions has decelerated over the last several years. The mole fraction of CCl<sub>4</sub> was maximal around 1991 and has since decreased slowly. The mole fraction of CH<sub>3</sub>CCl<sub>3</sub> peaked around 1992 and The mole fractions of decreased thereafter. HFC-134a, HFC-152a and SF<sub>6</sub> are increasing, but the growth of HFC-152a has decelerated over the last decade.

#### Carbon Monoxide (CO)

Carbon monoxide (CO) is not a greenhouse gas in itself, but is an important part of the global carbon cycle since it influences the mole fractions of greenhouse gases through reactions with hydroxyl radicals (OH). In 2016, the global mean mole fraction of CO was  $90\pm1$  ppb. The mole fraction is higher in the Northern Hemisphere and lower in the Southern Hemisphere, suggesting substantial anthropogenic emissions in the Northern Hemisphere.

There is a large interannual variability of CO growth rates. The growth rate increases are mainly attributed to biomass burning emissions during El Niño conditions.

The monthly mean mole fractions show seasonal variations, with large amplitudes in the Northern Hemisphere and small amplitudes in the Southern Hemisphere occurring in opposite phase.

#### **1. INTRODUCTION**

Human activities have had major impacts on the global environment. Since the beginning of the industrial era, mankind has increasingly made use of land, water, minerals and other natural resources, and continuous growth of the world human population and economies may further increase our impact on the environment. As the climate, biogeochemical processes and natural ecosystems are closely interlinked, changes in any one of these may affect the others and be detrimental to humans and other Emissions of anthropogenic gaseous organisms. species and particulate matter alter the energy balance of the atmosphere, which in turn has implications for the multiple interactions within the complex Earth's system. These interactions are not fully understood, partly due to the lack of high quality observations.

The World Meteorological Organization (WMO) established the Global Atmosphere Watch (GAW) Programme in 1989 to promote systematic and reliable observations of the global environment. In October 1990, WMO designated the Japan Meteorological Agency (JMA) in Tokyo to serve as the World Data Centre for Greenhouse Gases (WDCGG). The WDCGG is responsible for collection, archiving and dissemination of data on greenhouse gases in the atmosphere and oceans from a number of observational sites throughout the world that participate in GAW and other programmes addressing the atmospheric chemical composition (Appendix: LIST OF OBSERVATIONAL STATIONS).

The WDCGG also collected data on reactive gases until 2015. In January 2016, however, the newly established GAW World Data Centre for Reactive Gases (WDCRG) hosted by the Norwegian Institute for Air Research (NILU) took over responsibility for the archiving of the reactive gases (except for CO). Although CO is a reactive gas and not a greenhouse gas, the WDCGG remains the primary archive of CO data. This is because CO plays an important role in the global carbon cycle through reactions involving hydroxyl radicals (OH), and can be used for the attribution of sources of major greenhouse gases.

With regard to the issue of climate change the Kyoto Protocol to the United Nations Framework Convention on Climate Change came into force in February 2005. In March 2006, WMO commenced annual publication of the WMO Greenhouse Gas Bulletin, which summarizes the state of greenhouse gases in the atmosphere. The thirteenth issue of the Bulletin was published in October 2017. The value of information on greenhouse gases is increasing in the view of the needs of the countries that signed the Paris Agreement in 2015. Atmospheric observations constitute the basis of the multiple products and

services developed by multiple agencies including WMO to support implementation of the Paris Agreement. The WDCGG contributes to the production of the Bulletin through timely and adequate collection and analysis of data in cooperation with the contributors of the data.

Since its establishment, the WDCGG has provided users with data and other information via regular publications such as Data Summary (Appendix: LIST OF WMO WDCGG PUBLICATIONS) and, since 2001, via its website. In line with the GAW Implementation Plan 2016-2023 (WMO, 2017a), all observational data submitted to the WDCGG are made available on its website. The WDCGG published the Data Submission and Dissemination Guide in 2007 (WMO, 2007), which, with its revision in 2009 (WMO, 2009b), is designed to facilitate submission of observational data and access to archived data in the WDCGG. Clear guidelines for data submission are included in the measurement guidelines published by GAW for the variables, which are under the responsibility of the WDCGG.

The WDCGG provides global and integrated diagnostics on the state of greenhouse and carbon monoxide in the *Data Summary*. The WDCGG global analysis method in the *Data Summary* has been described in a GAW technical report (WMO, 2009a). The content of the *Data Summary* is revised and improved based on comments from data contributors and scientists. We hope the diagnostic information presented here will promote the use of data on greenhouse and related gases and will enhance appreciation of the value of the GAW Programme.

All users are required to accept the following statement endorsed by the Commission for Atmospheric Sciences (CAS) at its thirteenth session: "For scientific purposes, access to these data is unlimited and provided without charge. By their use you accept that an offer of co-authorship will be made through personal contact with the data providers or owners whenever substantial use is made of their data. In all cases, an acknowledgment must be made to the data providers or owners and to the data centre when these data are used within a publication." The WDCGG requests data users to make appropriate acknowledgments. Information on principal investigators and other contacts is provided on the GAW WDCGG website and on the Station Information System (GAWSIS) website (https://gawsis.meteoswiss.ch). The information is updated in collaboration with the relevant data contributors.

Finally, the WDCGG would like to thank all data contributors worldwide, including those involved in

on-site measurements, for their efforts in maintaining the observational programmes and for continuous data provision.

Mailing address:

WMO World Data Centre for Greenhouse Gases (WDCGG) c/o Japan Meteorological Agency 1-3-4, Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan E-mail: wdcgg@met.kishou.go.jp Telephone: +81-3-3287-3439 Facsimile: +81-3-3211-8309

Website: https://gaw.kishou.go.jp/

#### 2. ANALYSIS

The WDCGG gathers, archives and disseminates observational data on the mole fractions of greenhouse gases and carbon monoxide, and publishes diagnostic information on these gases based on the reported data.

The long-term trends and seasonal variations in the mole fractions of CO<sub>2</sub>, CH<sub>4</sub>, N<sub>2</sub>O and CO are calculated for the whole globe (global means) and for latitudinal belts (zonal means). For halocarbons, only monthly mean mole fractions are presented without global, hemispheric or zonal averaging, due to the small number of reporting sites.

Mole fractions are expressed as parts per million (ppm), parts per billion (ppb), and parts per trillion (ppt), which correspond to the SI units of µmol/mol, nmol/mol and pmol/mol, respectively.

The method of analysis for CO<sub>2</sub>, CH<sub>4</sub>, N<sub>2</sub>O and CO is summarized below. The details of the global analysis method are provided in the *Technical Report* of Global Analysis Method for Major Greenhouse Gases by the World Data Centre for Greenhouse Gases, published as a GAW technical report (WMO, 2009a).

#### (1) Site selection

For CO<sub>2</sub>, CH<sub>4</sub> and N<sub>2</sub>O, the diagnostic analyses, including global, hemispheric and zonal means, are based on data from sites that have adopted a standard scale traceable to the Primary Standards designated by WMO. These analyses also utilize data on other standard scales that are convertible to the WMO scale through a proven equation. Letters informing data submitters of the most recent WMO scales are sent out regularly by the WDCGG as well as discussed at the regular expert meetings (WMO, 2016a). For CO, additional uncertainty can be expected in the results of global analysis, which is carried out irrespective of differences in observation scales.

Selection of observational sites is also based on whether they provide data representing a reasonably large geographical area, considering the fact that some sites may be susceptible to local sources and sinks. Sites are selected objectively using data submitted to the WDCGG. For CO<sub>2</sub>, CH<sub>4</sub> and CO, all sites selected have annual mean mole fractions within  $\pm 3\sigma$ of a curve fitted to the LOESS model curve (Cleveland and Devlin, 1988) after iterative removal of outliers. This procedure does not affect the datasets residing in the WDCGG, and these data may be useful for purposes other than global analysis, such as identification of sources and sinks.

The sites selected according to the above criteria are marked with asterisks in Plate 3.1 for  $CO_2$ , Plate 4.1 for  $CH_4$ , Plate 5.1 for  $N_2O$  and Plate 7.1 for CO, which represent 123 (75%), 124 (87%), 33 (80%) and 110 (86%) of the submitted datasets respectively (detailed

in 'LIST OF OBSERVATIONAL STATIONS' in this issue).

#### (2) Analysis of long-term trends

The mole fractions of greenhouse and related gases, measured under unpolluted conditions, exhibit variations on different time scales. The two major components are seasonal variations and long-term trends. Several attempts have been made to separate these variations in the measured data, including objective curve fitting (Keeling *et al.*, 1989), digital filtering (Thoning *et al.*, 1989; Nakazawa *et al.*, 1991), or both (Conway *et al.*, 1994; Dlugokencky *et al.*, 1994).

In the work reported here, average seasonal variations derived from components of Fourier harmonics and long-term trends were extracted via Lanczos low-pass filtering (Duchon, 1979) with a cut-off frequency of 0.48 cycles/year for each selected site. The details are presented in WMO (2009a) and WDCGG *Data Summary* No. 22 (WMO, 2000).

#### (3) Estimation for missing periods and gaps

The number of sites used for the global analysis depends on years in the target period of analysis. Data covering the entire analysis period are available for only a small number of sites, and for most sites, coverage is for shorter periods or contains data gaps for various reasons. Careless additions of short-period data can produce undesirable biases and uncertainties. To use as much data as possible, including those of new sites, data gaps and short-period data are interpolated and extrapolated as described below.

Gaps in some data have been filled using linear interpolation based on available data in long-term trends derived by subtracting the average seasonal variation. This variation was added to the interpolated long-term trend for estimation of mole fractions.

In the case of extrapolation, long-term trends from the existing or interpolated series of data were extrapolated using zonal mean growth rates calculated from other long-running sites in the same latitudinal zone. The average seasonal variation was added to the extrapolated long-term trend to estimate mole fractions for the entire period of analysis.

Using these statistical procedures, the future addition of new stations should not affect the consistency in global estimates over time.

# (4) Calculation of global, hemispheric and zonal means

Zonal means were calculated by determining the

arithmetic average of the mole fractions in each latitudinal zone, based on consistent datasets derived as above. Global and hemispheric means were calculated as the weighted averages of the zonal means taking account of the area of each latitudinal zone.

Deseasonalized long-term trends for the globe, each hemisphere and each latitudinal zone were calculated from the global, hemispheric and zonal means, respectively, using the low-pass filter mentioned above.

Growth rates for the whole globe, each hemisphere and each latitudinal zone were derived from the time derivatives of the corresponding long-term trends. To derive such trends for the entire period, both ends of the period were elongated as simple linear extensions of the adjacent year, and low-pass filtering was then applied. Accordingly, analysis trends and growth rates at both ends of the record (covering a period of around six months) may not represent actual conditions.

Uncertainty in global means of CO<sub>2</sub>, CH<sub>4</sub>, N<sub>2</sub>O and CO was estimated using a method described in Conway *et al.* (1994) as the standard deviation of averages (68% confidence level) from a targeting observation network with its uneven geographical distribution of stations. The calculation procedure is as follows:

(i). Select a set of stations at random from the targeting network. A set comprises *n* observation stations, including at least one from each of six latitudinal bands of 30 degree width  $(90^{\circ}N \sim 60^{\circ}N, 60^{\circ}N \sim 30^{\circ}N, and so on)$ . Any station may appear twice or more times in one set. In our case, *n* equals the number of stations in the GAW global network (number of stations after the site selection procedure described in this chapter).

(ii). Calculate the global mean *M* from the set in (i).

(iii). Repeat steps (i) and (ii) m times to obtain set  $M_m$ . We take m as 200 because the standard deviation becomes relatively stable compared to that for a smaller m.

(iv). Calculate the standard deviation of set  $M_m$ .

# CARBON DIOXIDE (CO<sub>2</sub>)

3.



This map shows locations of the stations that have submitted data for monthly mean mole fractions.

## CO<sub>2</sub> Monthly Data



**Plate 3.1** Monthly mean  $CO_2$  mole fractions that have been reported to the WDCGG. The mole fractions are illustrated in different colors. The sites are listed in order from north to south. The red line indicates the equator. In cases where data are reported for two or three different altitudes, only the data at the highest altitudes are illustrated. In cases where monthly means are not reported, the WDCGG calculates them from hourly or other mole fractions reported to the WDCGG by simple arithmetic mean. The data from the sites with an asterisk at the end of the station index were used for the analyses shown in Plate 3.2. (see Chapter 2)









CO<sub>2</sub> growth rate

**Plate 3.2** Variation of zonally averaged monthly mean  $CO_2$  mole fractions (top), deseasonalized long-term trends (middle), and growth rates (bottom). The zonally averaged mole fractions were calculated for each  $20^{\circ}$  zone. The deseasonalized trends and growth rates were derived as described in Chapter 2.

#### **3. CARBON DIOXIDE (CO<sub>2</sub>)**

Basic information on CO<sub>2</sub> with regard to environmental issues

Carbon dioxide (CO<sub>2</sub>) has strong absorption bands in the infrared region and is the biggest anthropogenic contributor to greenhouse effect. CO<sub>2</sub> accounts for about 65% of radiative forcing (relative to the pre-industrial era around 1750) by long-lived greenhouse gases. It is responsible for 82% of the increase in radiative forcing over the past decade and 83% over the past five years (WMO, 2017b).

The balance of the fluxes between the atmosphere, the oceans and the biosphere determines the mole fraction of  $CO_2$  in the atmosphere. An amount of 515 [445 to 585] PgC was emitted between 1870 and 2011 (IPCC, 2013) and annual anthropogenic emissions mainly due to fossil fuel combustion and cement production reached 9.9±0.5 PgC in 2016 (Le Quéré et al., 2017). Carbon in the atmosphere is exchanged with two other large reservoirs, the terrestrial biosphere and the oceans.  $CO_2$  exchanges between the atmosphere and terrestrial biosphere occur mainly through absorption by photosynthesis and emission from the respiration of plants and the organic-matter decomposition in soil. These biogenic activities vary seasonally, resulting in large seasonal variations in the level of atmospheric  $CO_2$ . The direction of  $CO_2$ exchange between the atmosphere and oceans is determined by the gradient of CO<sub>2</sub> mole fraction, and varies in time and space.

Globally averaged mole fraction of CO<sub>2</sub> in the atmosphere reached the symbolic milestone of 400 ppm for the first time in 2015. The current mole fraction far exceeds historic records. Based on ice core studies, the mole fraction of atmospheric CO<sub>2</sub> was about 278 ppm around 1750, and it had never exceeded 300 ppm during 0.8 million years before that (IPCC, 2013). The emission of  $CO_2$  due to human activities has increased dramatically since the beginning of the industrial era, impacting CO<sub>2</sub> exchange rates between different reservoirs and CO2 levels not only in the atmosphere but in the oceans and terrestrial biosphere. About half of anthropogenic CO<sub>2</sub> emissions have remained in the atmosphere, with the remainder removed by sinks, including the terrestrial biosphere and oceans. The amount of CO<sub>2</sub> removed from the atmosphere varies significantly over time (see the difference between the green curve and the red columns in Figure 3.1) and shows an increasing trend (Levin, 2012).

Carbon isotopic studies have shown the importance of the terrestrial biosphere and oceans as sources and sinks of CO<sub>2</sub> (Francey *et al.*, 1995; Keeling *et al.*, 1995; and Nakazawa *et al.*, 1993, 1997). In contrast, the atmospheric content of O<sub>2</sub> depends primarily on its removal by the burning of fossil fuels and on its release from the terrestrial biosphere. Therefore, the uptake of carbon by the terrestrial biosphere and oceans can be estimated from the combination of measurements of  $O_2$  ( $O_2/N_2$ ) and  $CO_2$  (Manning and Keeling, 2006; WMO, 2014).

Large amounts of  $CO_2$  are exchanged among the reservoirs in nature, and the global carbon cycle is coupled with the climate system on seasonal, yearly and decadal time scales. Complete understanding of the global carbon cycle is essential for estimating future  $CO_2$  mole fractions in the atmosphere.



Fig. 3.1 Annual mean growth rates of CO<sub>2</sub> in the atmosphere, calculated from observational data (red columns) and that estimated from anthropogenic emissions (green curve). The estimated growth rates were calculated taking CO<sub>2</sub> emissions as a proxy (from Carbon Dioxide Information Analysis Center (CDIAC) (Boden et al., 2017) for period 1984 to 2014 and from Global Carbon Project (Le Quéré et al., 2017) for period 2015 to 2016), expressed as moles divided by the total mass of gas in the atmosphere (5.2 petatonnes) converted to moles based on the mean molar mass of dry air (about 29.0 g/mol). The observed growth rates were calculated by the WDCGG. CO<sub>2</sub> abundance from observational data is expressed as mole fractions with respect to dry air, while that estimated from anthropogenic emissions is based on the atmosphere, including water vapor, usually in a proportion less than 1%.

Mole fractions of  $CO_2$  can be analyzed utilizing data submitted to the WDCGG from fixed stations and some ships. The observational sites from which data were used for the analysis are shown on the map at the beginning of this chapter. They include fixed stations performing continuous measurements as well as flask-sampling stations, including those in the NOAA/ESRL cooperative air sampling network. In addition, mobile platforms such as ships and aircraft with unfixed observation points, and other stations observing on an event basis report their data to the



WDCGG (see Appendix: LIST OF OBSERVATIONAL STATIONS), which are not used for global analysis.

Fig. 3.2 Global monthly mean mole fraction of  $CO_2$  from 1983 to 2016 and the deseasonalized long-term trend shown as a red line (top), and growth rate (bottom).

# Annual variation of CO<sub>2</sub> mole fraction in the atmosphere

The monthly mean mole fractions of CO<sub>2</sub> used in the analysis are shown in Plate 3.1, with mole fraction levels illustrated in different colors. Global. hemispheric and zonal mean mole fractions were analyzed based on data from stations that fulfil the selection criteria described in Chapter 2 (see the caption for Plate 3.1). Zonally averaged mole fractions of atmospheric CO<sub>2</sub>, together with their deseasonalized components and growth rates, are shown as three-dimensional representations in Plate 3.2. These plots show that the seasonal variations in mole fraction are large in northern high and mid-latitudes, but are indistinct in the Southern Hemisphere. The increases in the Northern Hemisphere precede those in the Southern Hemisphere by one or two years, and the interannual variations in growth rate are larger in the Northern Hemisphere.

Figure 3.2 shows global monthly mean  $CO_2$  mole fractions and their growth rates from 1983 to 2016.

The global average mole fraction reached a new high of  $403.3\pm0.1$  ppm in 2016, which is 145% of the pre-industrial level of 278 ppm. The record increase of 3.3 ppm in the annual mean from 2015 to 2016 was greater than the previous record increase from 2012 to 2013 and 50% above the average growth rate over the last decade (about 2.2 ppm/year).

The global growth rate shows large interannual variations, with an instantaneous maximum of about 3 ppm/year in 1998 and a minimum below 1 ppm/year in 1992. There were short periods of high rates in 1987/1988, 1997/1998, 2002/2003, 2005/2006, 2007, 2009/2010, 2012/2013 and 2015.

Figure 3.3 shows monthly mean mole fractions and long-term trends from 1983 to 2016 for each 30° latitudinal zone. The plot demonstrates clear long-term increases in both hemispheres and substantial seasonal variations in the Northern Hemisphere.



Fig. 3.3 Monthly mean mole fractions of  $CO_2$  from 1983 to 2016 for each 30° latitudinal zone (dots) and their deseasonalized long-term trends (red lines).

As shown in Figure 3.4, the growth rates for each 30° latitudinal zone fluctuated between -0.3 and 3.6 ppm/year, with the largest interannual variability in northern high latitudes. High growth rates for all 30° latitudinal zones were observed in 1987/1988, 1997/1998, 2002/2003, 2005, 2007, 2010, 2012/2013

and 2015, with negative rates recorded in northern high latitudes in 1992. At the end of 2015, the growth rate was the highest in the northern tropical zone.

Changes in growth rate are partly associated with ENSO. Apart from that in 1991/1992, the El Niño events in 1986–1988, 1997/1998, 2002/2003, 2009/2010 and 2014-2016 coincided with high growth rates of CO<sub>2</sub>. The growth rate was higher in 2016 than in previous years due in part to increased natural emissions of CO<sub>2</sub> in association with the most recent El Niño event (WMO, 2017b).



Fig. 3.4 Long-term trends in the mole fractions of  $CO_2$  for each 30° latitudinal zone (top) and their growth rates (bottom).

In the eastern equatorial Pacific, CO2-rich ocean water is continuously welling up, and a substantial amount of  $CO_2$  is emitted into the atmosphere. When an El Niño event occurs, the up-welling is suppressed, and CO<sub>2</sub> emission decreases in this sea area. During the same period, however, CO<sub>2</sub> emission from the terrestrial biosphere increases by a much larger amount through the following processes. An El Niño event triggers high temperatures and droughts particularly in the tropical land areas. The high temperatures enhance plant respiration and organic-matter decomposition in soil, which leads to increases in  $CO_2$  emission. The droughts suppress CO2 uptake by plant photosynthesis, and also induce forest and peat fires resulting in CO<sub>2</sub> emission increases (Keeling et al., 1995; Zeng et al., 2005; WMO, 2016b; van der Werf et al., 2017).

However, an exceptionally low  $CO_2$  growth rate occurred during the El Niño event in 1991/1992. The

injection of 14 - 20 megatonnes (Mt) of SO<sub>2</sub> aerosols into the stratosphere by the Mount Pinatubo eruption in June 1991 affected the radiation budget and atmospheric circulation (Hansen *et al.*, 1992; Stenchikov *et al.*, 2002), resulting in a drop in global temperature. Angert *et al.* (2004) suggested that the low CO<sub>2</sub> growth rate observed during this El Niño event was due to reduced CO<sub>2</sub> emissions caused by consequent changes in the respiration of terrestrial vegetation and the decomposition of organic matter (Conway *et al.*, 1994; Lambert *et al.*, 1995; Rayner *et al.*, 1999), and by enhanced CO<sub>2</sub> absorption due to intensive photosynthesis caused by an increase in diffuse radiation (Gu *et al.*, 2003).

The high growth rate in 2012/2013 and the smaller growth rate in 2013/2014 are most likely related to changes in fluxes between the atmosphere and terrestrial biosphere, particularly in tropical and subtropical regions (WMO, 2014; WMO, 2015).

### Seasonal cycle of CO<sub>2</sub> mole fraction in the atmosphere

Figure 3.5 shows average seasonal cycles in the mole fraction of  $CO_2$  for each 30° latitudinal zone. The seasonal cycles are clearly large in amplitude in northern high and mid-latitudes, pronounced in the northern tropics and small in the Southern Hemisphere. The seasonal cycle in the Northern Hemisphere is mainly dominated by the land biosphere (Nevison *et al.*, 2008), and it is characterized by rapid decreases from June to August and large returns from September to December.



Fig. 3.5 Average seasonal cycles in the mole fractions of  $CO_2$  for each 30° latitudinal zone obtained by subtracting long-term trends from the zonal mean time series. Vertical error bars represent the range of ±1 $\sigma$  which was calculated for each month. (period 1983 to 2016).

The mole fractions of  $CO_2$  in northern low latitudes lagged behind that in high latitudes by one or two months. Minimum values appeared in August in northern high and mid-latitudes and in September in northern low latitudes.

In the Southern Hemisphere, seasonal variations

showed small amplitudes with a half-year delay due to small amounts of net emission and absorption by the terrestrial biosphere. Seasonal variations in both northern and southern mid-latitudes were apparently superimposed in southern low latitudes  $(0-30^{\circ}S)$ . The direct influence of sources and sinks in the Southern Hemisphere may be partially cancelled by the propagation of an antiphase variation from the Northern Hemisphere.

Figure 3.6 shows latitudinal distributions of the mole fractions of  $CO_2$  in January, April, July and October 2016, from sites marked with an asterisk in Plate 3.1. In latitudes north of 30°N, the mole fractions increased towards higher latitudes in January and April, and decreased towards higher latitudes in July, corresponding to the large seasonal variations in northern high and mid-latitudes, variations associated with activities of the terrestrial biosphere.



Fig. 3.6 Latitudinal distributions of the monthly mean mole fractions of  $CO_2$  in January, April, July and October 2016.

-14-

# 4. METHANE

# (CH<sub>4</sub>)

- : CONTINUOUS STATION
- △ : FLASK STATION
- □ : FLASK MOBILE (SHIP)
- ▼ : REMOTE SENSING STATION



This map shows locations of the stations that have submitted data for monthly mean mole fractions.

## CH<sub>4</sub> Monthly Data



**Plate 4.1** Monthly mean  $CH_4$  mole fractions that have been reported to the WDCGG. The mole fractions are illustrated in different colors. The sites are listed in order from north to south. The red line indicates the equator. In cases where data are reported for two or three different altitudes, only the data at the highest altitudes are illustrated. In cases where monthly means are not reported, the WDCGG calculates them from hourly or other mole fractions reported to the WDCGG by simple arithmetic mean. The data from the sites with an asterisk at the end of the station index were used for the analyses shown in Plate 4.2. (see Chapter 2)



CH<sub>4</sub> deseasonalized mole fraction





CH<sub>4</sub> growth rate

**Plate 4.2** Variation of zonally averaged monthly mean  $CH_4$  mole fractions (top), deseasonalized long-term trends (middle), and growth rates (bottom). The zonally averaged mole fractions were calculated for each 20° zone. The deseasonalized trends and growth rates were derived as described in Chapter 2.

#### 4. METHANE (CH<sub>4</sub>)

### Basic information on CH<sub>4</sub> with regard to environmental issues

Methane (CH<sub>4</sub>) is the second most important anthropogenic greenhouse gas, with an estimated global warming potential per molecule 28 times greater over a 100 year horizon and 84 times greater over a 20 year horizon than CO<sub>2</sub> (IPCC, 2013). Between 1750 and 2016, CH<sub>4</sub> accounted for about 17% of increase in the total radiative forcing due to long-lived greenhouse gases in the atmosphere (WMO, 2017b).

Analyses of air trapped in ice cores from Antarctica revealed that the current atmospheric CH<sub>4</sub> mole fraction is the highest over the last 0.8 million years (IPCC, 2013). The mole fraction of  $CH_4$  remained at about 700 ppb from 1000 A.D. until the start of the industrial era when it started increasing. Measurements in ice cores have shown that interpolar differences in CH<sub>4</sub> mole fractions between Greenland and Antarctica ranged from 24 to 58 ppb between 1000 and 1800 A.D. (Etheridge et al., 1998). Atmospheric observations show that difference of the mole fractions between the high latitudinal belts of the Northern and Southern Hemispheres (see Fig. 4.3) averaged over the years 1984 to 2016 reached about 140 ppb. Increase in the interhemispheric gradient reflects the dominant impact of the emissions from the Northern Hemisphere, where major anthropogenic and natural sources are situated.

CH<sub>4</sub> is emitted by both natural and anthropogenic sources, including natural wetlands, oceans, landfills, rice paddies, enteric fermentation, fossil fuel production and consumption and biomass burning. The global emission of CH<sub>4</sub> was 558 teragrams (Tg) CH<sub>4</sub> per year for 2003-2012, with about 60% related to anthropogenic activities (Saunois et al., 2016). CH<sub>4</sub> is removed from the atmosphere by reaction with hydroxyl radicals (OH) in both the troposphere and stratosphere, and by reaction with chlorine atoms and  $O(^{1}D)$ , an excited state of oxygen, in the stratosphere. CH<sub>4</sub> is one of the most important sources of water vapor in the stratosphere and has an atmospheric lifetime of about 10 years. More information regarding sources and sinks of CH<sub>4</sub> must be collected to better understand the budget of atmospheric CH<sub>4</sub>.

Mole fractions of  $CH_4$  are analyzed using data submitted to the WDCGG from fixed stations and some ships. These observational sites are shown on the map at the beginning of this chapter.

## Annual variation of CH<sub>4</sub> mole fraction in the atmosphere

The monthly mean dry mole fractions of  $CH_4$  used in this analysis are shown in Plate 4.1, with the mole fraction levels illustrated in different colors. Global, hemispheric and zonal mean mole fractions have been calculated based on data from the stations that satisfy the selection criteria outlined in Chapter 2 (see the caption for Plate 4.1). Zonally averaged atmospheric CH<sub>4</sub> mole fractions, together with their deseasonalized components and growth rates, are shown as three-dimensional representations in Plate 4.2. These plots show that the seasonal variations in CH<sub>4</sub> mole fraction are larger in the Northern than in the Southern Hemisphere and that the increase in the Northern Hemisphere propagates to the Southern Hemisphere. The growth rates vary on a global scale with the patterns similar to those for  $CO_2$  (see Chapter 3). There is a large latitudinal gradient in CH<sub>4</sub> mole fraction from the northern mid-latitudes to the tropics, suggesting major sinks in the tropics, where the mole fraction of OH radicals is higher.



Fig. 4.1 Global monthly mean mole fraction of  $CH_4$  from 1984 to 2016 and the deseasonalized long-term trend plotted by red line (top), and growth rate (bottom).

Figure 4.1 shows globally averaged monthly mean mole fractions and the growth rates for  $CH_4$  from 1984 to 2016. The global average mole fraction was 1853±2 ppb in 2016, an increase of 9 ppb from 2015. The mole fraction changed little between 1999 and

2006. The mean annual absolute increase during the last 10 years was 6.8 ppb/year. The current mole fraction is 257% of its pre-industrial level of 722 ppb.

Figure 4.2 shows monthly mean mole fractions from 1984 to 2016 for each  $30^{\circ}$  latitudinal zone. The smallest magnitude of the seasonal variations occurred in the latitudinal zone between the equator and  $30^{\circ}$ S.



Fig. 4.2 Monthly mean mole fractions of  $CH_4$  from 1984 to 2016 for each 30° latitudinal zone (dots) and their deseasonalized long-term trends (red lines).

Figure 4.3 summarizes deseasonalized long-term trends for each 30° latitudinal zone and their growth rates. A latitudinal gradient between the high and mid-latitudes in each of the Northern and Southern Hemispheres is almost absent, while the difference between high/mid-latitudes and low latitudes of the Northern Hemisphere is larger than that in the Southern Hemisphere. Fig. 4.3 also shows that mole fractions in most latitudinal belts have similar tendencies. In the 1990s, the growth rates clearly decreased in all latitudinal zones, but remained positive. The declined growth rate was especially evident during the second half of 1992, in 1996, and almost even in 2000 and in 2004/2005, when growth rates were less than 5 ppb/year in all latitudes. During the year 1998, the maximum global growth rate reached about 11 ppb/year (Fig. 4.1). Maximum increases occurred in

high and mid-latitudes of the Northern Hemisphere, where the growth rates exceeded 15 ppb/year for individual months (Fig. 4.3). In 2000, the global growth rate decreased to around -1 ppb/year. Around 2002/2003, the growth rates increased in the Northern Hemisphere, especially in northern high latitudes where they exceeded 10 ppb/year. The global growth rate was as low as -3 ppb/year in 2004 and 1 ppb/year in 2005. Despite the large growth rates in 1998 and 2002/2003, during El Niño events, the global mean mole fraction was relatively stable between 1999 and 2006. However, since 2007, the mole fraction has been increasing. The average growth rate over the last decade was 6.8 ppb/year. In 2014, growth rates exceeded 9 ppb/year in all latitudinal zones, contributing to a global growth rate almost as high as that in 1998.



Fig. 4.3 Long-term trends in the mole fractions of  $CH_4$  for each 30° latitudinal zone (top) and their growth rates (bottom).

The large increase in  $CH_4$  growth rate in 1991 may have been caused by decreased levels of OH radicals in the atmosphere due to reduced UV radiation resulting from the eruption of Mt. Pinatubo in 1991 (Dlugokencky *et al.*, 1996), and the subsequent decrease in 1992 may have been due to an increase in OH radicals resulting from the depletion of stratospheric ozone following this eruption (Bekki *et al.*, 1994).

In 1998, the growth rates were high in all latitudes, which may have been due to increased emissions in northern high latitudes and tropical wetlands caused by high temperatures and increased precipitation, as well as by biomass burning in boreal forests, mainly in Siberia (Dlugokencky *et al.*, 2001). In contrast, Morimoto *et al.* (2006) estimated from isotope observations that the contribution of biomass burning to the increase in 1998 was about half that of wetlands. The growth rates were low from 1999 to 2006, with an exception during the El Niño event of 2002/2003. The causes of these near-zero growth rates are not yet determined (IPCC, 2013).

Since 2007, atmospheric  $CH_4$  has increased significantly throughout the entire monitoring network (Rigby *et al.*, 2008; Dlugokencky *et al.*, 2009). This is due to increased emissions in the tropical and mid-latitude Northern Hemisphere (Bergamaschi *et al.*, 2013; WMO, 2013). The attribution of this increase to anthropogenic and natural sources is difficult because the current network is insufficient to characterize emissions by region and source process.

The WMO/GAW observational network includes the observations of carbon stable isotopes in methane, with 15 datasets submitted to the WDCGG. Such observations are extremely useful for the identification of primary methane sources.

# Seasonal cycle of CH<sub>4</sub> mole fraction in the atmosphere

Figure 4.4 shows average seasonal cycles in the mole fraction of CH<sub>4</sub> for each 30° latitudinal zone. The seasonal cycles are driven mainly by reaction with OH radicals, a major  $CH_4$  sink in the atmosphere. Seasonal cycles are also affected by the magnitude and timing of CH<sub>4</sub> emissions from seasonal sources such as wetlands and biomass burning as well as by atmospheric transport of CH<sub>4</sub>. The seasonal cycles are large in amplitude in the Northern Hemisphere. Unlike CO<sub>2</sub>, amplitudes were also large in high and the Southern mid-latitudes of Hemisphere. Seasonally, the Northern Hemisphere shows minima in summer and maxima in winter, while the Southern Hemisphere shows a seasonal cycle lagging two-thirds to three-quarters of a year behind. The seasonal variations in the mole fraction of CH<sub>4</sub> were almost consistent with those of the OH radical that reacts with CH<sub>4</sub>. Southern low latitudes are characterized by an antiphase annual component, with that of the seasonal cycle arising from the southern mid-latitudes. The former component levels off in boreal winter due to interhemispheric transportation of CH<sub>4</sub> from the Northern Hemisphere.



Fig. 4.4 Average seasonal cycles of CH<sub>4</sub> mole fractions for each 30° latitudinal zone obtained by subtracting long-term trends from the zonal mean time series. Vertical error bars represent the range of  $\pm 1\sigma$  calculated for each month (period 1984 to 2016).

# 5. NITROUS OXIDE (N<sub>2</sub>O)

### • : CONTINUOUS STATION

### △ : FLASK STATION



This map shows locations of the stations that have submitted data for monthly mean mole fractions.

# $N_2O$ Monthly Data



**Plate 5.1** Monthly mean  $N_2O$  mole fractions that have been reported to the WDCGG. The mole fractions are illustrated in different colors. The sites are listed in order from north to south. The red line indicates the equator. The data from the sites with an asterisk at the end of the station index were used for the analyses shown in Plate 5.2. (see Chapter 2)

#### N<sub>2</sub>O mole fraction









#### N<sub>2</sub>O growth rate

**Plate 5.2** Variation of zonally averaged monthly mean  $N_2O$  mole fractions (top), deseasonalized long-term trends (middle), and growth rates (bottom). The zonally averaged mole fractions were calculated for each  $30^\circ$  zone. The deseasonalized trends and growth rates were derived as described in Chapter 2.

#### **5. NITROUS OXIDE** $(N_2O)$

### Basic information on N<sub>2</sub>O with regard to environmental issues

Nitrous oxide  $(N_2O)$  is a relatively stable greenhouse gas in the troposphere with a lifetime of 121 years (IPCC, 2013). Between 1750 and 2016, N<sub>2</sub>O accounted for about 6% of increase in the total radiative forcing due to long-lived greenhouse gases (WMO, 2017b). N<sub>2</sub>O is the third most important anthropogenic greenhouse gas in the atmosphere. It also plays an important role in stratospheric ozone depletion (Ravishankara et al., 2009). The mole fraction of N2O in the atmosphere has increased steadily from its pre-industrial level of 270 ppb to its current value, which is 22% higher. Prior to industrialization, the atmospheric N2O burden reflected the balance between emissions from natural systems (soils and oceans) and chemical losses in the stratosphere. In the industrial era, additional emissions result from the use of synthetic nitrogen fertilizers (direct emissions from agricultural fields and indirect emissions from waterways affected by agricultural runoff), fossil fuel combustion, biomass burning and other minor processes.



Fig. 5.1 Globally averaged monthly mean mole fraction of  $N_2O$  from 1980 to 2016 and the deseasonalized long-term trend shown as a red line (top), and growth rate (bottom).

Currently, anthropogenic sources are responsible for ~40% of total emissions (WMO, 2017b). Most of the anthropogenic  $N_2O$  enters the atmosphere from the transformation of fertilizer nitrogen into  $N_2O$  and its subsequent emission from agricultural soils. However, more research is needed to understand the role of  $N_2O$  in the global nitrogen cycle.

Mole fractions of  $N_2O$  are analyzed using data submitted to the WDCGG from fixed stations. These observational sites are shown on the map at the beginning of this chapter.

## Long-term trend of $N_2O$ mole fraction in the atmosphere

The monthly mean mole fractions of  $N_2O$  used in the global analysis are shown in Plate 5.1, with the various mole fraction levels illustrated in different colors. The data submitted to the WDCGG show that  $N_2O$  mole fractions have increased at almost all stations. Zonally averaged atmospheric  $N_2O$  mole fractions, together with their deseasonalized components and growth rates, are shown as three-dimensional representations from 1980 to 2016 in Plate 5.2.



Fig. 5.2 Monthly mean mole fractions of  $N_2O$  from 1980 to 2016 (top) and growth rates (bottom), averaged over the Northern and Southern Hemispheres.

The upper panel of Figure 5.1 shows globally averaged monthly mean  $N_2O$  mole fractions from 1980 to 2016 and its long-term trend. The global average mole fraction reached a new high of  $328.9\pm0.1$ ppb in 2016, an increase of 0.8 ppb over the previous year. The mean annual increase during the last 10 years was 0.90 ppb/year.

As shown in the lower panel of Figure 5.1, the growth rate exhibits substantial interannual variability. A major part of the interannual variability is associated with the El Niño-Southern Oscillation (ENSO); ENSO brings about changes in N<sub>2</sub>O emissions from soil (Ishijima *et al.*, 2009; Saikawa *et al.*, 2013; Thompson *et al.*, 2014), and N<sub>2</sub>O upwelling in the eastern Pacific (Ishijima *et al.*, 2009; Nevison *et al.*, 2011; Thompson *et al.*, 2014). In mid- and high latitudes, the atmospheric transport from the stratosphere down to the troposphere, as a part of the global-scale atmospheric circulation, has a non-negligible effect on N<sub>2</sub>O concentration (Nevison *et al.*, 2011).

The interhemispheric difference in mole fraction of  $N_2O$  averaged over year 1980 to 2016 is 1.0 ppb (the upper panel of Figure 5.2), indicating that the majority of  $N_2O$  sources are situated in the Northern Hemisphere.

# HALOCARBONS AND OTHER HALOGENATED SPECIES

• : CONTINUOUS STATION

△ : FLASK STATION



This map shows locations of the stations that have submitted data for monthly mean mole fractions.



**Plate 6.1** Monthly mean (a) CFC-11, (b) CFC-12, (c) CFC-113, (d) Halon-1211, (e) Halon-1301, (f) HCFC-22, (g) HCFC-141b, (h) HCFC-142b mole fractions that have been reported to the WDCGG. The mole fractions are illustrated in different colors. The sites are listed in order from north to south. The red line indicates the equator.



**Plate 6.2** Monthly mean (a)  $CCl_4$ , (b)  $CH_3CCl_3$ , (c) HFC134a, (d) HFC152a, (e)  $CH_3Cl$ , (f)  $SF_6$  mole fractions that have been reported to the WDCGG. The mole fractions are illustrated in different colors. The sites are listed in order from north to south. The red line indicates the equator.

### 6. HALOCARBONS AND OTHER HALOGENATED SPECIES

### Basic information on halocarbons with regard to environmental issues

Halocarbons are carbon compounds containing one or more halogens, i.e., fluorine, chlorine, bromine or iodine, with most being industrial products. Halocarbons are classified into chlorofluorocarbons (CFCs), which contain fluorine and chlorine; the hydrochlorofluorocarbons (HCFCs), which contain hydrogen in addition to fluorine and chlorine; and the halons, which contain bromine and other halogens. Perfluorocarbons (PFCs) are carbon compounds in which all hydrogen atoms are replaced by fluorine and hydrofluorocarbons (HFCs) atoms, are halocarbons that contain hydrogen and fluorine but no chlorine. Most halocarbons (HFCs, CCl<sub>4</sub>, CH<sub>3</sub>CCl<sub>3</sub>, etc.) are produced industrially, whereas some species (e.g., CH<sub>3</sub>Cl) have natural sources. Although the mole fractions of the halocarbons are relatively low in the atmosphere, they have high global warming potentials. The halocarbons have been shown to account for about 11% of the total increase in radiative forcing due to long-lived greenhouse gases from 1750 to 2016 (WMO, 2017b).

The halocarbons are colorless, odorless and innocuous substances that can be readily gasified and liquefied and have low surface tension. Thus, they were commonly used as refrigerants, propellants and detergents for semiconductors, resulting in a rapid increase in their mole fractions in the atmosphere until the 1980s. Halocarbons containing chlorine and bromine led to the depletion of the ozone layer. Since the mid-1990s, the Montreal Protocol on Substances that Deplete the Ozone Layer and its subsequent Adjustments and Amendments have progressively tightened the regulations for the production, consumption and trade of ozone-depleting substances.

The CFCs are destroyed mainly by ultraviolet radiation in the stratosphere, and their atmospheric lifetimes are generally long (e.g., about 50 years for CFC-11). However, the HCFCs and CH<sub>3</sub>CCl<sub>3</sub>, which contain hydrogen, react with hydroxyl radicals (OH) in the troposphere and have relatively short lifetimes (e.g., about 5 years for  $CH_3CCl_3$ ). As the reaction with OH in the troposphere is a major sink for CH<sub>3</sub>CCl<sub>3</sub>, global measurements of CH<sub>3</sub>CCl<sub>3</sub> provide an accurate estimate of the global mole fraction of OH (Prinn et al., 2001). However, due to a substantial decrease of CH<sub>3</sub>CCl<sub>3</sub> mole fraction in the atmosphere. reconstruction of OH levels using this molecule is becoming increasingly difficult and other compounds are now used as reference tracers for OH mole fraction determination.

The Kyoto Protocol to the United Nations Framework Convention on Climate Change (UNFCCC), which came into force on 16 February 2005, specifies HFCs, PFCs and sulfur hexafluoride (SF<sub>6</sub>) as targets for quantified emission limitation and reduction commitments. The Kigali Amendment to the Montreal Protocol adopted in October 2016 puts the way forward to phase down the production and usage of HFCs.

 $SF_6$ , although not a halocarbon, behaves similarly to halocarbons and is a potent long-lived greenhouse gas. Its emissions are almost entirely anthropogenic, and it is used mainly as an electrical insulator in power distribution equipment.  $SF_6$  current mole fraction is about twice the level observed in the mid-1990s (WMO, 2017b). It has a very long atmospheric lifetime, 3,200 years, so emissions accumulate in the atmosphere. These emissions can be determined utilizing atmospheric observations of  $SF_6$  and the rate of mole fraction changes through inverse modelling tools (Levin *et al.*, 2010).

### Annual changes in the levels of halocarbons in the atmosphere

The cover map of this chapter shows observational sites that have submitted data on halocarbons and other halogenated species to the WDCGG. Although the number of stations measuring these species is rather limited, halocarbons are generally well mixed in the atmosphere and the data may be sufficient to reflect their global tendencies. Plates 6.1 and 6.2 show all the monthly mean mole fractions of these gases submitted to the WDCGG. The figures (6.1 - 6.7) in this chapter show the monthly mean data reported to the WDCGG without spatial averaging. Some discrepancies in the absolute mole fractions were observed between several stations, suggesting that these stations may have adopted different standard Observational data expressed on the same scales. standard scales revealed that the differences in the mole fractions between the two hemispheres were large in the 1980s for CFCs, CCl<sub>4</sub> and CH<sub>3</sub>CCl<sub>3</sub> but have since narrowed as the emissions have been suppressed and the existing constituents have been mixed between the hemispheres.



Fig. 6.1 Time series of the monthly mean mole fractions of CFC-11, CFC-12 and CFC-113 at individual stations. Solid circles show mole fractions in the Northern Hemisphere and open circles show those measured in the Southern Hemisphere.

Figure 6.1 shows monthly mean mole fractions of CFC-11 (CCl<sub>3</sub>F), CFC-12 (CCl<sub>2</sub>F<sub>2</sub>) and CFC-113 (CCl<sub>2</sub>FCClF<sub>2</sub>) over time. The mole fractions of CFC-11 peaked around 1992 in the Northern Hemisphere, followed by a maximum about one year later in the Southern Hemisphere. The mole fractions of CFC-113 were maximal around 1993 in the Northern Hemisphere and around 1996 in the Southern Hemisphere. The mole fractions of these gases have since been decreasing slowly in both hemispheres. The mole fraction of CFC-12 increased until around 2003 and then started decreasing gradually.

Figure 6.2 shows time series of the monthly mean mole fractions of Halon-1211 (CBrClF<sub>2</sub>) and Halon-1301 (CBrF<sub>3</sub>). The mole fraction of Halon-1211 has decreased since 2005, and the growth

of Halon-1301 mole fractions has decelerated over the last several years.



Fig. 6.2 Time series of the monthly mean mole fractions of Halon-1211 and Halon-1301 at individual stations. Solid circles show mole fractions measured in the Northern Hemisphere and open circles show those measured in the Southern Hemisphere.



Fig. 6.3 Time series of the monthly mean mole fractions of HCFC-22, HCFC-141b and HCFC-142b at individual stations. Solid circles show mole fractions measured in the Northern Hemisphere and open circles show those measured in the Southern Hemisphere.

Figure 6.3 shows time series of the mole fractions of HCFC-22 (CHCIF<sub>2</sub>), HCFC-141b (CH<sub>3</sub>CCl<sub>2</sub>F) and HCFC-142b (CH<sub>3</sub>CClF<sub>2</sub>). The mole fractions of these gases have increased significantly during the last two decades as a result of their continued use as substitutes for CFCs. However, the growth of HCFC-141b and HCFC-142b mole fractions has decelerated over the last decade.

Figure 6.4 shows time series of the mole fractions of  $CCl_4$  and  $CH_3CCl_3$ . The mole fractions of  $CCl_4$  in both hemispheres peaked around 1991. The mole fractions of  $CH_3CCl_3$  were at a maximum around 1992 in the Northern Hemisphere and around 1993 in the Southern Hemisphere. The mole fractions of these gases have since been decreasing.



Fig. 6.4 Time series of the monthly mean mole fractions of  $CCl_4$  and  $CH_3CCl_3$  at individual stations. Solid circles show mole fractions measured in the Northern Hemisphere and open circles show those measured in the Southern Hemisphere.

Figure 6.5 shows time series of the monthly mean mole fractions of HFC-134a ( $CH_2FCF_3$ ) and HFC-152a ( $CH_3CHF_2$ ). The mole fractions of HFC-134a and HFC-152a have risen twofold over the last 10 years, increasing sooner in the Northern than in the Southern Hemisphere suggesting their predominant sources are located in the Northern Hemisphere. The growth of HFC-152a has decelerated over the last decade.

Figure 6.6 shows time series of the monthly mean mole fractions of methyl chloride (CH<sub>3</sub>Cl). The mole fraction of CH<sub>3</sub>Cl does not show any particular long-term tendency although clear seasonal cycle can be seen in the dataset.

Figure 6.7 shows a time series of the monthly mean mole fractions of  $SF_6$ . The mole fraction of  $SF_6$  in 2016 was over twice that observed in 1995 and has increased at an almost linear rate (WMO, 2017b).


Fig. 6.5 Time series of the monthly mean mole fractions of HFC-134a and HFC-152a at individual stations. Solid circles show mole fractions measured in the Northern Hemisphere and open circles show those measured in the Southern Hemisphere.



Fig. 6.6 Time series of the monthly mean mole fractions of  $CH_3Cl$  at individual stations. Solid circles show mole fractions measured in the Northern Hemisphere and open circles show those measured in the Southern Hemisphere.



Fig. 6.7 Time series of the monthly mean mole fractions of  $SF_6$  at individual stations. Solid circles show mole fractions measured in the Northern Hemisphere and open circles show those measured in the Southern Hemisphere.

-34-

# 7. CARBON MONOXIDE (CO)

### • : CONTINUOUS STATION

- △ : FLASK STATION
- □ : FLASK MOBILE (SHIP)



This map shows locations of the stations that have submitted data for monthly mean mole fractions.

# CO Monthly Data



**Plate 7.1** Monthly mean CO mole fractions that have been reported to the WDCGG. The mole fractions are illustrated in different colors. The sites are listed in order from north to south. The red line indicates the equator. The data from the sites with an asterisk at the end of the station index were used for the analyses shown in Plate 7.2. (see Chapter 2)



CO deseasonalized mole fraction





CO growth rate

**Plate 7.2** Variation of zonally averaged monthly mean CO mole fractions (top), deseasonalized long-term trends (middle), and growth rates (bottom). The zonally averaged mole fractions were calculated for each  $20^{\circ}$  zone. The deseasonalized trends and growth rates were derived as described in Chapter 2.

#### 7. CARBON MONOXIDE (CO)

# Basic information on CO with regard to environmental issues

Carbon monoxide (CO) is not a greenhouse gas; it absorbs hardly any infrared radiation from the Earth. It is, however, an important part of the global carbon cycle, since it affects other greenhouse gases through reactions with hydroxyl radicals (OH). In addition, CO concentration can be used as an indicator useful for the attribution of sources of major greenhouse gases.

Sources of atmospheric CO include fossil fuel combustion and biomass burning, along with the oxidation of methane and non-methane hydrocarbons. Major sinks include reaction with OH and surface deposition; the reaction of CO with OH accounts for all of the chemical loss of CO in the troposphere (Seinfeld and Pandis, 1998). CO has a relatively short atmospheric lifetime, ranging from 10 days in summer in the tropics to more than a year over the polar regions in winter. Thus anthropogenic CO emissions do not lead to CO accumulation in the atmosphere. Furthermore, the uneven distribution of sources causes large spatial and temporal variations in CO mole fraction.

Measurements of trapped air in ice cores have shown that the pre-industrial CO mole fraction over central Antarctica during the last two millennia was about 50 ppb and the CO level increased to 110 ppb by 1950 in Greenland (Haan and Raynaud, 1998). Beginning in 1950, the global average CO mole fraction increased at a rate of 1% per year but started to decrease in the late 1980s (WMO, 1999). Between 1991 and 2001, the global average mole fraction of CO decreased at an annual rate of about 0.5 ppb, excluding temporal enhancements from large biomass burning events (Novelli et al., 2003). In the 2001-2010 decade, a slightly negative trend of CO mole fraction has been dominant in the Northern Hemisphere with significant interannual variability, which is well reproduced by earth system models (Yoon and Pozzer, 2014).

Mole fractions of CO are analyzed using data submitted to the WDCGG from fixed stations and some ships. These observational sites are shown on the map at the beginning of this chapter.

# Annual variation of CO mole fraction in the atmosphere

The monthly mean mole fractions of CO used in this analysis are shown in Plate 7.1, in which different mole fraction levels are plotted in different colors. The observational sites that provide data for global analysis are shown on the map at the beginning of this chapter.

Latitudinally averaged mole fractions of CO in the atmosphere, together with their deseasonalized mole

fractions and growth rates, are shown in Plate 7.2 as three-dimensional representations.

It is highly desirable to report CO concentration data in mole fractions (mostly in ppb) traceable to the WMO Mole Fraction Scale (WMO, 2016a). A small fraction of the reported data, however, includes values in units of  $\mu g/m^3$  or mg/m<sup>3</sup>. In the WDCGG analysis, these units are converted to ppb using the formulas:

- $$\begin{split} X_p\left[ppb\right] &= (R \times T \ / \ M \ / \ P_0) \times 10 \times X_g\left[\mu g \ / m^3\right] \\ \text{and} \\ X_p\left[ppb\right] &= (R \times T \ / \ M \ / \ P_0) \times 10^4 \times X_g\left[mg \ / m^3\right], \end{split}$$
  - where R is the molar gas constant (8.31451 [J/K/mol]), T is the reported temperature for conversion

(293.15 [K] or 298.15 [K]), M is the molecular weight of CO (28.0101) and

 $P_0$  is the standard pressure (1013.25 [hPa]).



Fig. 7.1 Globally averaged monthly mean mole fraction of CO from 1992 to 2016 and the deseasonalized long-term trend in red line (top), and growth rate (bottom).

Figure 7.1 shows globally averaged monthly mean CO mole fractions and their growth rates. Growth rates were high in 1993/1994, 1997/1998 and 2002, and low in 1992 and 1998/1999. The global annual mean mole fraction was  $90\pm1$  ppb in 2016, which was calculated irrespective of the difference in observation scales.

Plate 7.2 shows that the seasonal variations of CO were larger in the Northern Hemisphere and smaller in the Southern Hemisphere, and that the deseasonalized mole fractions were the highest in mid-latitudes of the Northern Hemisphere and the lowest in the Southern Hemisphere, with a large latitudinal gradient from northern mid- to southern low latitudes. This is likely due to the presence of numerous anthropogenic sources of CO in the northern mid-latitudes, combined with the destruction of CO in the tropics, where OH radicals are abundant.

Figure 7.2 shows monthly mean mole fractions of CO for each 30° latitudinal zone. Seasonal variations were observed in both hemispheres, with mole fractions being higher in winter. Amplitudes of the seasonal cycle were larger in the Northern Hemisphere than in the Southern Hemisphere.



Fig. 7.2 Monthly mean mole fractions of CO from 1992 to 2016 for each 30° latitudinal zone (dots) and their deseasonalized long-term trends (red lines).

Figure 7.3 summarizes deseasonalized long-term trends for each 30° latitudinal zone and their growth rates. As seen in the bottom panel, a large negative growth rate was observed in 1992, especially in the low latitudes of the Northern Hemisphere, almost coinciding with a low growth rate of CH<sub>4</sub> mole fractions. Dlugokencky *et al.* (1996) attributed the low growth rates of CO and CH<sub>4</sub> to the eruption of Mt. Pinatubo in 1991; stratospheric ozone depletion was enhanced by volcanic aerosols, and caused an increase of atmospheric OH radicals, which destroy both CO and CH<sub>4</sub>.

Increases in CO mole fractions were observed from 1997 to 1998 in the Northern Hemisphere and in the low latidutes of the Southern Hemisphere. These increases were attributed to large biomass burning events in Indonesia in late 1997 and in Siberia in the summer and autumn of 1998 (Novelli *et al.*, 1998).

The CO mole fractions returned to normal after 1999, but the growth rates in the Northern Hemisphere increased substantially again in 2002. The latter may have been due to large biomass burning events. Large-scale boreal forest fires occurred in Siberia and North America from 2002 to 2003. Large forest fires also occurred in Russia in summer 2010 which is reflected in the data in the bottom panel of Figure 7.3.



Fig. 7.3 Deseasonalized long-term trends of CO for each 30° latitudinal zone (top) and their growth rates (bottom).

## Seasonal cycle of CO mole fraction in the atmosphere

Figure 7.4 shows average seasonal cycles in the mole fraction of CO for each 30° latitudinal zone. The seasonal cycle is driven mainly by seasonal variations in OH abundance as a CO sink. This seasonality and a short lifetime of about a few months resulted in a sharp decrease in early summer followed by a relatively slow increase in autumn. The levelling-off in the beginning of the year observed in the southern low latitudes may be attributed to the transport of CO from the Northern Hemisphere.



Fig. 7.4 Average seasonal cycles of CO mole fractions for each  $30^{\circ}$  latitudinal zone obtained by subtracting long-term trends from the zonal mean time series. Error bars represent the range of  $\pm 1\sigma$  calculated for each month. (period 1992 to 2016).

# APPENDICES

#### CALIBRATION AND STANDARD SCALES

#### 1. Calibration System in the GAW Programme

Under the Global Atmosphere Watch (GAW) Programme, the Central Calibration Laboratories (CCLs) are assigned to host a Primary (Reference) Standard/scale, while the World Calibration Centres (WCCs) and Regional Calibration Centres (RCC) are responsible for the scale propagation to the stations via distribution of calibration standards for certain compounds, conducting instrument calibrations, comparison campaigns, station audits and providing training to the station personnel. A Reference Standard/scale is designated for each variable to be used for all GAW measurements of that variable. Table 1 lists the organizations that serve as WCCs and CCLs for GAW (WMO, 2017a). For CFCs, no central facilities or quality control systems have so far been established within the GAW Programme.

Table 1. Overview of the GAW Central Calibration Laboratories (GAW-CCL, Reference Standard) and World Calibration Centres for greenhouse and other related gases. The World Calibration Centres have assumed global responsibilities, except where indicated (Am, Americas; E/A, Europe and Africa; A/O, Asia and the South-West Pacific)

| Compounds                                  | Central Calibration<br>Laboratory (Host of<br>Primary Standard) | World Calibration Centre |  |
|--------------------------------------------|-----------------------------------------------------------------|--------------------------|--|
| Carbon Diovide (CO.)                       | ΝΟΛΛ/ΕΩΙ                                                        | NOAA/ESRL (Round Robin)  |  |
| Carbon Dioxide $(CO_2)$                    | NOAA/ESKL                                                       | Empa (audits)            |  |
| Carbon Dioxide (CO <sub>2</sub> ) isotopes | MPI-BGC                                                         |                          |  |
| Methana (CIII)                             |                                                                 | Empa (Am, E/A)           |  |
| Methane (CH <sub>4</sub> )                 | NOAA/ESKL                                                       | JMA (A/O)                |  |
| Nitrous Oxide (N <sub>2</sub> O)           | NOAA/ESRL                                                       | KIT/IMK-IFU              |  |
| Chlorofluorocarbons (CFCs)                 |                                                                 |                          |  |
| Sulfur Hexafluoride (SF <sub>6</sub> )     | NOAA/ESRL                                                       | KMA                      |  |
| Molecular Hydrogen (H <sub>2</sub> )       | MPI-BGC                                                         |                          |  |
| Carbon Monoxide (CO)                       | NOAA/ESRL                                                       | Empa                     |  |

#### 2. Carbon Dioxide (CO<sub>2</sub>)

In 1995, the National Oceanic and Atmospheric Administration's Earth System Research Laboratory (NOAA/ESRL, formerly CMDL; Climate Monitoring and Diagnostics Laboratory) in Boulder, Colorado, USA, took over the role of the Central Calibration Laboratory (CCL) from the Scripps Institution of Oceanography (SIO) in San Diego, California, USA. Since then, NOAA/ESRL has served as the CCL responsible for the maintenance of the GAW Primary Standard for CO<sub>2</sub>. As CCL for CO<sub>2</sub>, NOAA/ESRL maintains a high-precision manometric system for absolute calibration of CO2 as the reference for GAW measurements throughout the world (Zhao et al., 1997), as well as carrying out Round Robin in the function of WCC. It has been recommended that the standards of the GAW measurement laboratories be calibrated at least every three years at the CCL (WMO, 2016a).

Under the WMO calibration system, there have been

several calibration scales for CO<sub>2</sub>, *e.g.*, SIO-based X74, X85, X87, X93 and X2002 scales and the NOAA/ESRL-based WMO Mole Fraction Scale partially based on previous SIO scales. The CCL adopted the WMO X2005 scale, reflecting historical manometric calibrations of the CCL's set of cylinders and the possible small differences between SIO and NOAA/ESRL calibrations. The most current WMO Mole Fraction Scale is the WMO X2007 scale.

To assess the differences in standard scales among measuring laboratories, about every three years NOAA/ESRL organizes intercomparisons or Round Robin experiments endorsed by WMO. Many laboratories participated in the experiments organized in 1991–1992, 1995–1997, 1999–2000, 2002–2006, 2009-2012 and 2014-2015. Table 2 shows the results of the experiments performed in 2014-2015, in which the mole fractions measured by various laboratories are

compared with the mole fractions measured by NOAA/ESRL (http://www

.esrl.noaa.gov/gmd/ccgg/wmorr/wmorr\_results.php). In addition, many laboratories compare their standards bilaterally or multilaterally. Table 3 lists laboratories and sites that contributed to the present issue of the *Data Summary* with standard scales of reported data and history of participation in WMO intercomparison experiments.

| Laboratory | Measurement Date | Mole Fraction Difference (ppm) |             |
|------------|------------------|--------------------------------|-------------|
|            |                  | Low                            | High        |
|            |                  | 375-380 ppm                    | 400-415 ppm |
| NCAR       | Mar-14 & Jun-15  | -0.01 ~ 0.02                   | -0.05       |
| NOAA-CSD   | Apr-14           | 0.06                           | 0.03        |
| NEON       | May-14           | 0.01                           | 0.02        |
| NIST       | Jul-14           | -0.37                          | -0.49       |
| HU         | Jul & Dec-14     | 0.05                           | 0.01        |
| PSU        | Aug-14           | 0.03                           | -0.02       |
| CALTECH    | Sep-14           | -0.02                          | -0.04       |
| BLG        | Oct-14           | 0.06                           | -0.09       |
| AMERIFLUX  | Nov-14           | -0.01                          | -0.02       |
| EC         | Dec-14           | 0.09                           | 0.06        |
| HMS        | Jun-15           | 0.03                           | 0.02        |
| AEMET      | Aug-15           | -0.01                          | -0.01       |
| CSIRO      | May-14           | 0.04                           | 0.00        |
| NIWA       | Jun-14           | 0.08                           | -0.08       |
| SAWS       | Aug-14           | 0.16                           | 0.14        |
| СМА        | Oct-14           | 0.02                           | -0.02       |
| KMA        | Jan-15           | 0.03                           | 0.04        |
| MGO        | Aug-15           | 0.00                           | -0.03       |
| LSCE       | May-14           | -0.05                          | -0.00       |
| WCC-Empa   | Jun-14           | -0.10                          | -0.06       |
| Empa       | Jul-14           | -0.07                          | -0.06       |
| FMI        | Sep-14 & Jul-15  | 0.01                           | -0.10       |
| RUG        | Dec-14           | 0.03                           | 0.06        |
| ECN        | Jan-15           | 0.31                           | 0.51        |
| UEA        | Mar-15           | -0.31                          | -0.25       |
| RHUL       | Apr-15           | -0.10                          | -0.02       |
| UHEI-IUP   | Jun-14           | -0.03                          | -0.06       |
| UBA-SCHAU  | Jul-14           | 0.05                           | -0.04       |
| UBA/ZUG    | Sep-14           | 0.03                           | 0.02        |
| MPI-BGC    | Nov-14           | -0.01                          | -0.02       |
| RSE        | Jan-15           | 0.07                           | -0.08       |
| IAFMC      | Feb-15           | -1.63                          | -1.62       |
| ENEA       | May-15           | -0.01                          | -0.05       |
| ICOS       | Jul-15           | -0.01                          | -0.03       |
| JMA        | Oct-13           | -0.04                          | -0.04       |
| MRI        | Nov-13           | -0.15                          | -0.14       |
| AIST       | Jan-14           | 0.13                           | 0.18        |
| NIES       | Jan-14           | -0.09                          | -0.04       |
| TU         | Feb-14           | 0.16                           | 0.25        |

| Table 2. Round Robin results for the mole fraction of carbon dioxide. | Differences between the mole fractions |
|-----------------------------------------------------------------------|----------------------------------------|
| measured by various laboratories and the mole fractions measured by N | NOAA (Laboratory minus NOAA, ppm).     |

| Laboratory            | WDCGG Filename Code                                                                                                                                                 | Calibration<br>Scale | WMO Inter-<br>comparison                       |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------|
| AEMET                 | IZO128N0000                                                                                                                                                         | WMO                  | 91/92, 96/97,<br>99/00, 09/12,<br>14/15        |
| Aichi                 | MKW234N0000                                                                                                                                                         | WMO                  |                                                |
| AIST                  | TKY236N0000                                                                                                                                                         | AIST                 | 96/97, 99/00,<br>02/06, 09/12,<br>14/15        |
| BMKG &<br>Empa        | BKT500S0000                                                                                                                                                         | WMO                  |                                                |
| BoM &<br>CSIRO        | CGO540S0000, CGO540S0004, CGO540S0010                                                                                                                               | WMO                  |                                                |
| СМА                   | WLG236N0000                                                                                                                                                         | WMO                  | 96/97, 99/00,<br>02/06, 09/12,<br>14/15        |
| CMA &<br>NOAA/ESRL    | SDZ240N0000, WLG236N0001                                                                                                                                            | WMO                  |                                                |
| CNR-ICES &<br>DNA-IAA | JBN762S0000                                                                                                                                                         | WMO                  |                                                |
| CSIRO                 | ALT482N0003, CFA519S0003, CGO540S0003, CRI215N0000,<br>CYA766S0001, ESP449N0003, MAA767S0003, MLO519N0003,<br>MQA554S0003, SIS660N0003, SPO789S0003                 | WMO                  | 91/92, 96/97,<br>99/00, 02/06,<br>09/12, 14/15 |
| DMC & Empa            | TLL330S0000                                                                                                                                                         | WMO                  |                                                |
| EC                    | ALT482N0000, ALT482N0005, CDL453N0000,<br>CHM449N0000, CSJ451N0000, EGB444N0100, ESP449N0000,<br>ETL454N0000, FSD449N0000, LLB454N0100, WSA443N0000,<br>WSA443N0001 | WMO                  | 91/92, 96/97,<br>99/00, 02/06,<br>09/12, 14/15 |
| EMA                   | CAI130N0000                                                                                                                                                         |                      |                                                |
| Empa                  | JFJ646N0000                                                                                                                                                         | WMO                  | 09/12, 14/15                                   |
| Empa &<br>NHMS        | PDI221N0000                                                                                                                                                         | WMO                  |                                                |
| ENEA                  | LMP635N0001                                                                                                                                                         | WMO                  | 91/92, 96/97,<br>99/00, 02/06,<br>09/12, 14/15 |
| FMI                   | PAL667N0000                                                                                                                                                         | WMO                  | 02/06, 09/12<br>14/15                          |
|                       | HKG222N0001                                                                                                                                                         | WMO                  |                                                |
| НКО                   | HKO222N0000, HKO222N0001                                                                                                                                            | NIST<br>WMO          |                                                |
| HMS                   | HUN646N0000, KPS646N0000                                                                                                                                            | WMO                  | 91/92, 96/97,<br>99/00, 02/06,<br>09/12, 14/15 |
| IAFMS                 | CMN644N0001, CMN644N0002                                                                                                                                            | WMO                  | 91/92, 96/97,<br>02/06, 14/15                  |
| IGP                   | HUA312S0000                                                                                                                                                         | WMO                  |                                                |
| IMK-IFU               | WNK647N0000, ZUG647N0014                                                                                                                                            | WMO                  | 99/00                                          |
| INRNE                 | BEO642N0000                                                                                                                                                         | WMO                  |                                                |
| IOEP                  | DIG654N0000                                                                                                                                                         | IOEP                 |                                                |

Table 3. Status of standard scales and calibration/intercomparison for CO<sub>2</sub> at laboratories.

| ISAC                   | CGR637N0000                                                                                                                                         | WMO                   |                                                          |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------------|
| ISAC                   | ECO640N0000                                                                                                                                         |                       |                                                          |
| ITM                    | ZEP678N0000                                                                                                                                         | WMO                   | 96/97, 99/00,<br>09/12                                   |
| JMA                    | MNM224N0000, RYO239N0000, YON224N0000                                                                                                               | WMO                   | 91/92, 96/97,<br>99/00, 02/06,<br>09/12, 14/15           |
| KMΔ                    | AMY236N0000                                                                                                                                         | WMO                   | 02/06, 09/12                                             |
|                        | KSG762S0000                                                                                                                                         | KRISS                 | 14/15                                                    |
| KSNU                   | ISK242N0000                                                                                                                                         |                       |                                                          |
| KUP                    | JFJ646N0003                                                                                                                                         | WMO                   | 09/12                                                    |
| LSCE                   | AMS137S0000, BGU641N0000, LPO648N0000,<br>MHD653N0002, PDM642N0000, PUY645N0000                                                                     | WMO                   | 91/92, 96/97,<br>99/00, 02/06,<br>09/12, 14/15           |
|                        | FIK635N0000                                                                                                                                         |                       |                                                          |
| MGO                    | BER255N0001, KOT276N0001, KYZ240N0001, STC652N0001, TER669N0001, TIK271N0000                                                                        | WMO                   | 14/15                                                    |
| MMD                    | DMV504N0000                                                                                                                                         | WMO                   |                                                          |
| MRI                    | TKB236N0002                                                                                                                                         |                       | 91/92, 96/97,<br>99/00, 02/06,<br>09/12, 14/15           |
| NIER                   | GSN233N0103                                                                                                                                         | WMO                   |                                                          |
| NIES                   | COI243N0000, HAT224N0000                                                                                                                            | NIES 95 <sup>**</sup> | 96/97, 99/00,<br>02/06, 09/12,<br>14/15                  |
| NIMR                   | GSN233N0001                                                                                                                                         | WMO                   | 96/97                                                    |
| NIPR &<br>Tohoku Univ. | SYO769S0000                                                                                                                                         |                       | Tohoku Univ.:<br>91/92, 96/97,<br>99/00, 02/06,<br>09/12 |
| NIWA                   | BHD541S0000                                                                                                                                         | WMO                   | 91/92, 96/97,<br>99/00, 02/06,<br>09/12, 14/15           |
| NMA                    | FDT645N0002                                                                                                                                         |                       |                                                          |
| NOAA/ESRL              | BRW471N0000, MLO519N0000, SMO514S0000, SPO789S0000, NOAA/ESRL flask network <sup>*</sup>                                                            | WMO                   | 91/92, 96/97,<br>99/00, 02/06,<br>09/12, 14/15           |
| Osaka Univ.            | SUI234N0000                                                                                                                                         |                       |                                                          |
| RIVM                   | KMW653N0000                                                                                                                                         | NIST                  |                                                          |
| RSE                    | PRS645N0000                                                                                                                                         | WMO                   | 99/00, 02/06<br>14/15                                    |
| Saitama                | DDR236N0000, KIS236N0000, URW235N0000                                                                                                               | WMO                   |                                                          |
| SAWS                   | CPT134S0000                                                                                                                                         | WMO                   | 99/00, 02/06,<br>09/12, 14/15                            |
| Shizuoka Univ.         | HMM234N0000                                                                                                                                         |                       |                                                          |
| UBA                    | BRT648N0000, DEU649N0000, LGB652N0000, NGL653N0000,<br>SNB647N0000, SSL647N0000, SSL647N0002, WES654N0000,<br>ZGT654N0000, ZSF647N0001, ZUG647N0000 | WMO                   | 91/92, 96/97,<br>99/00, 02/06,<br>09/12, 14/15           |
| Univ. Malta            | GLH636N0000                                                                                                                                         |                       |                                                          |

#### \* NOAA/ESRL flask network:

ABP312S0001, ALT482N0001, AMS137S0001, AMY236N0001, ASC107S0001, ASK123N0001, AVI417N0001, AZR638N0001, BAL655N0001, BHD541S0001, BKT500S0001, BME432N0001, BMW432N0001, BRW471N0001, BSC644N0001, CBA455N0001, CGO540S0001, CHR501N0001, CMO445N0001, CPT134S0001, CRZ146S0001, EIC327S0001, GMI513N0001, GOZ636N0001, HBA775S0001, HPB647N0003, HUN646N0001, ICE663N0001, ITN435N0001, IZO128N0001, KCO204N0001, KEY42SN0001, KUM519N0001, KZD244N0001, KZM243N0001, LEF445N0001, LLB454N0001, LLN223N0001, LMP635N0003, MBC476N0001, MEX419N0001, MHD653N0001, MID528N0001, MKN100S0001, MLO519N0001, NAT306S0001, NMB123S0001, NWR440N0101, OPW448N0001, OCK650N0001, PAL667N0001, POC900N0001, POC905N0001, POC905S0001, POC910S0001, POC915S0001, POC915S0001, POC920N0001, POC920S0001, POC925S0001, POC935S0001, PC935S0001, PC4338N0001, RPB413N0001, SCS903N0001, SCS906N0001, SCS912N0001, SCS912N0001, SCS912N0001, SCS912N0001, SCS912N0001, STM666N0001, SUM672N0001, SUM672N0001, TAP236N0001, THD441N0001, TIK271N0001, USH354S0001, UTA439N0001, UUM244N0001, WIS631N0001, ZEP678N0001

\*\*NIES 95 CO<sub>2</sub> scale is 0.10 to 0.14 ppm lower than that of WMO in the range 355 to 385 ppm. (Machida *et al.*, WMO/GAW Report No. 186, 26-29, 2009.)

#### 3. Methane (CH<sub>4</sub>)

The GAW Programme has established two WCCs for CH<sub>4</sub>, the Swiss Federal Laboratory for Materials Testing and Research (Empa), Dübendorf, Switzerland; and the Japan Meteorological Agency (JMA), Tokyo, Japan (WMO, 2017a). In addition, the Central Calibration Laboratory for CH<sub>4</sub> has been established at NOAA/ESRL (Dlugokencky *et al.*, 2005; WMO, 2017a).

The WMO X2004 (NOAA04) scale has been designated as the Primary scale of the GAW Programme. This scale results in  $CH_4$  mole fractions that are a factor of 1.0124 higher than the previous scale (NOAA/CMDL83) used by NOAA/ESRL (Dlugokencky *et al.*, 2005). The new WMO X2004A (NOAA04A) scale was updated on 7 July 2015. Revision of conversion factors will be minor, but re-evaluation is necessary. Conversion factors for WMO X2004 will be used until the revision is complete.

Table 4 summarizes the CH<sub>4</sub> standard scales used by

laboratories contributing to the WDCGG and lists tentative multiplying conversion factors applied for analysis in this issue of the *Data Summary*. The standard is the WMO X2004 scale, and conversion factors were calculated from the results of comparisons with other laboratories performed bilaterally or multilaterally before the establishment of the GAW Standard.

The NOAA/CMDL83 scale is lower than an absolute gravimetric scale (Aoki *et al.*, 1992) by ~1.5% (Dlugokencky *et al.*, 1994) and lower than the AES (Atmospheric Environment Service, currently EC) scale by a factor of 1.0151 (Worthy *et al.*, 1998). The NOAA/CMDL83 scale can be converted to the Tohoku University standard by multiplying by 1.0121 (Dlugokencky *et al.*, 2005). The conversion factors 1.0124 / 1.0151 = 0.9973 and 1.0124 / 1.0121 = 1.0003 have been adopted for comparisons with the WMO X2004 scale.

| Table 4. Status of | f the standard sca   | ales of CH <sub>4</sub> a | at laboratories with  | conversion factors. |
|--------------------|----------------------|---------------------------|-----------------------|---------------------|
| Tuble in Duatab of | t the standard a see | and of only t             | at moot acor ico mini | conversion naccors. |

| Laboratory         | WDCGG Filename Code                                                                                                                                    | Calibration<br>Scale | Conversion<br>Factor |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------|
| AEMET              | IZO128N0000                                                                                                                                            | WMO X2004A           | 1                    |
| AGAGE              | CGO540S0011, CGO540S0013, CMO445N0011,<br>MHD653N0011, MHD653N0013, RPB413N0000,<br>RPB413N0011, SMO514S0014, SMO514S0016,<br>THD441N0000              | Tohoku Univ.         | 1.0003               |
| BMKG &<br>Empa     | BKT500S0000                                                                                                                                            | WMO X2004            | 1                    |
| CHMI               | KOS649N0000                                                                                                                                            | CHMI                 |                      |
| CMA                | WLG236N0000                                                                                                                                            | WMO X2004            | 1                    |
| CMA &<br>NOAA/ESRL | SDZ240N0000, WLG236N0001                                                                                                                               | WMO X2004A           | 1                    |
| CSIRO              | ALT482N0003, CFA519S0003, CGO540S0003,<br>CRI215N0000, CYA766S0001, ESP449N0003,<br>MAA767S0003, MLO519N0003, MQA554S0003,<br>SIS660N0003, SPO789S0003 | WMO X2004A           | 1                    |

| DMC &<br>Empa  | TLL330S0000                                                                                                               | WMO X2004       | 1      |
|----------------|---------------------------------------------------------------------------------------------------------------------------|-----------------|--------|
| EC             | ALT482N0000, CDL453N0000, CHM449N0000,<br>EGB444N0100, ESP449N0000, ETL454N0000,<br>FSD449N0000, LLB454N0100, WSA443N0000 | WMO X2004       | 1      |
| Empa           | JFJ646N0000                                                                                                               | WMO X2004       | 1      |
| ENEA           | LMP635N0001                                                                                                               | WMO X2004       | 1      |
| FMI            | PAL667N0000                                                                                                               | WMO X2004A      | 1      |
| IAFMS          | CMN644N0006                                                                                                               | WMO X2004       | 1      |
| INSTAAR        | SUM672N0003                                                                                                               | WMO             | 1      |
| ISAC           | CGR637N0000, ECO640N0000                                                                                                  |                 |        |
| JMA            | MNM224N0000, RYO239N0000, YON224N0000                                                                                     | WMO X2004A      | 1      |
| KMA            | AMY236N0000                                                                                                               | KRISS           |        |
| KSNU           | ISK242N0000                                                                                                               |                 |        |
| LSCE           | AMS137S0002, BGU641N0000, LPO648N0000, PDM642N0000, PUY645N0002                                                           | NOAA<br>/CMDL83 | 1.0124 |
|                | FIK635N0000, MHD653N0007                                                                                                  |                 |        |
| MGO            | TER669N0001, TIK271N0000                                                                                                  | WMO X2004A      | 1      |
| MRI            | TKB236N0000                                                                                                               |                 | 0.9973 |
| NHMS &<br>Empa | PDI221N0000                                                                                                               | WMO X2004       | 1      |
| NIER           | GSN233N0103                                                                                                               | WMO X2004       | 1      |
| NIES           | COI243N0000, HAT224N0000                                                                                                  | NIES            | 0.9973 |
| NIMR           | GSN233N0001                                                                                                               | SIO X97         |        |
|                | BRW471N0000, MLO519N0000,<br>NOAA/ESRL flask network*                                                                     | WMO X2004A      | 1      |
| NOAA/ESKL      | KPA431N0001, MCM777S0001, NZL543S0001, SGI354S0001, SIO432N0001                                                           | NOAA<br>/CMDL83 | 1.0124 |
| RIVM           | KMW653N0000                                                                                                               | NIST            | 0.9973 |
| RSE            | PRS645N0000                                                                                                               | WMO X2004       | 1      |
| SAWS           | CPT134S0000                                                                                                               | WMO X2004A      | 1      |
| UBA            | DEU649N0000, NGL653N0000, SSL647N0000,<br>ZGT654N0000, ZSF647N0001, ZUG647N0000                                           | WMO X2004       | 1      |
|                | SNB647N0000                                                                                                               |                 |        |
| UNIURB         | CMN644N0003                                                                                                               | WMO X2004A      | 1      |
| Univ. Malta    | GLH636N0000                                                                                                               |                 |        |

\* NOAA/ESRL flask network:

ABP31250001, ALT482N0001, AMS137S0001, AMY236N0001, ASC107S0001, ASK123N0001, AVI417N0001, AZR638N0001, BAL655N0001, BHD541S0001, BKT500S0001, BME432N0001, BMW432N0001, BRW471N0001, BSC644N0001, CBA455N0001, CGO540S0001, CHR501N0001, CMO445N0001, CT134S0001, CRZ146S0001, EIC327S0001, GMI513N0001, GOZ636N0001, HBA775S0001, HPB647N0003, HUR646N0001, ICE663N0001, ITN435N0001, IZO128N0001, KEV425N0001, KUM519N0001, KZD244N0001, KZM243N0001, LEF445N0001, LLB454N0001, ILN223N0001, ILM635N0003, MBC476N0001, MEX419N0001, MHD653N0001, MID528N0001, MKN100S0001, MIL0519N0001, NAT306S0001, NMB123S0001, NWR440N0101, OPW448N0001, OXK650N0001, PAL667N0001, POC900N0001, POC905N0001, POC905S0001, POC910N0001, POC915N0001, POC915S0001, POC925N0001, POC925N0001, SCS909N0001, SCS901N0001, SCS903N0001, SCS901N001, SCS901N001, SCS901N001, SCS901N001, SCS901N001, SCS901N001, SCS901N001, SCS912N0001, SCS912N0001, SCS921N0001, SCS912N0001, SCY0769S0001, TAP236N0001, TAP236N0001, TAP236N0001, WIS631N0001, WK431N0001, SCS903N001, SCS90001, TAP236N0001, TAP236N0001, TAP236N0001, WIS631N0001, WK431N0001, SCS903N0001, SCS90001, SCS90001, SCS912N0001, SCS912N0001, SCS90001, TAP236N0001, TAP236N0001, TAP236N0001, SCS930001, UTA439N0001, SCS903N0001, SCS912N0001, SCS912N0001, SCS912N0001, SCS912N0001, SCS912N0001, SCS912N0001, SCS913N0001, SCS903N0001, SCS903N0001, SCS903N0001, SCS903N0001, SCS903N0001, SCS903N0001, SCS903N0001, SCS903N0001, SCS903N0001, SCS913N0001, SCS912N0001, SCS921N0001, SCS921N0001, SCS923N0001, SCS93N0001, SCS93N0

#### 4. Nitrous Oxide (N<sub>2</sub>O)

The Halocarbons and other Atmospheric Trace Species (HATS) Group of NOAA/ESRL maintains a set of standards for  $N_2O$  (Hall *et al.*, 2001) and serves as a CCL for  $N_2O$ . The WMO X2006 (NOAA-2006)

scale (Hall *et al.*, 2007), revised and updated to WMO X2006A (NOAA-2006A) in 2011 to deal with drifting in secondary standards, has been designated as the Primary scale for the GAW Programme. CCL

compares its standards with the ones of other laboratories, including those of Environment Canada (EC) and the Australian Commonwealth Scientific and Industrial Research Organisation (CSIRO). Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, Germany, serves as the GAW WCC for  $N_2O$ .

The SIO 1998 scale is essentially equivalent to the

WMO X2006 scale, with an average difference of 0.01% over the range of 299–319 ppb. SIO 2016 scale can be converted to WMO X2006A via multiplication by a factor of 0.9983 (WMO, 2017c). The WMO X2000 (NOAA-2000) scale can be converted to the WMO X2006 scale by using the factor 0.999402 (Hall *et al.*, 2007).

| Laboratory   | WDCGG Filename Code                                                                                                                                                                                                                                                                                                                                                                                                | Calibration Scale | Conversion<br>Factor |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------|
| AEMET        | IZO128N0000                                                                                                                                                                                                                                                                                                                                                                                                        | WMO X2006A        | 1                    |
|              | CGO540S0011, MHD653N0011, RPB413N0000,<br>SMO514S0014, THD441N0000                                                                                                                                                                                                                                                                                                                                                 | SIO 2016          | 0.9983               |
| AGAGE        | ADR651N0010, CGO540S0012, CGO540S0013,<br>CMO445N0010, CMO445N0011, MHD653N0013,<br>RPB413N0010, RPB413N0011, SMO514S0015,<br>SMO514S0016                                                                                                                                                                                                                                                                          | SIO 1998          | 1                    |
| CSIRO        | ALT482N0003, CFA519S0003, CGO540S0003,<br>CRI215N0000, CYA766S0001, ESP449N0003,<br>MAA767S0003, MLO519N0003, MQA554S0003,<br>SIS660N0003, SPO789S0003                                                                                                                                                                                                                                                             | WMO X2006A        | 1                    |
| Empa         | JFJ646N0000                                                                                                                                                                                                                                                                                                                                                                                                        | SIO 1998          | 1                    |
| ENEA         | LMP635N0001                                                                                                                                                                                                                                                                                                                                                                                                        | WMO X2006         | 1                    |
| JMA          | RYO239N0000                                                                                                                                                                                                                                                                                                                                                                                                        | WMO X2006A        | 1                    |
| KMA          | AMY236N0000                                                                                                                                                                                                                                                                                                                                                                                                        | KRISS             |                      |
| MRI          | MMB243N0000                                                                                                                                                                                                                                                                                                                                                                                                        |                   |                      |
| Nagoya Univ. | NGY235N0000                                                                                                                                                                                                                                                                                                                                                                                                        |                   |                      |
| NIER         | GSN233N0103                                                                                                                                                                                                                                                                                                                                                                                                        | WMO X2006         | 1                    |
| NIES         | COI243N0000, HAT224N0000                                                                                                                                                                                                                                                                                                                                                                                           | NIES 96*          | 1                    |
| NILU         | ZEP678N0000                                                                                                                                                                                                                                                                                                                                                                                                        |                   |                      |
| NIMR         | GSN233N0001                                                                                                                                                                                                                                                                                                                                                                                                        | WMO X1997         |                      |
|              | ALT482N0001, BRW471N0001, CGO540S0001,<br>KUM519N0001, MLO519N0001, NWR440N0001,<br>SMO514S0001, SPO789S0001                                                                                                                                                                                                                                                                                                       | WMO X2000         | 0.999402             |
|              | BRW471N0011, MLO519N0011, NWR440N0011, SMO514S0011, SPO789S0011                                                                                                                                                                                                                                                                                                                                                    | WMO X2006         | 1                    |
| NOAA/ESRL    | ALT482N0004, ALT482N0006, BRW471N0003,<br>BRW471N0005, BRW471N0010, CGO540S0009,<br>CGO540S0014, HFM442N0000, ITN435N0000,<br>KUM519N0002, LEF445N0000, MHD653N0008,<br>MLO519N0005, MLO519N0006, MLO519N0010,<br>NWR440N0003, NWR440N0004,<br>NWR440N0010, PSA764S0000, SMO514S0008,<br>SMO514S0009, SMO514S0010, SPO789S0005,<br>SPO789S0006, SPO789S0010, SUM672N0000,<br>SUM672N0002, THD441N0002, USH354S0002 | WMO X2006A        | 1                    |
| SAWS         | CPT134S0000                                                                                                                                                                                                                                                                                                                                                                                                        | WMO X2000         | 0.999402             |
| UBA          | SSL647N0000, ZSF647N0001                                                                                                                                                                                                                                                                                                                                                                                           | SIO 1998          | 1                    |
| UNIURB       | CMN644N0003                                                                                                                                                                                                                                                                                                                                                                                                        | WMO X2006A        | 1                    |

Table 5. Status of the standard scales of  $N_2O$  at laboratories.

\* NIES 96 N<sub>2</sub>O scale is approximately 0.7 ppb lower than that of WMO X2006A in the range 325 to 326 ppb. (http://www.esrl.noaa.gov/gmd/ccgg/wmorr/wmorr\_results.php?rr=rr6&param=n20)

#### 5. Carbon Monoxide (CO)

NOAA/ESRL is the WMO/GAW CCL for carbon monoxide. Due to lack of stability of CO in high pressure cylinders, the CO scale has historically been defined by repeated sets of gravimetric standards made in 1996/1997, 1999/2000, 2006 and 2011. The CCL make revisions in the CO scale whenever new gravimetric standard sets indicate a significant drift in the scale. Scale revisions are indicated with date codes (WMO CO X2000, WMO CO X2004, WMO CO X2014) with the most recent made in December 2015 being WMO CO X2014A (WMO, 2016a).

The Swiss Federal Laboratory for Materials Testing and Research (Empa) serves as the WCC under GAW based on its secondary standards calibrated against the standard at NOAA/ESRL designated as the Primary Standard for GAW. Empa, as WCC for CO, has developed an audit system for CO measurements at GAW stations.

| Laboratory         | WDCGG Filename Code                                                                                                                                    | Calibration Scale | Audit<br>Empa-WCC         |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------|
| AEMET              | IZO128N0000                                                                                                                                            | WMO X2014A        | 00, 04, 09, 13            |
| AGAGE              | CGO540S0011, MHD653N0011                                                                                                                               | CSIRO94           |                           |
| ARSO               | KVV646N0000                                                                                                                                            | CHMI              |                           |
| BAS                | HBA775S0000                                                                                                                                            | WMO X2004         |                           |
| BMKG &<br>Empa     | BKT500S0000                                                                                                                                            | WMO X2000         | 01, 04, 07, 08,<br>11, 14 |
| CHMI               | KOS649N0000                                                                                                                                            | CHMI              |                           |
| CMA &<br>NOAA/ESRL | SDZ240N0000, WLG236N0001                                                                                                                               | WMO X2004         |                           |
| CSIRO              | ALT482N0003, CFA519S0003, CGO540S0003,<br>CRI215N0000, CYA766S0001, ESP449N0003,<br>MAA767S0003, MLO519N0003, MQA554S0003,<br>SIS660N0003, SPO789S0003 | CSIRO             | Cape Grim: 02,<br>10      |
| DMC & Empa         | TLL330S0000                                                                                                                                            | WMO X2004         |                           |
| DWD                | HPB647N0000                                                                                                                                            | WMO X2004         | 97, 06, 11                |
| EC                 | ALT482N0000, CDL453N0000, CHM449N0000,<br>EGB444N0100, ESP449N0000, ETL454N0000,<br>FSD449N0000, LLB454N0100, WSA443N0000                              | WMO               | Alert: 04                 |
| Emm                | JFJ646N0000                                                                                                                                            | WMO               | 99, 06, 15                |
| Етра               | PAY646N0000, RIG646N0000                                                                                                                               | NPL               |                           |
| Empa &KMD          | MKN100S0000                                                                                                                                            | WMO X2000         | 05, 06, 08, 10,<br>15     |
| Empa &NHMS         | PDI221N0000                                                                                                                                            | WMO X2004         |                           |
| INRNE              | BEO642N0000                                                                                                                                            | WMO               |                           |
|                    | CGR637N0000, ECO640N0000                                                                                                                               |                   |                           |
| ISAC               | CMN644N0000                                                                                                                                            | WMO X2004         | 12                        |
|                    | CMN644N0004                                                                                                                                            | WMO X2014A        |                           |
| JMA                | MNM224N0000, RYO239N0000, YON224N0000                                                                                                                  | WMO X2014A        |                           |
| LA                 | PDM642N0001                                                                                                                                            | EMD               |                           |

Table 6. Status of CO standard scales at laboratories

| LAMP        | PUY645N0001                                        | EMD       | 16                                   |
|-------------|----------------------------------------------------|-----------|--------------------------------------|
| LSCE        | AMS137S0000                                        | WMO X2004 | 08                                   |
| NOAA/ESRL   | NOAA/ESRL flask network*                           | WMO       |                                      |
| ONM         | ASK123N0000                                        | WMO X2000 | 07                                   |
| PolyU       | HKG222N0000                                        |           |                                      |
| RIVM        | KMW653N0000, KTB653N0000                           | NMI       |                                      |
| CAWC        | CPT134S0002                                        |           | 98,02                                |
| SAWS        | CPT134S0003                                        | WMO       | 06, 11, 15                           |
| SMN         | USH354S0010, USH354S0011                           | WMO       | 98, 03, 08, 16                       |
| SMNA        | USH354S0000                                        | WMO X2000 |                                      |
| UBA         | NGL653N0000, SSL647N0000, ZSF647N0001, ZUG647N0000 | WMO       | Zugspitze: 97, 01<br>Zugspitze/Schne |
| OBA         | SNB647N0000                                        |           | 01, 06, 11<br>Sonnblick: 98          |
| UNIURB      | CMN644N0003                                        | WMO X2014 |                                      |
| Univ. Malta | GLH636N0001, GLH636N0002                           |           |                                      |
| Univ. York  | CVO116N0001                                        | WMO X2014 | 12                                   |

\* NOAA/ESRL flask network:

\* NOAA/ESRL flask network: ABP31250001, ALT482N0001, ASC107S0001, ASK123N0001, AZR638N0001, BAL655N0001, BHD541S0001, BKT500S0001, BME432N0001, BMW432N0001, BRW471N0001, BSC644N0001, CBA455N0001, CGO540S0001, CHR501N0001, CMO445N0001, CPT134S0001, CR2146S0001, EIC327S0001, GMI513N0001, GOZ636N0001, HBA775S0001, HPB647N0003, HUN646N0001, ICE663N0001, ITN435N0001, IZ0128N0001, KEY425N0001, KUM519N0001, KZD244N0001, KZM243N0001, LEF445N0001, LLB454N0001, LLN223N0001, LMP635N0003, MBC476N0001, MEX419N0001, MHD653N0001, MID528N0001, MKN100S0001, MLO519N0001, NAT306S0001, NMB123S0001, NWR440N0101, OXK650N0001, PAL667N0001, POC900N0001, POC905N0001, POC905S0001, POC910N0001, POC910S0001, POC915N0001, POC915S0001, POC920S0001, POC920S0001, POC935S0001, POC935S0001, PC923S0001, PC923S0001, PC933S0001, POC935S0001, PC933S0001, SCS913N0001, SCS903N0001, SCS903N0001, SCS912N0001, SCS915N0001, SCS912N0001, SCS918N0001, SCS921N0001, SEY104S0001, SGP436N0001, SHM452N0001, SM0514S0001, SPO789S0001, STM666N0001, SUM672N0001, SYO769S0001, TAP236N0001, THD441N0001, USH354S0001, UTA439N0001, UUM244N0001, WIS631N0001, ZEP678N0001

| Que ti e u                   |                           | T. I. M      | T                  | Location             | A 1/2/ - 1 | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------------|---------------------------|--------------|--------------------|----------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Station                      | Country/Territory         | Index Number |                    |                      | Altitude   | e Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                              |                           |              | ()                 | ()                   | (111)      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <b>REGION I</b> (Africa)     |                           |              |                    |                      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                              |                           |              |                    |                      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Amsterdam Island             | France                    | AMS137S00    | 37 48 S            | 77 32 E              | 55         | CH <sub>4</sub> , CO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Amsterdam Island             | France                    | AMS137S00    | 37 48 S            | 77 32 E              | 55         | $CH_4$ CO CO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Ascension Island             | United Kingdom of         | ASC107500    | 7 55 8             | 14 25 W              | 54         | $13CH_4$ $13CO_2$ $C18O_2$ $CH_4$ $CO_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ascension Island             | Great Britain and         | ASC107500    | 1555               | 17 2J W              | 54         | $CO_2$ H <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                              | Northern Ireland          |              |                    |                      |            | 002, 112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Aggalzer                     | Algoria                   | ASK122NI00   | 22.16 N            | 5 20 E               | 2710       | CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Assekielli                   | Algoria                   | ASK123N00    | 23 10 N<br>22 16 N | 5 20 E               | 2710       | $13CO_{2}$ C18O <sub>2</sub> CH <sub>4</sub> CO <sub>2</sub> CO <sub>2</sub> H <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Assekielli                   | Algena                    | ASK125100    | 25 10 N<br>20 05 N | 21 17 E              | 2/10       | $15CO_2, C15O_2, CH4, CO, CO_2, H_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Cano Deint                   | Egypt<br>South Africa     | CAT1501000   | 24 21 S            | JI 1/ E              | 220        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Cape Point                   | South Africa              | CPT134500    | 34 21 S            | 18 29 E              | 230        | $CH_4, CO, CO_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Cape Point                   |                           | CPT134500    | 54 21 S            | 10 29 E              | 250        | CH4, CO, CO2, N2O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Cape Point                   | South Africa              | CP1134S00    | 34 21 S            | 18 29 E              | 230        | <sup>222</sup> Rn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Cape verde Observatory       | Cape verde                | CV0116IN00   | 10 51 N            | 24 52 W              | 10         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Crozet                       | France                    | CRZ146S00    | 46 27 S            | 51 51 E              | 120        | $^{13}\text{CO}_2, \text{C}^{18}\text{O}_2, \text{CH}_4, \text{CO}, \text{CO}_2, \text{H}_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Gobabeb                      | Namibia                   | NMB123S00    | 23 34 S            | 15 01 E              | 461        | $^{13}\text{CO}_2, \text{C}^{18}\text{O}_2, \text{CH}_4, \text{CO}, \text{CO}_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Izaña (Tenerife)             | Spain                     | IZO128N00    | 28 18 N            | 16 30 W              | 2367       | $CH_4$ , $CO$ , $CO_2$ , $N_2O$ , $SF_6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Izaña (Tenerife)             | Spain                     | IZO128N00    | 28 18 N            | 16 30 W              | 2367       | $^{13}CO_2$ , $C^{18}O_2$ , $CH_4$ , $CO$ , $CO_2$ , $H_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Mahe Island                  | Seychelles                | SEY104S00    | 4 40 S             | 55 10 E              | 7          | $^{13}CO_2$ , $C^{18}O_2$ , $CH_4$ , $CO$ , $CO_2$ , $H_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Mt. Kenya                    | Kenya                     | MKN100S00    | 0 04 S             | 37 18 E              | 3678       | CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Mt. Kenya                    | Kenya                     | MKN100S00    | 0 04 S             | 37 18 E              | 3678       | <sup>13</sup> CO <sub>2</sub> , C <sup>18</sup> O <sub>2</sub> , CH <sub>4</sub> , CO, CO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                              |                           |              |                    |                      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <b>REGION II (Asia)</b>      |                           |              |                    |                      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                              |                           |              |                    |                      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Anmyeon-do                   | Republic of Korea         | AMY236N00    | 36 32 N            | 126 19 E             | 47         | CH <sub>4</sub> , CO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Anmyeon-do                   | Republic of Korea         | AMY236N00    | 36 32 N            | 126 19 E             | 47         | CFCs, CH4, CO <sub>2</sub> , N <sub>2</sub> O, SF <sub>6</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Bering Island                | <b>Russian Federation</b> | BER255N00    | 55 12 N            | 165 59 E             | 13         | CO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Cape Ochi-ishi               | Japan                     | COI243N00    | 43 10 N            | 145 30 E             | 42.5       | CFCs, CH <sub>4</sub> , CO <sub>2</sub> , HCFCs, HFCs,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| -                            | -                         |              |                    |                      |            | $N_2O, SF_6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Cape Rama                    | India                     | CRI215N00    | 15 05 N            | 73 50 E              | 60         | <sup>13</sup> CO <sub>2</sub> , CH <sub>4</sub> , CO, CO <sub>2</sub> , H <sub>2</sub> , N <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Everest - Pyramid            | Nepal                     | PYR227N00    | 27 57 N            | 86 49 E              | 5079       | C <sub>2</sub> Cl <sub>4</sub> , C <sub>2</sub> HCl <sub>3</sub> , CBrClF <sub>2</sub> , CBrF <sub>3</sub> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| •                            |                           |              |                    |                      |            | CCl <sub>4</sub> , CFCs, CH <sub>2</sub> Br <sub>2</sub> , CH <sub>2</sub> Cl <sub>2</sub> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                              |                           |              |                    |                      |            | CH <sub>3</sub> Br, CH <sub>3</sub> CCl <sub>3</sub> , CH <sub>3</sub> Cl,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                              |                           |              |                    |                      |            | CHBr <sub>3</sub> , CHCl <sub>3</sub> , HCFCs, HFCs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Gosan                        | Republic of Korea         | GSN233N00    | 33 17 N            | 126 10 E             | 72         | CFCs, CH <sub>4</sub> , CO <sub>2</sub> , N <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Gosan                        | Republic of Korea         | GSN233N00    | 33 17 N            | 126 10 E             | 72         | C <sub>2</sub> Br <sub>2</sub> F <sub>4</sub> , CBrClF <sub>2</sub> , CBrF <sub>3</sub> , CFC <sub>8</sub> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                              | r                         |              |                    |                      | . –        | $CH_3CCl_3$ $CH_3Cl_3$ $CHCl_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                              |                           |              |                    |                      |            | HCECS HECS PECS SE6 SO <sub>2</sub> E <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Gosan                        | Republic of Korea         | GSN233N01    | 33 10 N            | 126 06 E             | 72         | $CFC_{S} CH_{4} CO_{2} N_{2}O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Hamamatsu                    | Ianan                     | HMM234N00    | 34 43 N            | 120 00 E<br>137 43 E | 35         | $CO_{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Hateruma                     | Japan                     | HAT224N00    | 24 04 N            | 123 49 F             | 10.8       | $CEC_{s}$ $CH_{4}$ $CO_{2}$ HCEC <sub>s</sub> HEC <sub>s</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Hateruma                     | Japan                     | 11A1224100   | 24 04 10           | 125 F) L             | 10.0       | $V_2 O_2$ , |
| Hok Teni                     | Hong Kong China           | HKG222N00    | 22 13 N            | 114 15 E             | 60         | $CO_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Hok Tsui                     | Hong Kong, China          | HKG222N00    | 22 13 N            | 114 15 E             | 60         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Logylz Kul                   | Hong Kong, China          | IIK02221N00  | 42 13 N            | 76 50 E              | 1640       | CH, CO:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ISSyk-Kul<br>Kaashidhaa      | Nyigyzstan                | ISK242IN00   | 42 37 IN           | 70 J9 E              | 1040       | 13CO CU CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Kaasiiiuiioo<br>Kinala Darla | Malulves                  | KCO204IN00   | 4 JO N             | /3 20 E              | 1          | $13CO_2, CH_4, CO_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| King's Park                  | Hong Kong, China          | HK0222N00    | 22 19 N            | 114 IU E             | 65         | $CO_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Kisal                        | Japan<br>Duosion Estimati | KI5236N00    | 30 US N            | 139 53 E             | 13         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Kotelny Island               | Kussian Federation        | KU12/6N00    | /6 00 N            | 13/ 52 E             | 5          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Kyzylcha                     | Uzbekistan                | KYZ240N00    | 40 52 N            | 66 09 E              | 340        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Lulin                        | China                     | LLN223N00    | 23 28 N            | 120 52 E             | 2867       | $^{13}CO_2$ , $C^{18}O_2$ , CH4, CO, CO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Memanbetsu                   | Japan                     | MMB243N00    | 43 55 N            | 144 12 E             | 32.9       | N <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Mikawa-Ichinomiya            | Japan                     | MKW234N00    | 34 51 N            | 137 26 E             | 50         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Minamitorishima              | Japan                     | MNM224N00    | 24 17 N            | 153 59 E             | 8          | $CH_4$ , $CO$ , $CO_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

#### LIST OF OBSERVATIONAL STATIONS

#### Location Country/Territory Index Number Latitude Longitude Altitude Parameter Station (°') (°') (m) DDR236N00 36 00 N 139 11 E 840 CO<sub>2</sub> Mt. Dodaira Japan Mt. Waliguan China 36 17 N 100 54 E 3810 CH<sub>4</sub>, CO<sub>2</sub> WLG236N00 100 54 E 3810 <sup>13</sup>CH<sub>4</sub>, <sup>13</sup>CO<sub>2</sub>, C<sup>18</sup>O<sub>2</sub>, CH<sub>4</sub>, CO, Mt. Waliguan China WLG236N00 36 17 N $CO_2, H_2$ Nagoya Japan NGY235N00 35 09 N 136 58 E 35 N<sub>2</sub>O Pha Din Viet Nam PDI221N00 21 34 N 103 31 E 1466 CH<sub>4</sub>, CO, CO<sub>2</sub> Kazakhstan 43 15 N Plateau Assy KZM243N00 77 52 E 2519 <sup>13</sup>CO<sub>2</sub>, C<sup>18</sup>O<sub>2</sub>, CH<sub>4</sub>, CO, CO<sub>2</sub>, H<sub>2</sub> 39 02 N 141 49 E Rvori Japan RYO239N00 260 CCl<sub>4</sub>, CFCs, CH<sub>3</sub>CCl<sub>3</sub>, CH<sub>4</sub>, CO, $CO_2$ , $N_2O$ Sary Taukum Kazakhstan 75 34 E 412 <sup>13</sup>CO<sub>2</sub>, C<sup>18</sup>O<sub>2</sub>, CH<sub>4</sub>, CO, CO<sub>2</sub>, H<sub>2</sub> KZD244N00 44 27 N 40 39 N 117 07 E Shangdianzi China SDZ240N00 287 CH<sub>4</sub>, CO, CO<sub>2</sub> Ship between Ishigaki Japan SIH224N00 24 07 N 123 50 E 5 CO<sub>2</sub> Island and Hateruma Island 105 00 E South China Sea (03N) N/A SCS903N00 3 00 N 15 <sup>13</sup>CO<sub>2</sub>, C<sup>18</sup>O<sub>2</sub>, CH<sub>4</sub>, CO, CO<sub>2</sub>, H<sub>2</sub> South China Sea (06N) N/A 6 00 N 107 00 E 15 <sup>13</sup>CO<sub>2</sub>, C<sup>18</sup>O<sub>2</sub>, CH<sub>4</sub>, CO, CO<sub>2</sub>, H<sub>2</sub> SCS906N00 South China Sea (09N) N/A 900 N 109 00 E 15 <sup>13</sup>CO<sub>2</sub>, C<sup>18</sup>O<sub>2</sub>, CH<sub>4</sub>, CO, CO<sub>2</sub>, H<sub>2</sub> SCS909N00 South China Sea (12N) 12 00 N 111 00 E 15 <sup>13</sup>CO<sub>2</sub>, C<sup>18</sup>O<sub>2</sub>, CH<sub>4</sub>, CO, CO<sub>2</sub>, H<sub>2</sub> N/A SCS912N00 South China Sea (15N) 15 00 N 113 00 E 15 <sup>13</sup>CO<sub>2</sub>, C<sup>18</sup>O<sub>2</sub>, CH<sub>4</sub>, CO, CO<sub>2</sub>, H<sub>2</sub> N/A SCS915N00 South China Sea (18N) N/A SCS918N00 18 00 N 113 00 E 15 <sup>13</sup>CO<sub>2</sub>, C<sup>18</sup>O<sub>2</sub>, CH<sub>4</sub>, CO, CO<sub>2</sub>, H<sub>2</sub> South China Sea (21N) N/A SCS921N00 21 00 N 114 00 E 15 <sup>13</sup>CO<sub>2</sub>, C<sup>18</sup>O<sub>2</sub>, CH<sub>4</sub>, CO, CO<sub>2</sub>, H<sub>2</sub> Suita Japan SUI234N00 34 49 N 135 31 E 63 CO<sub>2</sub> Tae-ahn Peninsula Republic of Korea TAP236N00 36 43 N 126 07 E 20 <sup>13</sup>CH<sub>4</sub>, <sup>13</sup>CO<sub>2</sub>, C<sup>18</sup>O<sub>2</sub>, CH<sub>4</sub>, CO, $CO_2, H_2$ Takayama Japan TKY236N00 36 09 N 137 25 E 1420 CO2 Tiksi **Russian Federation** TIK271N00 71 35 N 128 55 E 8 CH<sub>4</sub>, CO<sub>2</sub> **Russian Federation** Tiksi TIK271N00 71 35 N 128 55 E 8 CH<sub>4</sub>, CO<sub>2</sub> Tsukuba Japan TKB236N00 36 03 N 140 08 E 26 CH4, CO2 Ulaan Uul 914 <sup>13</sup>CO<sub>2</sub>, C<sup>18</sup>O<sub>2</sub>, CH<sub>4</sub>, CO, CO<sub>2</sub>, H<sub>2</sub> Mongolia UUM244N00 44 27 N 111 05 E Urawa Japan URW235N00 35 52 N 139 36 E 10 CO<sub>2</sub> Japan YON224N00 24 28 N 123 01 E 30 CH<sub>4</sub>, CO, CO<sub>2</sub> Yonagunijima **REGION III (South America)** 38 10 W Arembepe Brazil ABP312S00 12 46 S 0 CH4, CO, CO2, N2O Arembepe Brazil ABP312S00 12 46 S 38 10 W 0 <sup>13</sup>CO<sub>2</sub>, C<sup>18</sup>O<sub>2</sub>, CH<sub>4</sub>, CO, CO<sub>2</sub> Bird Island United Kingdom of SGI354S00 54 00 S 38 03 W 30 CH<sub>4</sub>, CO<sub>2</sub> Great Britain and Northern Ireland 50 13CO2, C18O2, CH4, CO, CO2, H2 Easter Island Chile EIC327S00 27 08 S 109 27 W El Tololo Chile 70 48 W 2220 CH<sub>4</sub>, CO, CO<sub>2</sub> TLL330S00 30 10 S Huancayo Peru HUA312S00 12 04 S 75 32 W 3313 CO<sub>2</sub> Natal Brazil 35 12 W NAT306S00 6 00 S 0 CH<sub>4</sub>, CO, CO<sub>2</sub> Ushuaia Argentina USH354S00 54 51 S 68 19 W 18 <sup>13</sup>CO<sub>2</sub>, C<sup>18</sup>O<sub>2</sub>, CCl<sub>4</sub>, CFCs, CH<sub>3</sub>CCl<sub>3</sub>, CH<sub>4</sub>, CO, CO<sub>2</sub>, H<sub>2</sub>, $N_2O, SF_6$ Ushuaia Argentina USH354S00 54 51 S 68 19 W 18 CO Ushuaia Argentina USH354S00 54 51 S 68 19 W 18 CO

#### LIST OF OBSERVATIONAL STATIONS (continued)

#### **REGION IV (North and Central America)**

| Alert | Canada | ALT482N00 | 82 27 N | 62 31 W | 210 <sup>13</sup> CO <sub>2</sub> , CH <sub>4</sub> , CO, CO <sub>2</sub> , H <sub>2</sub> , N <sub>2</sub> O |
|-------|--------|-----------|---------|---------|---------------------------------------------------------------------------------------------------------------|
|       |        |           |         |         |                                                                                                               |

| Station                | Country/Territory           | Index Number           | Latitude<br>(° ')  | Location<br>Longitude<br>(° ') | Altitude<br>(m) | Parameter                                                                                                               |
|------------------------|-----------------------------|------------------------|--------------------|--------------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------|
| Alert                  | Canada                      | ALT482N00              | 82 27 N            | 62 31 W                        | 210             | <sup>13</sup> CO <sub>2</sub> , C <sup>18</sup> O <sub>2</sub> , CH <sub>4</sub> , CO, CO <sub>2</sub> ,                |
| Alert                  | Canada                      | ALT482N00              | 82 27 N            | 62 31 W                        | 210             | $^{13}CH_4,  ^{13}CO_2,  C^{18}O_2,  C_2Cl_4,$                                                                          |
|                        |                             |                        |                    |                                | (               | CBrClF <sub>2</sub> , CBrF <sub>3</sub> , CCl <sub>4</sub> , CFCs,                                                      |
|                        |                             |                        |                    |                                | (               | CH <sub>2</sub> Cl <sub>2</sub> , CH <sub>3</sub> Br, CH <sub>3</sub> CCl <sub>3</sub> ,                                |
|                        |                             |                        |                    |                                | (               | $CH_3CI, CH_4, CO, CO_2, H_2,$                                                                                          |
| Argula                 | United States of            | A MT445NIOO            | 45 02 N            | 69 11 W                        | 50              | HCFCs, HFCs, $N_2O$ , $SF_6$                                                                                            |
| Aigyle                 | America                     | AW14431000             | 43 02 N            | 00 41 W                        | 30              | 15CO <sub>2</sub> , C <sup>15</sup> O <sub>2</sub> , CH <sub>4</sub>                                                    |
| Barrow                 | United States of            | BRW471N00              | 71 19 N            | 156 36 W                       | 11              | $^{13}$ CH <sub>4</sub> , $^{13}$ CO <sub>2</sub> , C <sup>18</sup> O <sub>2</sub> , C <sub>2</sub> Cl <sub>4</sub> ,   |
|                        | America                     |                        |                    |                                | (               | CBrClF <sub>2</sub> , CBrF <sub>3</sub> , CCl <sub>4</sub> , CFCs,                                                      |
|                        |                             |                        |                    |                                | (               | CH <sub>2</sub> Cl <sub>2</sub> , CH <sub>3</sub> Br, CH <sub>3</sub> CCl <sub>3</sub> ,                                |
|                        |                             |                        |                    |                                | (               | $CH_3Cl, CH_4, CO, CO_2, H_2,$                                                                                          |
|                        | 0 1                         | CDI 4520100            | 50 50 N            | 104 20 30                      | 100             | HCFCs, HFCs, $N_2O$ , $SF_6$                                                                                            |
| Candle Lake            | United States of            | CDL453N00<br>CMO445N00 | 53 52 N<br>45 28 N | 104 39 W                       | 489 (           | $CH_4, CO, CO_2$                                                                                                        |
| Cape Meales            | America                     | CIVIO4451N00           | 43 20 IN           | 125 36 W                       | 30 0            | CC14, CFC8, CH3CC13, CH4, N2O                                                                                           |
| Cape Meares            | United States of            | CMO445N00              | 45 28 N            | 123 58 W                       | 30              | <sup>13</sup> CO <sub>2</sub> , C <sup>18</sup> O <sub>2</sub> , CH <sub>4</sub> , CO, CO <sub>2</sub> , H <sub>2</sub> |
|                        | America                     |                        |                    |                                |                 |                                                                                                                         |
| Cape St. James         | Canada                      | CSJ451N00              | 51 56 N            | 131 01 W                       | 89 (            | CO <sub>2</sub>                                                                                                         |
| Chibougamau            | Canada                      | CHM449N00              | 49 41 N            | 74 21 W                        | 393 (           | $CH_4$ , $CO$ , $CO_2$                                                                                                  |
| Churchill              | Canada                      | CHL458N00              | 58 45 N            | 94 04 W                        | 35              | <sup>13</sup> CO <sub>2</sub> , C <sup>18</sup> O <sub>2</sub> , CH <sub>4</sub> , CO <sub>2</sub> , N <sub>2</sub> O   |
| Cold Bay               | United States of            | CBA455N00              | 55 12 N            | 162 43 W                       | 25              | $^{13}CH_4$ , $^{13}CO_2$ , $C^{18}O_2$ , $CH_4$ , $CO$ ,                                                               |
| Fast Trout Laka        | America                     | ETI 454N00             | 54 21 N            | 104 50 W                       | 402             | $13CO_2, H_2$                                                                                                           |
| Eghert                 | Canada                      | EGB444N01              | 44 14 N            | 79 47 W                        | 253             | $CH_4$ CO CO <sub>2</sub>                                                                                               |
| Estevan Point          | Canada                      | ESP449N00              | 49 23 N            | 126 33 W                       | 39              | $^{13}CO_2$ , CH <sub>4</sub> , CO, CO <sub>2</sub> , H <sub>2</sub> , N <sub>2</sub> O                                 |
| Estevan Point          | Canada                      | ESP449N00              | 49 23 N            | 126 33 W                       | <b>39</b>       | <sup>13</sup> CO <sub>2</sub> , C <sup>18</sup> O <sub>2</sub> , CH <sub>4</sub> , CO, CO <sub>2</sub> ,                |
|                        |                             |                        |                    |                                | ]               | $N_2O, SF_6$                                                                                                            |
| Fraserdale             | Canada                      | FSD449N00              | 49 53 N            | 81 34 W                        | 210             | <sup>13</sup> CO <sub>2</sub> , C <sup>18</sup> O <sub>2</sub> , CH <sub>4</sub> , CO, CO <sub>2</sub>                  |
| Grifton                | United States of            | ITN435N00              | 35 21 N            | 77 23 W                        | 505             | $^{13}\text{CO}_2$ , $C^{18}\text{O}_2$ , $CCl_4$ , CFCs,                                                               |
|                        | America                     |                        |                    |                                | ب<br>ر          | $CH_3CCI_3, CH_4, CO, CO_2, H_2,$                                                                                       |
| Harvard Forest         | United States of            | HFM442N00              | 42 54 N            | 72 18 W                        | 340             | $C_2C_{14}$ , CBrClF <sub>2</sub> , CCl <sub>4</sub> , CFCs.                                                            |
|                        | America                     |                        |                    | /2 10 11                       | (               | $CH_2Cl_2$ , $CH_3Br$ , $CH_3CCl_3$ ,                                                                                   |
|                        |                             |                        |                    |                                | (               | CH <sub>3</sub> Cl, HCFCs, HFCs, N <sub>2</sub> O, SF <sub>6</sub>                                                      |
| Key Biscayne           | United States of            | KEY425N00              | 25 40 N            | 80 12 W                        | 3               | <sup>13</sup> CO <sub>2</sub> , C <sup>18</sup> O <sub>2</sub> , CH <sub>4</sub> , CO, CO <sub>2</sub> , H <sub>2</sub> |
| W. D. I                | America                     |                        | <b>21 5</b> 0 M    |                                |                 |                                                                                                                         |
| Kitt Peak              | United States of            | KPA431N00              | 31 58 N            | 111 36 W                       | 2083            | CH4                                                                                                                     |
| I a Iolla              | America<br>United States of | SIO432N00              | 32 50 N            | 117 16 W                       | 14 (            | CH4                                                                                                                     |
| La Jona                | America                     | 510+521100             | 52 50 N            | 11/10 ₩                        | 14 1            |                                                                                                                         |
| Lac La Biche           | Canada                      | LLB454N00              | 54 57 N            | 112 27 W                       | 540             | $CH_4$ , $CO$ , $CO_2$                                                                                                  |
| Lac La Biche (Alberta) | Canada                      | LLB454N01              | 54 57 N            | 112 27 W                       | 540             | CH4, CO, CO <sub>2</sub>                                                                                                |
| Mex High Altitude      | Mexico                      | MEX419N00              | 19 59 N            | 97 10 W                        | 4560            | $CH_4$ , $CO$ , $CO_2$                                                                                                  |
| Global Climate         |                             |                        |                    |                                |                 |                                                                                                                         |
| Observation Center,    |                             |                        |                    |                                |                 |                                                                                                                         |
| Mexico                 | United States of            | WKT431N00              | 31 10 N            | 07 10 W                        | 708             | $13CO_2$ C18O <sub>2</sub> CH                                                                                           |
| moouy                  | America                     | WIX1451100             | 51 17 IN           | ) I I I VV                     | /00             | $-0.02, 0^{-0.02}, 0.114$                                                                                               |
| Mould Bay              | Canada                      | MBC476N00              | 76 15 N            | 119 20 W                       | 58              | <sup>13</sup> CO <sub>2</sub> , C <sup>18</sup> O <sub>2</sub> , CH <sub>4</sub> , CO, CO <sub>2</sub> , H <sub>2</sub> |
| Niwot Ridge (C-1)      | United States of            | NWR440N00              | 40 02 N            | 105 32 W                       | 3021            | C <sub>2</sub> Cl <sub>4</sub> , CBrClF <sub>2</sub> , CBrF <sub>3</sub> , CCl <sub>4</sub> ,                           |
|                        | America                     |                        |                    |                                | (               | CFCs, CH <sub>2</sub> Cl <sub>2</sub> , CH <sub>3</sub> Br, CH <sub>3</sub> CCl <sub>3</sub> ,                          |
|                        |                             |                        |                    |                                | (               | CH <sub>3</sub> Cl, HCFCs, HFCs, N <sub>2</sub> O, SF <sub>6</sub>                                                      |

| Station               | Country/Territory                                          | Index Number | Latitude<br>(° ') | Location<br>Longitude<br>(° ') | Altitude Parameter<br>(m)                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------|------------------------------------------------------------|--------------|-------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Niwot Ridge (T-van)   | United States of<br>America                                | NWR440N01    | 40 03 N           | 105 35 W                       | 3523 <sup>13</sup> CH <sub>4</sub> , <sup>13</sup> CO <sub>2</sub> , <sup>14</sup> CO <sub>2</sub> , C <sup>18</sup> O <sub>2</sub> ,<br>CH <sub>4</sub> , CO, CO <sub>2</sub> , H <sub>2</sub> , N <sub>2</sub> O                                                                                                                                                                                                                                                  |
| Olympic Peninsula     | United States of<br>America                                | OPW448N00    | 48 15 N           | 124 25 W                       | 488 CH <sub>4</sub> , CO <sub>2</sub> , H <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                              |
| Pacific Ocean (15N)   | N/A                                                        | POC915N00    | 15 00 N           | 145 00 W                       | 10 <sup>13</sup> CO <sub>2</sub> , C <sup>18</sup> O <sub>2</sub> , CH <sub>4</sub> , CO, CO <sub>2</sub> , H <sub>2</sub>                                                                                                                                                                                                                                                                                                                                          |
| Pacific Ocean (20N)   | N/A                                                        | POC920N00    | 20 00 N           | 141 00 W                       | 10 <sup>13</sup> CO <sub>2</sub> , C <sup>18</sup> O <sub>2</sub> , CH <sub>4</sub> , CO, CO <sub>2</sub> , H <sub>2</sub>                                                                                                                                                                                                                                                                                                                                          |
| Pacific Ocean (25N)   | N/A                                                        | POC925N00    | 25 00 N           | 139 00 W                       | 10 <sup>13</sup> CO <sub>2</sub> , C <sup>18</sup> O <sub>2</sub> , CH <sub>4</sub> , CO, CO <sub>2</sub> , H <sub>2</sub>                                                                                                                                                                                                                                                                                                                                          |
| Pacific Ocean (30N)   | N/A                                                        | POC930N00    | 30 00 N           | 135 00 W                       | 10 <sup>13</sup> CO <sub>2</sub> , C <sup>18</sup> O <sub>2</sub> , CH <sub>4</sub> , CO, CO <sub>2</sub> , H <sub>2</sub>                                                                                                                                                                                                                                                                                                                                          |
| Pacific Ocean (35N)   | N/A                                                        | POC935N00    | 35 00 N           | 137 00 W                       | 10 <sup>13</sup> CO <sub>2</sub> , C <sup>18</sup> O <sub>2</sub> , CO, H <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                              |
| Pacific Ocean (40N)   | N/A                                                        | POC940N00    | 40 00 N           | 136 00 W                       | $10^{-13}$ CO <sub>2</sub> , H <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Pacific Ocean (45N)   | N/A                                                        | POC945N00    | 45 00 N           | 131 00 W                       | $10^{-13}$ CO <sub>2</sub> , H <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Park Falls            | United States of<br>America                                | LEF445N00    | 45 55 N           | 90 16 W                        | 868 <sup>13</sup> CO <sub>2</sub> , C <sup>18</sup> O <sub>2</sub> , C <sub>2</sub> Cl <sub>4</sub> , CBrClF <sub>2</sub> ,<br>CCl <sub>4</sub> , CFCs, CH <sub>2</sub> Cl <sub>2</sub> , CH <sub>3</sub> Br,<br>CH <sub>3</sub> CCl <sub>3</sub> , CH <sub>3</sub> Cl, CH <sub>4</sub> , CO, CO <sub>2</sub> ,<br>H <sub>2</sub> , HCFCs, HFCs, N <sub>2</sub> O, SF <sub>6</sub>                                                                                  |
| Point Arena           | United States of<br>America                                | PTA438N00    | 38 57 N           | 123 43 W                       | 17 <sup>13</sup> CO <sub>2</sub> , C <sup>18</sup> O <sub>2</sub> , CH <sub>4</sub> , CO, CO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                           |
| Ragged Point          | Barbados                                                   | RPB413N00    | 13 10 N           | 59 26 W                        | <ul> <li>45 C<sub>2</sub>Br<sub>2</sub>F<sub>4</sub>, C<sub>2</sub>Cl<sub>4</sub>, C<sub>2</sub>HCl<sub>3</sub>,<br/>CBrClF<sub>2</sub>, CBrF<sub>3</sub>, CCl<sub>4</sub>, CFCs,<br/>CH<sub>2</sub>Cl<sub>2</sub>, CH<sub>3</sub>Br, CH<sub>3</sub>CCl<sub>3</sub>,<br/>CH<sub>3</sub>Cl, CH<sub>4</sub>, CHCl<sub>3</sub>, HCFCs,<br/>HFCs, N<sub>2</sub>O, NF<sub>3</sub>, PFCs, SF<sub>6</sub>,<br/>SO<sub>2</sub>F<sub>2</sub></li> </ul>                      |
| Ragged Point          | Barbados                                                   | RPB413N00    | 13 10 N           | 59 26 W                        | 45 <sup>13</sup> CO <sub>2</sub> , C <sup>18</sup> O <sub>2</sub> , CH <sub>4</sub> , CO, CO <sub>2</sub> , H <sub>2</sub>                                                                                                                                                                                                                                                                                                                                          |
| Sable Island          | Canada                                                     | WSA443N00    | 43 56 N           | 60 01 W                        | 5 <sup>13</sup> CO <sub>2</sub> , C <sup>18</sup> O <sub>2</sub> , CH <sub>4</sub> , CO, CO <sub>2</sub> ,<br>N <sub>2</sub> O, SF <sub>6</sub>                                                                                                                                                                                                                                                                                                                     |
| Shemya Island         | United States of<br>America                                | SHM452N00    | 52 43 N           | 174 05 E                       | 40 <sup>13</sup> CO <sub>2</sub> , C <sup>18</sup> O <sub>2</sub> , CH <sub>4</sub> , CO, CO <sub>2</sub> , H <sub>2</sub>                                                                                                                                                                                                                                                                                                                                          |
| Southern Great Plains | United States of<br>America                                | SGP436N00    | 36 47 N           | 97 30 W                        | 314 <sup>13</sup> CO <sub>2</sub> , C <sup>18</sup> O <sub>2</sub> , CH <sub>4</sub> , CO, CO <sub>2</sub> , H <sub>2</sub><br>N <sub>2</sub> O, SF <sub>6</sub>                                                                                                                                                                                                                                                                                                    |
| St. Croix             | United States of<br>America                                | AVI417N00    | 17 45 N           | 64 45 W                        | 3 CH4, CO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| St. David's Head      | United Kingdom of<br>Great Britain and<br>Northern Ireland | BME432N00    | 32 22 N           | 64 39 W                        | 30 <sup>13</sup> CO <sub>2</sub> , C <sup>18</sup> O <sub>2</sub> , CH <sub>4</sub> , CO, CO <sub>2</sub> , H <sub>2</sub>                                                                                                                                                                                                                                                                                                                                          |
| Trinidad Head         | United States of<br>America                                | THD441N00    | 41 03 N           | 124 09 W                       | 120 C <sub>2</sub> Br <sub>2</sub> F <sub>4</sub> , C <sub>2</sub> Cl <sub>4</sub> , C <sub>2</sub> HCl <sub>3</sub> ,<br>CBrClF <sub>2</sub> , CBrF <sub>3</sub> , CCl <sub>4</sub> , CFCs,<br>CH <sub>2</sub> Cl <sub>2</sub> , CH <sub>3</sub> Br, CH <sub>3</sub> CCl <sub>3</sub> ,<br>CH <sub>3</sub> Cl, CH <sub>4</sub> , CHCl <sub>3</sub> , HCFCs,<br>HFCs, N <sub>2</sub> O, NF <sub>3</sub> , PFCs, SF <sub>6</sub> ,<br>SO <sub>2</sub> F <sub>2</sub> |
| Trinidad Head         | United States of<br>America                                | THD441N00    | 41 03 N           | 124 09 W                       | 120 <sup>13</sup> CO <sub>2</sub> , C <sup>18</sup> O <sub>2</sub> , C <sub>2</sub> Cl <sub>4</sub> , CBrClF <sub>2</sub> ,<br>CCl <sub>4</sub> , CFCs, CH <sub>2</sub> Cl <sub>2</sub> , CH <sub>3</sub> Br,<br>CH <sub>3</sub> CCl <sub>3</sub> , CH <sub>3</sub> Cl, CH <sub>4</sub> , CO, CO <sub>2</sub> ,<br>HCFCs, HFCs, N <sub>2</sub> O, SF <sub>5</sub>                                                                                                   |
| Tudor Hill            | United Kingdom of<br>Great Britain and<br>Northern Ireland | BMW432N00    | 32 16 N           | 64 52 W                        | 30 <sup>13</sup> CO <sub>2</sub> , C <sup>18</sup> O <sub>2</sub> , CH <sub>4</sub> , CO, CO <sub>2</sub> , H <sub>2</sub>                                                                                                                                                                                                                                                                                                                                          |
| Wendover              | United States of<br>America                                | UTA439N00    | 39 53 N           | 113 43 W                       | 1320 <sup>13</sup> CO <sub>2</sub> , C <sup>18</sup> O <sub>2</sub> , CH <sub>4</sub> , CO, CO <sub>2</sub> , H <sub>2</sub>                                                                                                                                                                                                                                                                                                                                        |
| West Branch           | United States of<br>America                                | WBI441N00    | 41 44 N           | 91 21 W                        | 241.7 <sup>13</sup> CO <sub>2</sub> , C <sup>18</sup> O <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                |

#### **REGION V (South-West Pacific)**

|                       |                   |                |                   | Location  |          |                                                                                                                                   |
|-----------------------|-------------------|----------------|-------------------|-----------|----------|-----------------------------------------------------------------------------------------------------------------------------------|
| Station               | Country/Territory | Index Number   | Latitude          | Longitude | Altitude | e Parameter                                                                                                                       |
|                       |                   |                | (° ')             | (° ')     | (m)      |                                                                                                                                   |
|                       |                   |                |                   |           |          |                                                                                                                                   |
| Baring Head           | New Zealand       | BHD541S00      | 41 25 S           | 174 52 E  | 85       | $^{13}CO_2$ , C $^{18}O_2$ , CH <sub>4</sub> , CO, CO <sub>2</sub>                                                                |
| Baring Head           | New Zealand       | BHD541S00      | 41 25 S           | 174 52 E  | 85       | <sup>13</sup> CH <sub>4</sub> , <sup>14</sup> CO <sub>2</sub> , CH <sub>4</sub> , CO, CO <sub>2</sub> ,                           |
|                       |                   |                |                   |           |          | N <sub>2</sub> O                                                                                                                  |
| Bukit Koto Tabang     | Indonesia         | BKT500S00      | 0 12 S            | 100 19 E  | 864.5    | CH <sub>4</sub> , CO, CO <sub>2</sub>                                                                                             |
| Bukit Koto Tabang     | Indonesia         | BKT500S00      | 0 12 S            | 100 19 E  | 864.5    | <sup>13</sup> CO <sub>2</sub> , C <sup>18</sup> O <sub>2</sub> , CH <sub>4</sub> , CO, CO <sub>2</sub> , H <sub>2</sub> ,         |
| C                     |                   |                |                   |           |          | $N_2O, SF_6$                                                                                                                      |
| Cape Ferguson         | Australia         | CFA519S00      | 19 17 S           | 147 03 E  | 2        | <sup>13</sup> CO <sub>2</sub> , CH <sub>4</sub> , CO, CO <sub>2</sub> , H <sub>2</sub> , N <sub>2</sub> O                         |
| Cape Grim             | Australia         | CG0540800      | 40 41 S           | 144 41 E  | 94       | CO <sub>2</sub>                                                                                                                   |
| Cape Grim             | Australia         | CG0540S00      | 40 41 S           | 144 41 E  | 94       | $C_2Br_2F_4$ $C_2Cl_4$ $C_2HCl_3$                                                                                                 |
| Cupe Offin            | rustrund          | 000010000      | 10 11 5           | III II D  | 71       | $CBrClE_2 CBrE_2 CCl_4 CEC_5$                                                                                                     |
|                       |                   |                |                   |           |          | CH <sub>2</sub> Cl <sub>2</sub> , CH <sub>3</sub> P <sub>7</sub> , CH <sub>2</sub> CCl <sub>2</sub>                               |
|                       |                   |                |                   |           |          | $CH_2CH_2$ , $CH_3BH$ , $CH_3CCH_3$ ,                                                                                             |
|                       |                   |                |                   |           |          | $CH_3CI, CH_4, CHCI_3, CO, H_2,$                                                                                                  |
|                       |                   |                |                   |           |          | HCFCS, HFCS, N <sub>2</sub> O, NF <sub>3</sub> , PFCS,                                                                            |
| a a.                  |                   |                | 10.11.0           |           |          | $SF_6, SO_2F_2$                                                                                                                   |
| Cape Grim             | Australia         | CG0540800      | 40 41 S           | 144 41 E  | 94       | <sup>222</sup> Rn                                                                                                                 |
| Cape Grim             | Australia         | CGO540S00      | 40 41 S           | 144 41 E  | 94       | $^{13}CO_2$ , CH <sub>4</sub> , CO, CO <sub>2</sub> , H <sub>2</sub> , N <sub>2</sub> O                                           |
| Cape Grim             | Australia         | CGO540S00      | 40 41 S           | 144 41 E  | 94       | $^{13}CH_4$ , $^{13}CO_2$ , $C^{18}O_2$ , $C_2Cl_4$ ,                                                                             |
|                       |                   |                |                   |           |          | CBrClF <sub>2</sub> , CBrF <sub>3</sub> , CCl <sub>4</sub> , CFCs,                                                                |
|                       |                   |                |                   |           |          | CH <sub>2</sub> Cl <sub>2</sub> , CH <sub>3</sub> Br, CH <sub>3</sub> CCl <sub>3</sub> ,                                          |
|                       |                   |                |                   |           |          | CH <sub>3</sub> Cl, CH <sub>4</sub> , CO, CO <sub>2</sub> , H <sub>2</sub> ,                                                      |
|                       |                   |                |                   |           |          | HCFCs, HFCs, N <sub>2</sub> O, SF <sub>6</sub>                                                                                    |
| Cape Kumukahi         | United States of  | KUM519N00      | 19 31 N           | 154 49 W  | 3        | <sup>13</sup> CH <sub>4</sub> , <sup>13</sup> CO <sub>2</sub> , C <sup>18</sup> O <sub>2</sub> , C <sub>2</sub> Cl <sub>4</sub> , |
| L                     | America           |                |                   |           |          | CBrClF <sub>2</sub> , CBrF <sub>3</sub> , CCl <sub>4</sub> , CFCs,                                                                |
|                       |                   |                |                   |           |          | CH <sub>2</sub> Cl <sub>2</sub> , CH <sub>3</sub> Br, CH <sub>3</sub> CCl <sub>3</sub> ,                                          |
|                       |                   |                |                   |           |          | $CH_3Cl CH_4 CO CO_2 H_2$                                                                                                         |
|                       |                   |                |                   |           |          | HCECs HECs N2O SE $_6$                                                                                                            |
| Christmas Island      | Kiribəti          | CHR 501N00     | 1 42 N            | 157 10 W  | 3        | $13CO_2 C18O_2 CH_4 CO_2 CO_2 H_2$                                                                                                |
| Donum Vollov CAW      | Malaysia          | DMV504N00      | 1 42 IN<br>1 59 N | 117 50 E  | 126      | CO-                                                                                                                               |
| Danulli Valley GAW    | walaysia          | DIVI V 3041000 | 4 30 N            | 117 JU E  | 420      | $CO_2$                                                                                                                            |
| Baseline Station      |                   | CN (1512) 100  | 12.0C M           | 144 47 5  | 2        | 1200 0180 011 00 00 11                                                                                                            |
| Guam                  | United States of  | GMI513N00      | 13 26 N           | 144 4 / E | 2        | $^{13}\text{CO}_2, \text{C}^{18}\text{O}_2, \text{CH}_4, \text{CO}, \text{CO}_2, \text{H}_2$                                      |
|                       | America           |                |                   |           |          |                                                                                                                                   |
| Gunn Point            | Australia         | GPA512S00      | 12 15 S           | 131 03 E  | 25       | $^{13}CO_2$ , CH <sub>4</sub> , CO, CO <sub>2</sub> , H <sub>2</sub> , N <sub>2</sub> O                                           |
| Kaitorete Spit        | New Zealand       | NZL543S00      | 43 50 S           | 172 38 E  | 3        | CH <sub>4</sub>                                                                                                                   |
| Lauder                | New Zealand       | LAU545S00      | 45 02 S           | 169 40 E  | 370      | CH <sub>4</sub>                                                                                                                   |
| Macquarie Island      | Australia         | MQA554S00      | 54 29 S           | 158 58 E  | 12       | <sup>13</sup> CO <sub>2</sub> , CH <sub>4</sub> , CO, CO <sub>2</sub> , H <sub>2</sub> , N <sub>2</sub> O                         |
| Mauna Loa             | United States of  | MLO519N00      | 19 32 N           | 155 35 W  | 3397     | <sup>13</sup> CO <sub>2</sub> , CH <sub>4</sub> , CO, CO <sub>2</sub> , H <sub>2</sub> , N <sub>2</sub> O                         |
|                       | America           |                |                   |           |          |                                                                                                                                   |
| Mauna Loa             | United States of  | MLO519N00      | 19 32 N           | 155 35 W  | 3397     | <sup>13</sup> CH <sub>4</sub> , <sup>13</sup> CO <sub>2</sub> , C <sup>18</sup> O <sub>2</sub> , C <sub>2</sub> Cl <sub>4</sub> , |
|                       | America           |                |                   |           |          | CBrClF <sub>2</sub> , CBrF <sub>3</sub> , CCl <sub>4</sub> , CFCs,                                                                |
|                       |                   |                |                   |           |          | CH <sub>2</sub> Cl <sub>2</sub> , CH <sub>3</sub> Br, CH <sub>3</sub> CCl <sub>3</sub> ,                                          |
|                       |                   |                |                   |           |          | CH <sub>3</sub> Cl. CH <sub>4</sub> . CO. CO <sub>2</sub> . H <sub>2</sub> .                                                      |
|                       |                   |                |                   |           |          | HCFCs HFCs N2O SE $_6$                                                                                                            |
| Pacific Ocean (00N)   | N/A               | POC900N00      | 0.00 N            | 155 00 W  | 10       | $^{13}CO_2$ C <sup>18</sup> O <sub>2</sub> CH <sub>4</sub> CO CO <sub>2</sub> H <sub>2</sub>                                      |
| Pacific Ocean (05N)   | N/A               | POC905N00      | 5 00 N            | 151 00 W  | 10       | $13CO_2$ , $C18O_2$ , $CH_4$ , $CO_2$ , $CO_2$ , $H_2$                                                                            |
| Pacific Occan $(05N)$ | N/A               | POC005500      | 5 00 1            | 150 00 W  | 10       | $13CO_2, C18O_2, C114, CO, CO_2, H_2$                                                                                             |
| Pacific Ocean (10N)   |                   | POCOLONIOO     | 10 00 N           | 137 00 W  | 10       | $13CO_{2}, C^{18}O_{2}, CH_{4}, CO_{2}, CO_{2}, H_{2}$                                                                            |
| Pacific Ocean (100)   |                   |                | 10 00 N           | 147 UU W  | 10       | $13CO_{2}, C18O_{2}, CH_{4}, CO, CO_{2}, H_{2}$                                                                                   |
| Pacific Ocean (108)   | IN/A              | POC910500      | 10 00 S           | 101 UU W  | 10       | $^{13}\text{CO}_2, \text{C1}^{10}\text{O}_2, \text{CH}_4, \text{CO}, \text{CO}_2, \text{H}_2$                                     |
| Pacific Ocean (15S)   | N/A               | POC915S00      | 15 00 S           | 171 00 W  | 10       | <sup>13</sup> CO <sub>2</sub> , C <sup>18</sup> O <sub>2</sub> , CH <sub>4</sub> , CO, CO <sub>2</sub> , H <sub>2</sub>           |
| Pacific Ocean (20S)   | N/A               | POC920S00      | 20 00 S           | 174 00 W  | 10       | <sup>13</sup> CO <sub>2</sub> , C <sup>18</sup> O <sub>2</sub> , CH <sub>4</sub> , CO, CO <sub>2</sub> , H <sub>2</sub>           |
| Pacific Ocean (25S)   | N/A               | POC925S00      | 25 00 S           | 171 00 W  | 10       | <sup>13</sup> CO <sub>2</sub> , C <sup>18</sup> O <sub>2</sub> , CH <sub>4</sub> , CO, CO <sub>2</sub> , H <sub>2</sub>           |
| Pacific Ocean (30S)   | N/A               | POC930S00      | 30 00 S           | 176 00 W  | 10       | <sup>13</sup> CO <sub>2</sub> , C <sup>18</sup> O <sub>2</sub> , CH <sub>4</sub> , CO, CO <sub>2</sub> , H <sub>2</sub>           |
| Pacific Ocean (35S)   | N/A               | POC935S00      | 35 00 S           | 180 00 E  | 10       | <sup>13</sup> CO <sub>2</sub> , C <sup>18</sup> O <sub>2</sub> , CH <sub>4</sub> , CO, CO <sub>2</sub> , H <sub>2</sub>           |
| Sand Island           | United States of  | MID528N00      | 28 12 N           | 177 22 W  | 7.7      | <sup>13</sup> CO <sub>2</sub> , C <sup>18</sup> O <sub>2</sub> , CH <sub>4</sub> , CO, CO <sub>2</sub> , H <sub>2</sub>           |
|                       | America           |                |                   |           |          |                                                                                                                                   |

| Station                                            | Country/Territory                         | Index Number                        | Latitude<br>(° ')             | Location<br>Longitude<br>(° ') | Altitude<br>(m)      | Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------------------------------------|-------------------------------------------|-------------------------------------|-------------------------------|--------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tutuila (Cape Matatula)                            | United States of<br>America               | SMO514S00                           | 14 14 S                       | 170 34 W                       | 42                   | C <sub>2</sub> Br <sub>2</sub> F <sub>4</sub> , C <sub>2</sub> Cl <sub>4</sub> , C <sub>2</sub> HCl <sub>3</sub> ,<br>CBrClF <sub>2</sub> , CBrF <sub>3</sub> , CCl <sub>4</sub> , CFCs,<br>CH <sub>2</sub> Cl <sub>2</sub> , CH <sub>3</sub> Br, CH <sub>3</sub> CCl <sub>3</sub> ,<br>CH <sub>3</sub> Cl, CH <sub>4</sub> , CHCl <sub>3</sub> , HCFCs,<br>HFCs, N <sub>2</sub> O, NF <sub>3</sub> , PFCs, SF <sub>6</sub> ,<br>SO <sub>2</sub> F <sub>2</sub> |
| Tutuila (Cape Matatula)                            | United States of<br>America               | SMO514S00                           | 14 14 S                       | 170 34 W                       | 42                   | <sup>13</sup> CH <sub>4</sub> , <sup>13</sup> CO <sub>2</sub> , C <sup>18</sup> O <sub>2</sub> , C <sub>2</sub> Cl <sub>4</sub> ,<br>CBrClF <sub>2</sub> , CBrF <sub>3</sub> , CCl <sub>4</sub> , CFCs,<br>CH <sub>2</sub> Cl <sub>2</sub> , CH <sub>3</sub> Br, CH <sub>3</sub> CCl <sub>3</sub> ,<br>CH <sub>3</sub> Cl, CH <sub>4</sub> , CO, CO <sub>2</sub> , H <sub>2</sub> ,<br>HCFCs, HFCs, N <sub>2</sub> O, SF <sub>6</sub>                           |
| <b>REGION VI (Europe)</b>                          |                                           |                                     |                               |                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Adrigole<br>BEO Moussala<br>Baltic Sea             | Ireland<br>Bulgaria<br>Poland             | ADR651N00<br>BEO642N00<br>BAL655N00 | 51 41 N<br>42 11 N<br>55 21 N | 9 44 W<br>23 35 E<br>17 13 E   | 50<br>2925<br>28     | CCl4, CFCs, CH <sub>3</sub> CCl <sub>3</sub> , N <sub>2</sub> O<br>CO, CO <sub>2</sub><br><sup>13</sup> CO <sub>2</sub> , C <sup>18</sup> O <sub>2</sub> , CH <sub>4</sub> , CO, CO <sub>2</sub> , H <sub>2</sub>                                                                                                                                                                                                                                               |
| Begur<br>Black Sea                                 | Spain<br>Romania                          | BGU641N00<br>BSC644N00              | 41 58 N<br>44 10 N            | 3 14 E<br>28 40 E              | 13<br>3              | CH <sub>4</sub> , CO <sub>2</sub><br><sup>13</sup> CO <sub>2</sub> , C <sup>18</sup> O <sub>2</sub> , CH <sub>4</sub> , CO, CO <sub>2</sub> , H <sub>2</sub>                                                                                                                                                                                                                                                                                                    |
| Capo Granitola<br>Deuselbach                       | Italy<br>Germany                          | CGR637N00<br>DEU649N00              | 48 49 N<br>37 40 N<br>49 46 N | 13 13 E<br>12 39 E<br>7 03 E   | 1018<br>5<br>480     | CO <sub>2</sub><br>CH <sub>4</sub> , CO, CO <sub>2</sub><br>CH <sub>4</sub> , CO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                   |
| Dwejra Point<br>Finokalia<br>Fundata               | Malta<br>Greece<br>Romania                | GOZ636N00<br>FIK635N00<br>FDT645N00 | 36 03 N<br>35 20 N<br>45 28 N | 14 11 E<br>25 40 E<br>25 18 E  | 30<br>150<br>1383.5  | <sup>13</sup> CO <sub>2</sub> , C <sup>18</sup> O <sub>2</sub> , CH <sub>4</sub> , CO, CO <sub>2</sub> , H <sub>2</sub><br>CH <sub>4</sub> , CO <sub>2</sub><br>CO <sub>2</sub>                                                                                                                                                                                                                                                                                 |
| Giordan Lighthouse<br>Hegyhatsal<br>Hegyhatsal     | Malta<br>Hungary<br>Hungary               | GLH636N00<br>HUN646N00<br>HUN646N00 | 36 04 N<br>46 57 N<br>46 57 N | 14 13 E<br>16 39 E<br>16 39 E  | 160<br>248<br>248    | <sup>222</sup> Rn, CH <sub>4</sub> , CO, CO <sub>2</sub><br>CO <sub>2</sub><br><sup>13</sup> CO <sub>2</sub> , C <sup>18</sup> O <sub>2</sub> , CH <sub>4</sub> , CO, CO <sub>2</sub> , H <sub>2</sub> ,                                                                                                                                                                                                                                                        |
| Heimaey                                            | Iceland                                   | ICE663N00                           | 63 24 N                       | 20 17 W                        | 100                  | N <sub>2</sub> O, SF <sub>6</sub><br><sup>13</sup> CO <sub>2</sub> , C <sup>18</sup> O <sub>2</sub> , CH <sub>4</sub> , CO, CO <sub>2</sub> , H <sub>2</sub>                                                                                                                                                                                                                                                                                                    |
| Hohenpeissenberg<br>Hohenpeissenberg<br>Ile Grande | Germany<br>Germany<br>France              | HPB647N00<br>HPB647N00<br>LPO648N00 | 47 48 N<br>47 48 N<br>48 48 N | 11 01 E<br>11 01 E<br>3 35 W   | 985<br>985<br>10     | <sup>222</sup> Rn, CH <sub>4</sub> , CO, CO <sub>2</sub><br><sup>13</sup> CO <sub>2</sub> , C <sup>18</sup> O <sub>2</sub> , CH <sub>4</sub> , CO, CO <sub>2</sub><br>CH <sub>4</sub> , CO <sub>2</sub>                                                                                                                                                                                                                                                         |
| Jungfraujoch<br>Jungfraujoch<br>Jungfraujoch       | Switzerland<br>Switzerland<br>Switzerland | JFJ646N00<br>JFJ646N00<br>JFJ646N00 | 46 33 N<br>46 33 N<br>46 33 N | 7 59 E<br>7 59 E<br>7 59 E     | 3580<br>3580<br>3580 | CO <sub>2</sub><br>CH <sub>4</sub> , CO, CO <sub>2</sub> , H <sub>2</sub> , N <sub>2</sub> O, SF <sub>6</sub><br>C <sub>2</sub> Br <sub>2</sub> F <sub>4</sub> , C <sub>2</sub> Cl <sub>4</sub> , C <sub>2</sub> HCl <sub>3</sub> ,                                                                                                                                                                                                                             |
|                                                    |                                           |                                     |                               | 2                              |                      | CBrClF <sub>2</sub> , CBrF <sub>3</sub> , CCl <sub>4</sub> , CFCs,<br>CH <sub>2</sub> Cl <sub>2</sub> , CH <sub>3</sub> Br, CH <sub>3</sub> CCl <sub>3</sub> ,<br>CH <sub>3</sub> Cl, CHCl <sub>3</sub> , HCFCs, HFCs,<br>NF <sub>3</sub> , PFCs, SF <sub>6</sub> , SO <sub>2</sub> F <sub>2</sub>                                                                                                                                                              |
| K-puszta                                           | Hungary                                   | KPS646N00                           | 46 58 N                       | 19 33 E                        | 125                  | CO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Kollumerwaard                                      | Netherlands (the)                         | KMW653N00                           | 53 24 N<br>53 20 N            | 6 23 E<br>6 17 E               | 0                    | CO<br>CH <sub>4</sub> , CO, CO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Kosetice                                           | Czech Republic                            | KOS649N00                           | 49 35 N                       | 15 05 E                        | 534                  | CH4, CO                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Krvavec                                            | Slovenia                                  | KVV646N00                           | 46 18 N                       | 14 32 E                        | 1720                 | CO                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Lamezia Terme<br>Lampedusa                         | Italy<br>Italy                            | LMT638N00<br>LMP635N00              | 38 53 N<br>35 31 N            | 16 14 E<br>12 38 E             | 6<br>45              | CH <sub>4</sub> , CO, CO <sub>2</sub><br>CBrClF <sub>2</sub> , CBrF <sub>3</sub> , CCl <sub>4</sub> , CFCs,<br>CH <sub>2</sub> Br <sub>2</sub> , CH <sub>2</sub> Cl <sub>2</sub> , CH <sub>3</sub> Br,<br>CH <sub>3</sub> CCl <sub>3</sub> , CH <sub>3</sub> Cl, CH <sub>3</sub> I, CH <sub>4</sub> ,<br>CHCl <sub>3</sub> , CO <sub>2</sub> , HCFCs, HFCs,<br>NaO, SE <sub>6</sub>                                                                             |
| Lampedusa                                          | Italy                                     | LMP635N00                           | 35 31 N                       | 12 38 E                        | 45                   | <sup>13</sup> CO <sub>2</sub> , C <sup>18</sup> O <sub>2</sub> , CH <sub>4</sub> , CO, CO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                          |

|                        |                    |              |                 | Location        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------|--------------------|--------------|-----------------|-----------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Station                | Country/Territory  | Index Number | Latitude        | Longitude       | Altitude | Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                        |                    |              | (°')            | (° ')           | (m)      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| _                      |                    |              |                 |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Lecce                  | Italy              | ECO640N00    | 40 20 N         | 18 07 E         | 36       | CH <sub>4</sub> , CO, CO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Environmental-Climate  |                    |              |                 |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Observatory            |                    |              |                 |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Mace Head              | Ireland            | MHD653N00    | 53 20 N         | 9 54 W          | 8        | CH <sub>4</sub> , CO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Mace Head              | Ireland            | MHD653N00    | 53 20 N         | 9 54 W          | 8        | $C_2Br_2E_4$ $C_2C_4$ $C_2HC_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Muce Heud              | Ireland            | 101120221100 | 55 20 10        | ) ) I W         | 0        | $C_2 D_1 21 4$ , $C_2 C_1 4$ , $C_2 C_2 4$ , $C_2 C_1 4$ , |
|                        |                    |              |                 |                 |          | CH Cl CH Dr CH CCl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                        |                    |              |                 |                 |          | $CH_2Cl_2, CH_3BF, CH_3CCl_3,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                        |                    |              |                 |                 |          | $CH_3CI$ , $CH_4$ , $CHCI_3$ , $CO$ , $H_2$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                        |                    |              |                 |                 |          | HCFCs, HFCs, N <sub>2</sub> O, NF <sub>3</sub> , PFCs,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                        |                    |              |                 |                 |          | $SF_6$ , $SO_2F_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Mace Head              | Ireland            | MHD653N00    | 53 20 N         | 9 54 W          | 8        | <sup>13</sup> CH <sub>4</sub> , <sup>13</sup> CO <sub>2</sub> , C <sup>18</sup> O <sub>2</sub> , C <sub>2</sub> Cl <sub>4</sub> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                        |                    |              |                 |                 |          | CBrClF <sub>2</sub> , CBrF <sub>3</sub> , CCl <sub>4</sub> , CFCs,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                        |                    |              |                 |                 |          | CH <sub>2</sub> Cl <sub>2</sub> , CH <sub>3</sub> Br, CH <sub>3</sub> CCl <sub>3</sub> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                        |                    |              |                 |                 |          | $CH_2Cl_2$ , $CH_4$ CO CO <sub>2</sub> H <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                        |                    |              |                 |                 |          | $UCEC_{\alpha}$ $UEC_{\alpha}$ $N_{\alpha}O$ $SE_{\alpha}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Marta Ciana            | Tc.1               |              | 44 11 NT        | 10.4 <b>2</b> E | 2165     | $\mathbf{H}_{\mathbf{C}}^{\mathbf{C}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Monte Cimone           | Italy              | CMIN644IN00  | 44 11 N         | 10 42 E         | 2165     | CO, H <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Monte Cimone           | Italy              | CMN644N00    | 44 II N         | 10 42 E         | 2165     | $CH_4, CO_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Monte Cimone           | Italy              | CMN644N00    | 44 11 N         | 10 42 E         | 2165     | $CH_4$ , $CO$ , $N_2O$ , $SF_6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Monte Cimone           | Italy              | CMN644N00    | 44 11 N         | 10 42 E         | 2165     | C <sub>2</sub> Cl <sub>4</sub> , C <sub>2</sub> HCl <sub>3</sub> , CBrClF <sub>2</sub> , CBrF <sub>3</sub> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                        |                    |              |                 |                 |          | CCl <sub>4</sub> , CFCs, CH <sub>2</sub> Cl <sub>2</sub> , CH <sub>3</sub> Br,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                        |                    |              |                 |                 |          | CH <sub>3</sub> CCl <sub>3</sub> , CH <sub>3</sub> Cl, CHCl <sub>3</sub> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                        |                    |              |                 |                 |          | HCFCs, HFCs, PFCs, SO <sub>2</sub> F <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Neuglobsow             | Germany            | NGI 653N00   | 53 10 N         | 13 02 F         | 65       | $CH_4 CO CO_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Ocean Station "M"      | Norway             | STM666N00    | 66 00 N         | 2 00 E          | 5        | $^{13}CO_2 C^{18}O_2 CH_4 CO CO_2 H_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Ocean Station Charlie  | Russian Federation | STC652N00    | 52 / 5 N        | 35 30 W         | 5        | $CO_2, C = O_2, CI14, CO, CO_2, II_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Ocean Station Charlie  | United States of   | STC654N00    | 54 00 N         | 35 00 W         | 5        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Occan Station Charne   | America            | 5100041000   | J4 00 IN        | 33 00 W         | 0        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Oahaankonf             | Gormany            | OVK650N00    | 50.02 N         | 11 / Q E        | 1105     | 13CO. C18O. CH. CO. CO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Dellas Samu alterativi | Germany            |              | 50 02 N         | 11 40 E         | 560      | $CU_2, C^{10}O_2, CH_4, CO, CO_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Panas-Sammanuntum      |                    | PAL00/NUU    | 07 30 N         | 24 07 E         | 500      | $CH4, CO_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Pallas-Sammaltunturi   | Finland            | PAL66/N00    | 6/ 58 N         | 24 07 E         | 560      | $^{15}\text{CO}_2, \text{C}^{16}\text{O}_2, \text{CBrF}_3, \text{CH}_4, \text{CO},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Dovorno                | Switzorland        | DAV646N00    | 46 40 N         | 6 57 E          | 400      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Pio du Midi            | Franco             | PDM642N00    | 40 49 N         | 0070            | 7977     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                        |                    | FDN1042N00   | 42 JU N         | 0 08 E          | 2077     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Pic du Midi            | France             | PDM642N00    | 42 56 N         | 0 08 E          | 2877     | $CH_4, CO_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Plateau Rosa           | Italy              | PRS645N00    | 45 56 N         | 7 42 E          | 3480     | $CH_4, CO_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Puszcza Borecka/Diabla | Poland             | DIG654N00    | 54 09 N         | 22 04 E         | 157      | $CO_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Gora                   |                    |              |                 |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Puy de Dome            | France             | PUY645N00    | 45 46 N         | 2 58 E          | 1465     | CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Puy de Dome            | France             | PUY645N00    | 45 46 N         | 2 58 E          | 1465     | CH4, CO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Ridge Hill             | United Kingdom of  | RGL651N00    | 52 00 N         | 2 32 W          | 204      | $CH_4$ , $CO_2$ , $N_2O$ , $SF_6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                        | Great Britain and  |              |                 |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                        | Northern Ireland   |              |                 |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Rigi                   | Switzerland        | RIG646N00    | 46 04 N         | 8 27 E          | 1031     | CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Schauinsland           | Germany            | SSL647N00    | 47 55 N         | 7 55 E          | 1205     | $CH_4 CO CO_2 N_2O SE_6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Sede Boker             | Israel             | WIS631N00    | 31 07 N         | 34 52 E         | 400      | $13CO_2$ C18O <sub>2</sub> CH <sub>4</sub> CO CO <sub>2</sub> H <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Shotland               | United Kingdom of  | SIS660N00    | 60.05 N         | 1 15 W          | 30       | $13CO_2$ , CH <sub>2</sub> , CO <sub>2</sub> , CH <sub>4</sub> , CO <sub>2</sub> , CO <sub>2</sub> , H <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Silcualiu              | Creat Dritain and  | 0001000616   | 00 03 1         | 1 1.5 W         | 50       | -0.02, 0.114, 0.00, 0.002, 1.00, 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                        | Steat Diftain and  |              |                 |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| C'(. I                 | Northern Ireland   |              | (( <u>20</u> )) | 46 10 11        | 2020     | CU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Site J                 | Denmark            | GRL666N00    | 66 30 N         | 46 12 W         | 2030     | CH4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Sonnblick              | Austria            | SNB647N00    | 47 03 N         | 12 57 E         | 3106     | $CH_4$ , $CO$ , $CO_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Summit                 | Denmark            | SUM672N00    | 72 35 N         | 38 29 W         | 3238     | CH <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

|                                 |                                                            |              |          | Location  |          |                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------|------------------------------------------------------------|--------------|----------|-----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Station                         | Country/Territory                                          | Index Number | Latitude | Longitude | Altitude | e Parameter                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                 |                                                            |              | (° ')    | (° ')     | (m)      |                                                                                                                                                                                                                                                                                                                                                                                                              |
| Summit                          | Denmark                                                    | SUM672N00    | 72 35 N  | 38 29 W   | 3238     | $^{13}CO_2$ , C $^{18}O_2$ , C $_2Cl_4$ , CBrClF $_2$ , CCl <sub>4</sub> , CFCs, CH $_2Cl_2$ , CH $_3Br$ ,                                                                                                                                                                                                                                                                                                   |
|                                 |                                                            |              |          |           |          | CH <sub>3</sub> CCl <sub>3</sub> , CH <sub>3</sub> Cl, CH <sub>4</sub> , CO, CO <sub>2</sub> ,<br>HCFCs, HFCs, N <sub>2</sub> O, SF <sub>6</sub>                                                                                                                                                                                                                                                             |
| Tacolneston Tall Tower          | United Kingdom of<br>Great Britain and<br>Northern Ireland | TAC652N00    | 52 31 N  | 1 08 E    | 56       | CH4, CO2                                                                                                                                                                                                                                                                                                                                                                                                     |
| Tacolneston Tall Tower          | United Kingdom of<br>Great Britain and<br>Northern Ireland | TAC652N00    | 52 31 N  | 1 08 E    | 56       | C <sub>2</sub> Cl <sub>4</sub> , C <sub>2</sub> HCl <sub>3</sub> , CBrClF <sub>2</sub> , CBrF <sub>3</sub> ,<br>CFCs, CH <sub>2</sub> Cl <sub>2</sub> , CH <sub>3</sub> Br, CH <sub>3</sub> CCl <sub>3</sub><br>CH <sub>3</sub> Cl, CH <sub>4</sub> , CHCl <sub>3</sub> , CO, CO <sub>2</sub> ,<br>H <sub>2</sub> , HCFCs, HFCs, N <sub>2</sub> O, PFCs,<br>SF <sub>6</sub> , SO <sub>2</sub> F <sub>2</sub> |
| Terceira Island                 | Portugal                                                   | AZR638N00    | 38 46 N  | 27 22 W   | 40       | <sup>13</sup> CH <sub>4</sub> , <sup>13</sup> CO <sub>2</sub> , C <sup>18</sup> O <sub>2</sub> , CH <sub>4</sub> , CO, CO <sub>2</sub> , H <sub>2</sub>                                                                                                                                                                                                                                                      |
| Teriberka                       | <b>Russian Federation</b>                                  | TER669N00    | 69 12 N  | 35 06 E   | 40       | CH <sub>4</sub> , CO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                            |
| Waldhof                         | Germany                                                    | LGB652N00    | 52 48 N  | 10 46 E   | 74       | CO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                              |
| Wank Peak                       | Germany                                                    | WNK647N00    | 47 31 N  | 11 09 E   | 1780     | CO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                              |
| Westerland                      | Germany                                                    | WES654N00    | 54 56 N  | 8 19 E    | 12       | CO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                              |
| Zeppelinfjellet<br>(Ny-Alesund) | Norway                                                     | ZEP678N00    | 78 54 N  | 11 53 E   | 475      | CO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                              |
| Zeppelinfjellet<br>(Ny-Alesund) | Norway                                                     | ZEP678N00    | 78 54 N  | 11 53 E   | 475      | CCl4, CFCs, CH3CCl3, N2O                                                                                                                                                                                                                                                                                                                                                                                     |
| Zeppelinfjellet<br>(Ny-Alesund) | Norway                                                     | ZEP678N00    | 78 54 N  | 11 53 E   | 475      | C <sub>2</sub> Br <sub>2</sub> F <sub>4</sub> , C <sub>2</sub> Cl <sub>4</sub> , C <sub>2</sub> HCl <sub>3</sub> ,<br>CBrClF <sub>2</sub> , CBrF <sub>3</sub> , CFCs, CH <sub>2</sub> Cl <sub>2</sub> ,<br>CH <sub>3</sub> Br, CH <sub>3</sub> CCl <sub>3</sub> , CH <sub>3</sub> Cl, CHCl <sub>3</sub><br>HCFCs, HFCs, NF <sub>3</sub> , PFCs, SF <sub>6</sub> ,<br>SO <sub>2</sub> F <sub>2</sub>          |
| Zeppelinfjellet<br>(Ny-Alesund) | Norway                                                     | ZEP678N00    | 78 54 N  | 11 53 E   | 475      | <sup>13</sup> CH <sub>4</sub> , <sup>13</sup> CO <sub>2</sub> , C <sup>18</sup> O <sub>2</sub> , CH <sub>4</sub> , CO, CO <sub>2</sub> , H <sub>2</sub>                                                                                                                                                                                                                                                      |
| Zingst                          | Germany                                                    | ZGT654N00    | 54 26 N  | 12 44 E   | 1        | CH <sub>4</sub> , CO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                            |
| Zugspitze                       | Germany                                                    | ZUG647N00    | 47 25 N  | 10 59 E   | 2960     | CO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                              |
| Zugspitze                       | Germany                                                    | ZUG647N00    | 47 25 N  | 10 59 E   | 2960     | CH <sub>4</sub> , CO, CO <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                        |

ZSF647N00

ZSF647N00

47 25 N

47 25 N

10 59 E

10 59 E

2656 CH<sub>4</sub>, CO, CO<sub>2</sub>, N<sub>2</sub>O, SF<sub>6</sub>

2656 222Rn

#### LIST OF OBSERVATIONAL STATIONS (continued)

Zugspitze /

Schneefernerhaus Zugspitze /

Schneefernerhaus

Germany

Germany

|                            |                    |              |                | Location  |                       |                                                                                                                                   |
|----------------------------|--------------------|--------------|----------------|-----------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Station                    | Country/Territory  | Index Number | Latitude       | Longitude | Altitude              | e Parameter                                                                                                                       |
|                            |                    |              | (° ')          | (°')      | (m)                   |                                                                                                                                   |
|                            |                    |              |                |           |                       |                                                                                                                                   |
| ANIAKUIICA                 |                    |              |                |           |                       |                                                                                                                                   |
| Arrival Heights            | New Zealand        | ARH777800    | 77 48 S        | 166 40 F  | 184                   | $^{13}CH_4$ CH <sub>4</sub> CO N <sub>2</sub> O                                                                                   |
| Casey Station              | Australia          | CYA766S00    | 66 17 S        | 100 40 L  | 10 <del>4</del><br>60 | $13CO_2$ CH <sub>4</sub> CO CO <sub>2</sub> H <sub>2</sub> N <sub>2</sub> O                                                       |
| Hallov Boy                 | Lupited Kingdom of | UBA775500    | 75 34 9        | 26 20 W   | 33                    | CO                                                                                                                                |
| Hancy Day                  | Great Britain and  | IIDA//5500   | 15 54 5        | 20 30 ₩   | 55                    | 60                                                                                                                                |
|                            | Northern Ireland   |              |                |           |                       |                                                                                                                                   |
| Hallan Dan                 | Normern freiand    |              | 75 24 8        | 26 20 W   | 22                    |                                                                                                                                   |
| напеу вау                  | Creat Dritain and  | HBA//5500    | 15 54 5        | 20 30 W   | 33                    | $^{13}\text{CO}_2, \text{C}^{13}\text{O}_2, \text{CH}_4, \text{CO}, \text{CO}_2, \text{H}_2$                                      |
|                            | Great Britain and  |              |                |           |                       |                                                                                                                                   |
| T 1                        | Northern Ireland   | IDN/7/20000  | <b>60 14 0</b> | 50 40 M   | 1.5                   | 60                                                                                                                                |
| Jubany                     | Argentina          | JBN /62800   | 62 14 S        | 58 40 W   | 15                    | $CO_2$                                                                                                                            |
| King Sejong                | Republic of Korea  | KSG/62S00    | 62 13 S        | 58 47 W   | 0                     |                                                                                                                                   |
| Mawson                     | Australia          | MAA/6/S00    | 6737S          | 62 52 E   | 32                    | $^{13}CO_2$ , CH <sub>4</sub> , CO, CO <sub>2</sub> , H <sub>2</sub> , N <sub>2</sub> O                                           |
| McMurdo Station            | United States of   | MCM777S00    | 77 49 S        | 166 35 E  | 11                    | CH <sub>4</sub>                                                                                                                   |
|                            | America            |              |                |           |                       |                                                                                                                                   |
| Mizuho                     | Japan              | MZH770S00    | 70 42 S        | 44 18 E   | 2230                  | CH <sub>4</sub>                                                                                                                   |
| Palmer Station             | United States of   | PSA764S00    | 64 55 S        | 64 00 W   | 10                    | $^{13}CO_2$ , $C^{18}O_2$ , $C_2Cl_4$ , $CBrClF_2$ ,                                                                              |
|                            | America            |              |                |           |                       | CCl <sub>4</sub> , CFCs, CH <sub>2</sub> Cl <sub>2</sub> , CH <sub>3</sub> Br,                                                    |
|                            |                    |              |                |           |                       | CH <sub>3</sub> CCl <sub>3</sub> , CH <sub>3</sub> Cl, CH <sub>4</sub> , CO, CO <sub>2</sub> ,                                    |
|                            |                    |              |                |           |                       | H <sub>2</sub> , HCFCs, HFCs, N <sub>2</sub> O, SF <sub>6</sub>                                                                   |
| South Pole                 | United States of   | SPO789S00    | 89 59 S        | 24 48 W   | 2810                  | <sup>13</sup> CO <sub>2</sub> , CH <sub>4</sub> , CO, CO <sub>2</sub> , H <sub>2</sub> , N <sub>2</sub> O                         |
|                            | America            |              |                |           |                       |                                                                                                                                   |
| South Pole                 | United States of   | SPO789S00    | 89 59 S        | 24 48 W   | 2810                  | <sup>13</sup> CH <sub>4</sub> , <sup>13</sup> CO <sub>2</sub> , C <sup>18</sup> O <sub>2</sub> , C <sub>2</sub> Cl <sub>4</sub> , |
|                            | America            |              |                |           |                       | CBrClF <sub>2</sub> , CBrF <sub>3</sub> , CCl <sub>4</sub> , CFCs,                                                                |
|                            |                    |              |                |           |                       | CH <sub>2</sub> Cl <sub>2</sub> , CH <sub>3</sub> Br, CH <sub>3</sub> CCl <sub>3</sub> ,                                          |
|                            |                    |              |                |           |                       | CH <sub>3</sub> Cl, CH <sub>4</sub> , CO, CO <sub>2</sub> , H <sub>2</sub> ,                                                      |
|                            |                    |              |                |           |                       | HCFCs, HFCs, N <sub>2</sub> O, SF <sub>6</sub>                                                                                    |
| Syowa Station              | Japan              | SYO769S00    | 69 00 S        | 39 35 E   | 16                    | CO <sub>2</sub>                                                                                                                   |
| Syowa Station              | Japan              | SYO769S00    | 69 00 S        | 39 35 E   | 16                    | <sup>13</sup> CO <sub>2</sub> , C <sup>18</sup> O <sub>2</sub> , CH <sub>4</sub> , CO, CO <sub>2</sub> , H <sub>2</sub>           |
| 2                          | 1                  |              |                |           |                       |                                                                                                                                   |
| MOBILE STATION             |                    |              |                |           |                       |                                                                                                                                   |
|                            |                    |              |                |           |                       |                                                                                                                                   |
| Aircraft (over Bass Strait | Australia          | AIA999900    |                |           |                       | <sup>13</sup> CO <sub>2</sub> , CH <sub>4</sub> , CO, CO <sub>2</sub> , H <sub>2</sub> , N <sub>2</sub> O                         |
| and Cape Grim)             |                    |              |                |           |                       |                                                                                                                                   |
| Aircraft Observation of    | Japan              | AOA999900    |                |           |                       | CH4, CO, CO2, N2O                                                                                                                 |
| Atmospheric trace gases    |                    |              |                |           |                       | - ,, - ,,                                                                                                                         |
| by IMA                     |                    |              |                |           |                       |                                                                                                                                   |
| Aircraft: Orleans          | France             | ORL999900    |                |           | 150                   | CH <sub>4</sub> , CO <sub>2</sub>                                                                                                 |
| Akademik Korolev R/V       | United States of   | AKD999900    |                |           |                       | CH <sub>4</sub>                                                                                                                   |
|                            | America            | 11112////00  |                |           |                       |                                                                                                                                   |
| Alligator liberty M/V      | Ianan              | AI G999900   |                |           |                       | $CO_2$                                                                                                                            |
| Atlantic Ocean             | United States of   |              |                |           | 10                    |                                                                                                                                   |
| Attailue Ocean             | America            | ΑΟСЭΛΛΛΟΟ    |                |           | 10                    |                                                                                                                                   |
| Comprehensive              | Ianan              | FOM000000    |                |           |                       | CH, CO                                                                                                                            |
| Observation Naturals for   | Japan              | LOW1999900   |                |           |                       | $CH4, CO_2$                                                                                                                       |
| TRace gases by Alid incr   |                    |              |                |           |                       |                                                                                                                                   |
| (CONTDAIL)                 |                    |              |                |           |                       |                                                                                                                                   |
| (CONTRAIL)                 | Ionon              | EOMOOOOO     |                |           |                       | 13CH, CH.D                                                                                                                        |
| Observation National C     | Japan              | EO1019999900 |                |           |                       | <sup>13</sup> UH4, UH3D                                                                                                           |
| Ubservation Network for    |                    |              |                |           |                       |                                                                                                                                   |
| I Kace gases by AlrLiner   |                    |              |                |           |                       |                                                                                                                                   |
| (CUNTKAIL)                 |                    | DIGOOOCO     |                |           |                       | CU                                                                                                                                |
| Discoverer 1983 & 1984,    | United States of   | DI2999900    |                |           |                       | CH4                                                                                                                               |
| K/V                        | America            |              |                |           |                       |                                                                                                                                   |

| Station                                                                  | Country/Territory           | Index Number | Latitude | Location<br>Longitude | Altitud | e Parameter                                                                                                             |
|--------------------------------------------------------------------------|-----------------------------|--------------|----------|-----------------------|---------|-------------------------------------------------------------------------------------------------------------------------|
| <u> </u>                                                                 | Country/ remittery          | maex rumber  | (° ')    | (° ')                 | (m)     |                                                                                                                         |
| Discoverer 1985, R/V                                                     | United States of            | DSC999900    |          |                       |         | CH <sub>4</sub>                                                                                                         |
| Drake Passage                                                            | United States of            | DRP999900    |          |                       |         | <sup>13</sup> CO <sub>2</sub> , C <sup>18</sup> O <sub>2</sub> , CH <sub>4</sub> , CO, CO <sub>2</sub>                  |
| HATS Ocean Projects                                                      | United States of<br>America | HOP999900    |          |                       |         | HFCs                                                                                                                    |
| INSTAC-I (International<br>Strato/Tropospheric Air<br>Chemistry Project) | Japan                       | INS999900    |          |                       |         | <sup>13</sup> CO <sub>2</sub> , CH <sub>4</sub> , CO <sub>2</sub>                                                       |
| John Biscoe, R/V                                                         | United States of<br>America | JBS999900    |          |                       |         | CH <sub>4</sub>                                                                                                         |
| Keifu Maru, R/V                                                          | Japan                       | KEF999900    |          |                       |         | CO <sub>2</sub> , TIC                                                                                                   |
| Kofu Maru, R/V                                                           | Japan                       | KOF999900    |          |                       |         | CO <sub>2</sub>                                                                                                         |
| Korolev, R/V                                                             | United States of<br>America | KOR999900    |          |                       |         | CH <sub>4</sub>                                                                                                         |
| Long Lines Expedition,<br>R/V                                            | United States of<br>America | LLE999900    |          |                       |         | CH <sub>4</sub>                                                                                                         |
| MRI Research,<br>1978-1986, R/V                                          | Japan                       | MRI999900    |          |                       |         | CH <sub>4</sub>                                                                                                         |
| MRI Research, Hakuho<br>Maru, R/V                                        | Japan                       | HKH999900    |          |                       |         | CO <sub>2</sub>                                                                                                         |
| MRI Research, Kaiyo<br>Maru, R/V                                         | Japan                       | KIY999900    |          |                       |         | CO <sub>2</sub>                                                                                                         |
| MRI Research, Mirai,<br>R/V                                              | Japan                       | MMR999900    |          |                       |         | CO <sub>2</sub>                                                                                                         |
| MRI Research,<br>Natushima, R/V                                          | Japan                       | NTU999900    |          |                       |         | CO <sub>2</sub>                                                                                                         |
| MRI Research, Ryofu<br>Maru, R/V                                         | Japan                       | RFM999900    |          |                       |         | CO <sub>2</sub>                                                                                                         |
| MRI Research,<br>Wellington Maru, R/V                                    | Japan                       | WLT999900    |          |                       |         | CO <sub>2</sub>                                                                                                         |
| Mexico Naval H-02, R/V                                                   | United States of<br>America | MXN999900    |          |                       |         | CH <sub>4</sub>                                                                                                         |
| NOPACCS - Hakurei<br>Maru -                                              | Japan                       | HAK999900    |          |                       |         | TIC                                                                                                                     |
| Observation of<br>Atmospheric Chemistry<br>Over Japan                    | Japan                       | OAJ999900    |          |                       |         | CFCs, N <sub>2</sub> O                                                                                                  |
| Oceanographer, R/V                                                       | United States of<br>America | OCE999900    |          |                       |         | CH <sub>4</sub>                                                                                                         |
| Pacific Ocean                                                            | New Zealand                 | BSL999900    |          |                       |         | <sup>13</sup> CH <sub>4</sub> , CH <sub>4</sub>                                                                         |
| Pacific Ocean                                                            | United States of<br>America | POC9XXX00    |          |                       | 10      | <sup>13</sup> CO <sub>2</sub> , C <sup>18</sup> O <sub>2</sub> , CH <sub>4</sub> , CO, CO <sub>2</sub> , H <sub>2</sub> |
| Pacific-Atlantic Ocean                                                   | United States of<br>America | PAO999900    |          |                       |         | CH <sub>4</sub> , CO <sub>2</sub>                                                                                       |
| Polar Star, R/V                                                          | United States of<br>America | PLS999900    |          |                       |         | CH <sub>4</sub>                                                                                                         |
| Ryofu Maru, R/V                                                          | Japan                       | RYF999900    |          |                       |         | CFCs, CH4, CO2, N2O, TIC                                                                                                |
| Santarem                                                                 | Brazil                      | SAN999900    |          |                       |         | CH4, CO, CO2, N2O, SF6                                                                                                  |
| South China Sea                                                          | United States of<br>America | SCS9XXX00    |          |                       | 15      | <sup>13</sup> CO <sub>2</sub> , C <sup>18</sup> O <sub>2</sub> , CH <sub>4</sub> , CO, CO <sub>2</sub> , H <sub>2</sub> |
| Soyo Maru, R/V                                                           | Japan                       | SOY999900    |          |                       |         | CO <sub>2</sub>                                                                                                         |
| Surveyor, R/V                                                            | United States of<br>America | SUR999900    |          |                       |         | CH <sub>4</sub>                                                                                                         |

| Station                                                                           | Country/Territory           | Index Number Latitude | Location<br>Longitude Al<br>(° ') | ltitude<br>(m) | Parameter                                                                                                                          |
|-----------------------------------------------------------------------------------|-----------------------------|-----------------------|-----------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------|
| The Observation of<br>Atmospheric Methane                                         | Japan                       | OAM999900             |                                   |                | $CH_4$                                                                                                                             |
| Over Japan<br>The Observation of<br>Atmospheric Sulfur<br>Haveflueride Over Japan | Japan                       | OAS999900             |                                   |                | SF <sub>6</sub>                                                                                                                    |
| WEST COSMIC -<br>Hakurei Maru No.2 -                                              | Japan                       | HAK999901             |                                   |                | TIC                                                                                                                                |
| Wakataka-Maru                                                                     | Japan                       | WAK999900             |                                   |                | $CO_2$                                                                                                                             |
| Western Pacific                                                                   | United States of<br>America | WPC9XXX00             |                                   | 10             | <sup>13</sup> CH <sub>4</sub> , <sup>13</sup> CO <sub>2</sub> , C <sup>18</sup> O <sub>2</sub> , CH <sub>4</sub> , CO <sub>2</sub> |
| northern and western<br>Pacific                                                   | Japan                       | NWP999900             |                                   |                | N <sub>2</sub> O                                                                                                                   |
| over Japan between<br>Sendai and Fukuoka                                          | Japan                       | TDA999900             |                                   |                | $CH_4$                                                                                                                             |
| over the Pacific Ocean<br>20-50 km off the coast of<br>the Sendai plain           | Japan                       | PIP999900             |                                   |                | CH4                                                                                                                                |

| Station<br>Country/Territory | Name                  | Address                                                                                                                                                                                                   |
|------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| REGION I (Africa)            |                       |                                                                                                                                                                                                           |
| Cairo                        | AbdElhamid Gouda      | Egyptian Meteorological Authority                                                                                                                                                                         |
| (Egypt)                      | Elawadi               | Department of Air Pollution Study Egyptian<br>Meteorological                                                                                                                                              |
|                              |                       | Authority P.O.Box:11784 - Cairo, Egypt                                                                                                                                                                    |
| Cape Point<br>(South Africa) | Alastair Williams     | Australian Nuclear Science and Technology<br>Organisation, Institute for Environmental Research,<br>Atmospheric Mixing and Pollution Transport Group<br>Locked Bag 2001, Kirrawee DC, NSW 2232, Australia |
| Izaña (Tenerife)<br>(Spain)  | Angel J. Gomez-Pelaez | Izana Atmospheric Research Center, Meteorological<br>State Agency of Spain (AEMET)<br>C/ La Marina, 20, Planta 6. 38001 Santa Cruz de<br>Tenerife, Spain                                                  |
| Cape Point<br>(South Africa) | Casper Labuschagne    | South African Weather Service (Climate Division)<br>SA Weather Service, c/o CSIR (Environmentek), P.O.<br>Box 320,Stellenbosch 7599, South Africa                                                         |
|                              | Lynwill Martin        | South African Weather Service (Climate Division)<br>SAWS, c/o CSIR (Environmentek), P.O. Box<br>320,Stellenbosch 7599, South Africa                                                                       |
|                              | Thumeka Mkololo       | South African Weather Service (Climate Division)<br>SAWS, c/o CSIR (Environmentek), P.O. Box<br>320,Stellenbosch 7599, South Africa                                                                       |
| Mt. Kenya<br>(Kenya)         | Constance Okuku       | Kenya Meteorological Department<br>Kenya Meteorological Department<br>MT KENYA GAW STATION<br>P.O. Box 192<br>10400 NANYUKI<br>Kenya                                                                      |
|                              | Jörg Klausen          | Federal Office of Meteorology and Climatology<br>MeteoSwiss<br>8058 ZH,Zürich-Flughafen<br>Operation Center 1, Switzerland                                                                                |
|                              | Stephan Henne         | Empa, Swiss Federal Laboratories for Materials Science<br>and Technology<br>Ueberlandstrasse 129<br>8600 Duebendorf, Switzerland                                                                          |
| Amsterdam Island<br>(France) | Jean Sciare           | LSCE (Laboratoire des Sciences du Climat et de<br>l'Environnement) UMR CEA-CNRS<br>LSCE - CEA Saclay - Orme des Merisiers - Bat.701<br>91191 Gif-sur-Yvette, France                                       |

#### LIST OF CONTRIBUTORS

| Station<br>Country/Territory           | Name            | Address                                                                                                                                                                                                                                  |
|----------------------------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                        | Michel Ramonet  | LSCE (Laboratoire des Sciences du Climat et de<br>l'Environnement) UMR CEA-CNRS-UVSQ<br>LSCE - CEA Saclay - Orme des Merisiers - 91191<br>Gif-sur-Yvette, France                                                                         |
| Cape Verde Observatory<br>(Cape Verde) | Katie Read      | Department of Chemistry, University of York<br>Department of Chemistry,<br>University of York,<br>Heslington,<br>York,<br>Y010 5DD, United Kingdom                                                                                       |
|                                        | Zoë Fleming     | National Centre for Atmospheric Science (NCAS)<br>Department of Chemistry<br>University of Leicester<br>National Centre for Atmospheric Science (NCAS)<br>Department of Chemistry<br>University of Leicester<br>Leicester<br>LE1 7RH, UK |
|                                        | Lucy Carpenter  | Department of Chemistry, University of York<br>Department of Chemistry,<br>University of York,<br>Heslington,<br>York,<br>Y010 5DD, United Kingdom                                                                                       |
| Assekrem<br>(Algeria)                  | Mimouni Mohamed | Office National de la Meteorologie<br>POBox 31 Tamanrasset 11000, Algeria                                                                                                                                                                |
| REGION II (Asia)                       |                 |                                                                                                                                                                                                                                          |
| Nagoya<br>(Japan)                      | A. Matsunami    | Research Center for Advanced Energy Conversion,<br>Nagoya University<br>Furo-cho, Chikusaku, Nagoya 464-8603, Japan                                                                                                                      |
| Anmyeon-do<br>(Republic of Korea)      | Haeyoung Lee    | Climate Change Monitoring Division, Korea<br>Meteorological Administration<br>61 Yeouidaebang-ro 16 gil, Dongjak-gu, Seoul, 07062,<br>Republic of Korea                                                                                  |
|                                        | Lee EunHye      | Climate Change Monitoring Division, Korea<br>Meteorological Administration<br>61 Yeouidaebang-ro 16 gil, Dongjak-gu, Seoul, 07062,<br>Republic of Korea                                                                                  |
| Gosan<br>(Republic of Korea)           | Haeyoung Lee    | Climate Change Monitoring Division, Korea<br>Meteorological Administration<br>61 Yeouidaebang-ro 16 gil, Dongjak-gu, Seoul, 07062,<br>Republic of Korea                                                                                  |

| Station                        | Name               | Address                                                                                                                   |
|--------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------|
| Country/Territory              |                    |                                                                                                                           |
|                                |                    |                                                                                                                           |
|                                | Park Hyo-Jin       | Climate Change Monitoring Division, Korea<br>Meteorological Administration                                                |
|                                |                    | 61 Yeouidaebang-ro 16 gil, Dongjak-gu, Seoul, 07062,<br>Republic of Korea                                                 |
| Cape Ochi-ishi<br>Hateruma     | Hitoshi MUKAI      | Center for Global Environmental Research, National<br>Institute for Environmental Studies                                 |
| (Japan)                        |                    | 16-2, Onogawa, Tsukuba-shi, Ibaraki 305-8506, Japan                                                                       |
|                                | Takuya Saito       | Center for Environmental Measurement and Analysis,<br>National Institute for Environmental Studies                        |
|                                | Yasunori TOHJIMA   | Center for Global Environmental Research, National<br>Institute for Environmental Studies                                 |
|                                |                    | 10-2, Onogawa, Tsukuba-sin, Ibaraki 505-8500, Japan                                                                       |
| Everest - Pyramid<br>(Nepal)   | Jgor Arduini       | Università degli Studi di Urbino<br>Istituto di Scienze Chimiche, piazza Rinascimento 6,<br>61029 Urbino - Italy          |
|                                |                    | 01025 010110 - 10ary                                                                                                      |
| Hok Tsui<br>(Hong Kong, China) | Ka Se Lam          | Department of Civil and Structural Engineering,Hong<br>Kong Polytechnic University<br>Hung Hom, Kowloon, Hong Kong, China |
|                                |                    | 11418 11611, 116111601, 11618 11618, 01114                                                                                |
| Minamitorishima<br>Broni       | Kazuyuki SAITO     | Atmospheric Environment Division, Global                                                                                  |
| Kyori<br>Yonagunijima          |                    | Environment and Marine Department, Japan<br>Meteorological Agency (JMA)                                                   |
| (Japan)                        |                    | 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan                                                                         |
| Milawa Jahinomiwa              | Koji Ohno          | Aichi Air Environment Division                                                                                            |
| (Japan)                        | Koji Olillo        | 1-2 Sannomaru-3chome, Naka-ku, Nagoya, Aichi                                                                              |
|                                |                    | 460-8501, Japan                                                                                                           |
| Pha Din<br>(Viet Nam)          | Martin Steinbacher | Empa - Swiss Federal Laboratories for Materials Science<br>and Technology                                                 |
| (                              |                    | Ueberlandstrasse 129                                                                                                      |
|                                |                    | 8600 Duebendorf                                                                                                           |
|                                |                    | Switzerland                                                                                                               |
|                                | Duong Hoang Long   | National Hydro-Meteorological Service NHMS                                                                                |
|                                |                    | No. 3 Dang Thai Than street                                                                                               |
|                                |                    | Viet Nam                                                                                                                  |
|                                |                    |                                                                                                                           |
| Memanbetsu<br>(Japan)          | Michio Hirota      | Geochemical Research Department, Meteorological<br>Research Institute                                                     |
| (Japan)                        |                    | 1-1, Nagamine, Tsukuba, Ibaraki 305-0052, Japan                                                                           |
| Tsukuba                        | Michio Hirota      | Geochemical Research Department, Meteorological                                                                           |
| (Japan)                        |                    | Research Institute                                                                                                        |
|                                |                    | 1-1, Nagamine, Tsukuba, Ibaraki 305-0052, Japan                                                                           |

| Station<br>Country/Territory                                     | Name              | Address                                                                                                                                                                                                           |
|------------------------------------------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                  | Yousuke Sawa      | Geochemical Research Department, Meteorological<br>Research Institute<br>1-1, Nagamine, Tsukuba, Ibaraki 305-0052, Japan                                                                                          |
| Hamamatsu<br>(Japan)                                             | Mitsuo TODA       | Shizuoka University<br>3-5-1 Jyohoku, Hamamatsu 432-8561, Japan                                                                                                                                                   |
| Bering Island<br>Kotelny Island<br>Tiksi<br>(Russian Federation) | Nina Paramonova   | Main Geophysical Observatory (MGO)<br>Karbyshev Street 7, St. Petersburg, 194021, Russian<br>Federation                                                                                                           |
| Kyzylcha<br>(Uzbekistan)                                         |                   |                                                                                                                                                                                                                   |
| Hok Tsui<br>King's Park<br>(Hong Kong, China)                    | Olivia S.M. Lee   | Hong Kong Observatory<br>134A, Nathan Road, Kowloon, Hong Kong                                                                                                                                                    |
|                                                                  | David H.Y. Lam    | Hong Kong Observatory<br>134A, Nathan Road, Kowloon, Hong Kong                                                                                                                                                    |
| Gosan<br>(Republic of Korea)                                     | Seung-Yeon Kim    | National Institute of Environmental Research<br>Environmental Research Complex, Gyeongseo-dong,<br>Seo-gu, Incheon, 404-708, Republic of Korea                                                                    |
|                                                                  | Kyung-Jung Moon   | National Institute of Environmental Research<br>Environmental Research Complex, Gyeongseo-dong,<br>Seo-gu, Incheon, 404-708, Republic of Korea                                                                    |
| Takayama<br>(Japan)                                              | Shohei Murayama   | Research Institute for Environmental Management<br>Technology, National Institute of Advanced Industrial<br>Science and Technology (AIST)<br>AIST Tsukuba West, 16-1 Onogawa, Tsukuba, Ibaraki<br>305-8569, Japan |
| Mt. Waliguan<br>(China)                                          | Shuangxi FANG     | Meteorological Observation Centre (MOC), China<br>Meteorological Administration (CMA)<br>46 Zhongguancun Nandajie<br>Beijing 100081, China                                                                        |
| Ship between Ishigaki<br>Island and Hateruma Island<br>(Japan)   | Takakiyo Nakazawa | Center for Atmospheric and Oceanic Studies, Graduate<br>School of Science, Tohoku University<br>Aoba, Sendai 980-8578, Japan                                                                                      |
|                                                                  | Shuji Aoki        | Center for Atmospheric and Oceanic Studies, Graduate<br>School of Science, Tohoku University<br>Aoba, Sendai 980-8578, Japan                                                                                      |

| <u> </u>                    | NT                    | A 1 1                                                   |
|-----------------------------|-----------------------|---------------------------------------------------------|
| Station                     | Name                  | Address                                                 |
| Country/Territory           |                       |                                                         |
| -                           |                       |                                                         |
| Suita                       | Tomohiro Oda          | Division of Sustainable Energy and Environmental        |
| (Japan)                     |                       | Engineering,                                            |
|                             |                       | Graduate School of Engineering, Osaka Universiy,        |
|                             |                       | Japan                                                   |
|                             |                       | Green Engieering Lab                                    |
|                             |                       | Division of Sustainable Energy and Environmental        |
|                             |                       | Engineering                                             |
|                             |                       | 2-1 Yamadaoka Suita Osaka 565-0871 Japan                |
|                             |                       |                                                         |
| Joseph Kul                  | V Sinvelov            | Laboratory of Coophysics Institute of Fundamental       |
| (Vargeranten)               | v. Sillyakov          | aciences at the Kammu National University               |
| (Kyrgyzstan)                |                       | Sciences at the Kyrgyz National University              |
|                             |                       | Manas Street 101, Bisnkek, 720033, Kyrgyz Republic      |
|                             |                       |                                                         |
| Mt. Dodaira                 | Yosuke MUTO           | Center for Environmental Science in Saitama             |
| Kisai                       |                       | 914 Kamitanadare, Kisai-machi, Kita-Saitama-gun,        |
| Urawa                       |                       | Saitama 347-0115, Japan                                 |
| (Japan)                     |                       |                                                         |
|                             |                       |                                                         |
|                             |                       |                                                         |
| <b>REGION III (South Ar</b> | nerica)               |                                                         |
|                             |                       |                                                         |
| Arembepe                    | Luciana Vanni Gatti   | IPEN                                                    |
| (Brazil)                    |                       | Atmospheric Chemistry Laboratory                        |
|                             |                       | Av. Prof. Lineu Prestes, 2242, Cidade Universitaria,    |
|                             |                       | Sao Paulo, SP- BRAZIL                                   |
|                             |                       | CEP 05508-900                                           |
|                             |                       |                                                         |
| Ushuaia                     | Manuel Cupeiro        | National Weather Service                                |
| (Argentina)                 |                       | 245 Viviendas Tira 8A Doto 10 Ushuaia Tierra del        |
| (Ingonoma)                  |                       | Fuero Argentina                                         |
|                             |                       | ruego, migentina                                        |
|                             | Maria Flona Barlagina | National Weather Service                                |
|                             | Maria Elena Dariasina | Observatoria Control Ville Ortugon                      |
|                             |                       | District De lie side                                    |
|                             |                       |                                                         |
|                             |                       | Av. de Los Constituyentes 3454 Cp 1427, Argentina       |
|                             |                       |                                                         |
|                             | Ricardo Sanchez       | National weather Service                                |
|                             |                       | Observatorio Central Villa Ortuzar                      |
|                             |                       | División Radiación                                      |
|                             |                       | Av. de Los Constituyentes 3454 Cp 1427, Argentina       |
|                             |                       |                                                         |
| El Tololo                   | Martin Steinbacher    | Empa - Swiss Federal Laboratories for Materials Science |
| (Chile)                     |                       | and Technology                                          |
|                             |                       | Ueberlandstrasse 129                                    |
|                             |                       | 8600 Duebendorf                                         |
|                             |                       | Switzerland                                             |
|                             |                       |                                                         |
|                             | Gaston Torres         |                                                         |
|                             |                       |                                                         |
| Huancavo                    | Mutsumi Ishitsuka     | Observatorio de Huancavo, Instituto Geofisico del Peru  |
| (Peru)                      |                       | Apartado 46. Huancavo, Peru                             |
| (                           |                       |                                                         |

| <u> </u>                                                                                         | NT.               | A 1 1                                                                                                                                                                                                                                                                            |  |  |
|--------------------------------------------------------------------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Station                                                                                          | Name              | Address                                                                                                                                                                                                                                                                          |  |  |
| Country/Territory                                                                                |                   |                                                                                                                                                                                                                                                                                  |  |  |
| Ushuaia<br>(Argentina)                                                                           | Sergio Luppo      | Servicio Meteorológico Nacional - Gobierno de Tierra<br>del Fuego<br>Estación VAG Ushuaia<br>Subsecretaria de Ciencia y Tecnología,<br>Ministerio de Educación, Cultura, Ciencia y Tecnología<br>Gobierno de Tierra del Fuego<br>9410 Ushuaia,<br>Tierra del Fuego,<br>Argentina |  |  |
| REGION IV (North and Central America)                                                            |                   |                                                                                                                                                                                                                                                                                  |  |  |
| Candle Lake<br>Chibougamau<br>Cape St. James<br>Egbert<br>Lac La Biche (Alberta)<br>(Canada)     | Doug Worthy       | Environment and Climate Change Canada<br>4905 Dufferin Street, Toronto, Ontario, Canada, M3H<br>5T4                                                                                                                                                                              |  |  |
| Alert<br>Churchill<br>Estevan Point<br>East Trout Lake<br>Fraserdale<br>Sable Island<br>(Canada) | Doug Worthy       | Environment and Climate Change Canada<br>4905 Dufferin Street, Toronto, Ontario, Canada, M3H<br>5T4                                                                                                                                                                              |  |  |
|                                                                                                  | Lin Huang         | Environment and Climate Change Canada<br>4905 Dufferin Street, Toronto, Ontario, Canada, M3H<br>5T4                                                                                                                                                                              |  |  |
| REGION V (South-West Pacific)                                                                    |                   |                                                                                                                                                                                                                                                                                  |  |  |
| Cape Grim<br>(Australia)                                                                         | Alastair Williams | Australian Nuclear Science and Technology<br>Organisation, Institute for Environmental Research,<br>Atmospheric Mixing and Pollution Transport Group<br>Locked Bag 2001, Kirrawee DC, NSW 2232, Australia                                                                        |  |  |
| Lauder<br>(New Zealand)                                                                          | Dan Smale         | National Institute of Water & Atmospheric Research<br>Ltd.<br>NIWA, Private Bag 50061, Omakau, Central Otago<br>9320, New Zealand                                                                                                                                                |  |  |
|                                                                                                  | Gordon Brailsford | National Institute of Water & Atmospheric Research<br>Ltd.<br>301 Evans Bay Parade, Greta Point,Private Bag 14-901,<br>Kilbirnie, Wellington, New Zealand                                                                                                                        |  |  |

| Station<br>Country/Territory                       | Name                     | Address                                                                                                                                                                                           |
|----------------------------------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                    | Sylvia Nichol            | National Institute of Water & Atmospheric Research<br>Ltd.<br>301 Evans Bay Parade, Greta Point, Private Bag<br>14-901, Kilbirnie, Wellington, New Zealand                                        |
| Baring Head<br>(New Zealand)                       | Gordon Brailsford        | National Institute of Water & Atmospheric Research<br>Ltd.<br>301 Evans Bay Parade, Greta Point,Private Bag 14-901,<br>Kilbirnie, Wellington, New Zealand                                         |
|                                                    | Ross Martin              | National Institute of Water & Atmospheric Research<br>Ltd.<br>301 Evans Bay Parade, Greta Point, Private Bag<br>14-901, Kilbirnie, Wellington, New Zealand                                        |
|                                                    | Sylvia Nichol            | National Institute of Water & Atmospheric Research<br>Ltd.<br>301 Evans Bay Parade, Greta Point, Private Bag<br>14-901, Kilbirnie, Wellington, New Zealand                                        |
|                                                    | Jocelyn Turnbull         |                                                                                                                                                                                                   |
| Bukit Koto Tabang<br>(Indonesia)                   | Mangasa Naibaho          | The Indonesia Agency for Meteorology Climatology and<br>Geophysics (BMKG)<br>Jl.Angkasa 1,No.2,Kemayoran Jakarta 10720,Indonesia                                                                  |
|                                                    | Nahas, Alberth Christian | The Indonesia Agency for Meteorology Climatology and<br>Geophysics (BMKG)<br>Jl. Raya Bukittinggi-Medan Km. 17 Palupuh,<br>District Agam, West Sumatera, Indonesia<br>PO BOX 11 Bukittinggi 26100 |
|                                                    | Ilahi, Asep Firman       | Global GAW Bukit Kototabang<br>Jl. Raya Bukittinggi-Medan Km. 17 Palupuh,<br>District Agam, West Sumatera, Indonesia<br>PO BOX 11 Bukittinggi 26100                                               |
|                                                    | Jörg Klausen             | Federal Office of Meteorology and Climatology<br>MeteoSwiss<br>8058 ZH,Zürich-Flughafen<br>Operation Center 1, Switzerland                                                                        |
|                                                    | Martin Steinbacher       | Empa - Swiss Federal Laboratories for Materials Science<br>and Technology<br>Ueberlandstrasse 129<br>8600 Duebendorf<br>Switzerland                                                               |
| Danum Valley GAW<br>Baseline Station<br>(Malaysia) | Maznorizan Mohamad       | Atmospheric Science and Cloud Seeding Division<br>Malaysian Meteorological Department                                                                                                             |
| Station<br>Country/Territory                             | Name                  | Address                                                                                                                                                                                                |
|----------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                          | Aminah Ismail         | Jalan Sultan,<br>46667, Petaling Jaya, Selangor<br>MALAYSIA                                                                                                                                            |
| Cape Grim<br>(Australia)                                 | Paul Krummel          | Commonwealth Scientific and Industrial Research<br>Organisation<br>CSIRO Oceans and Atmosphere - Climate Science<br>Centre<br>107-121 Station Street<br>Aspendale, Victoria, 3195<br>Australia         |
|                                                          | Zoe Loh               | Commonwealth Scientific and Industrial Research<br>Organisation (CSIRO)<br>CSIRO Oceans and Atmosphere - Climate Science<br>Centre<br>107-121 Station Street<br>Aspendale, Victoria, 3195<br>Australia |
|                                                          | Ray Langenfelds       | Commonwealth Scientific and Industrial Research<br>Organisation (CSIRO)<br>CSIRO Oceans and Atmosphere - Climate Science<br>Centre<br>107-121 Station Street<br>Aspendale, Victoria, 3195<br>Australia |
| REGION VI (Europe)                                       |                       |                                                                                                                                                                                                        |
| Lecce<br>Environmental-Climate<br>Observatory<br>(Italy) | Adelaide Dinoi        | National Research Council, Institute of Atmospheric<br>Sciences and Climate<br>Str. Prv. Lecce-Monteroni km 1.2<br>73100 Lecce                                                                         |
| Puszcza Borecka/Diabla<br>Gora<br>(Poland)               | Anna Degorska         | Institute of Environmental Protection<br>Kolektorska 4<br>01-692 Warsaw, Poland                                                                                                                        |
| Zeppelinfjellet<br>(Ny-Alesund)<br>(Norway)              | Birgitta Noone        | Department of Applied Environmental Science (ITM)<br>Stockholm University<br>SE-10691 Stockholm                                                                                                        |
|                                                          | Hans-Christen Hansson | Department of Applied Environmental Science (ITM)<br>Stockholm University<br>SE-10691 Stockholm                                                                                                        |

| Station<br>Country/Territory     | Name                | Address                                                                                                                                        |
|----------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Payerne<br>Rigi<br>(Switzerland) | Brigitte Buchmann   | Empa - Swiss Federal Laboratories for Materials Science<br>and Technology<br>Überlandstrasse 129<br>CH-8600 Dübendorf<br>Switzerland           |
|                                  | Thomas Seitz        | Empa - Swiss Federal Laboratories for Materials Science<br>and Technology<br>Überlandstrasse 129<br>CH-8600 Dübendorf<br>Switzerland           |
| Lamezia Terme<br>(Italy)         | Claudia Calidonna   | Institute of Atmospheric Sciences and Climate ISAC<br>National Council of Research - CNR<br>Area Industriale Comp. 15, 88046 Lamezia Terme     |
|                                  | Daniel Gullì        | Institute of Atmospheric Sciences and Climate ISAC<br>National Council of Research - CNR<br>Area Industriale Comp. 15, 88046 Lamezia Terme     |
|                                  | Ivano Ammoscato     | Institute of Atmospheric Sciences and Climate ISAC<br>National Council of Research - CNR<br>Area Industriale Comp. 15, 88046 Lamezia Terme     |
| Summit<br>(Denmark)              | Detlev Helmig       | Institute of Arctic and Alpine Research (INSTAAR)<br>INSTAAR, Univ. of Colorado<br>1560, 30th Street<br>UCB 450<br>Boulder, CO 80309<br>U.S.A. |
|                                  | Jacques Hueber      | Institute of Arctic and Alpine Research (INSTAAR)<br>INSTAAR, Univ. of Colorado<br>1560, 30th Street<br>UCB 450<br>Boulder, CO 80309<br>U.S.A. |
| Fundata<br>(Romania)             | Florin Nicodim      | National Meteorological Administration<br>Sos. Bucuresti-Ploiesti nr. 97, 71552 Bucharest,<br>Romania                                          |
| Giordan Lighthouse<br>(Malta)    | Francelle Azzopardi | University of Malta<br>Department of Geosciences, Tal-Qroqq, Msida, MSD<br>2080                                                                |
|                                  | Raymond Ellul       | University of Malta<br>Department of Geosciences, Tal-Qroqq, Msida, MSD<br>2080                                                                |
|                                  | Martin Saliba       | University of Malta<br>Department of Geosciences, Tal-Qroqq, Msida, MSD<br>2080                                                                |
| Plateau Rosa<br>(Italy)          | Francesco Apadula   | Ricerca sul Sistema Energetico - RSE S.p.A.<br>via Rubattino 54, 20134 Milano, Italy                                                           |

| Station                                      | Name                | Address                                                                                                                      |
|----------------------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------|
| Country/Territory                            |                     |                                                                                                                              |
|                                              |                     |                                                                                                                              |
|                                              | Daniela Heltai      | Ricerca sul Sistema Energetico - RSE S.p.A.<br>via Rubattino 54, 20134 Milano, Italy                                         |
|                                              | Andrea Lanza        | Ricerca sul Sistema Energetico - RSE S.p.A. via Rubattino 54, 20134 Milano, Italy                                            |
| Zugspitze /<br>Schneefernerhaus<br>(Germany) | Gabriele Frank      | Deutscher Wetterdienst (DWD, German Meteorological<br>Service)<br>Frankfurter Str. 135<br>63067 Offenbach<br>Germany         |
| Site J<br>(Denmark)                          | Gen Hashida         | National Institute of Polar Research<br>Kaga 1-9-10, Itabashi-ku, Tokyo 173-8515, Japan                                      |
|                                              | Shinji Morimoto     | National Institute of Polar Research<br>Kaga 1-9-10, Itabashi-ku, Tokyo 173-8515, Japan                                      |
|                                              | Shuji Aoki          | Center for Atmospheric and Oceanic Studies, Graduate<br>School of Science, Tohoku University<br>Aoba, Sendai 980-8578, Japan |
| Wank Peak<br>(Germany)                       | Thomas Trickl       | Karlsruhe Institute of Technology (KIT), IMK-IFU<br>82467 Garmisch-Partenkirchen, Germany                                    |
| Sonnblick<br>(Austria)                       | Iris Buxbaum        | Federal Environment Agency Austria<br>Spittelauer Lände 5, A-1090 Wien, Austria                                              |
|                                              | Wolfgang Spangl     | Federal Environment Agency Austria<br>Spittelauer Lände 5, A-1090 Wien, Austria                                              |
|                                              | Marina Fröhlich     | Federal Environment Agency Austria<br>Spittelauer Lände 5, A-1090 Wien, Austria                                              |
| BEO Moussala<br>(Bulgaria)                   | Ivo Kalapov         | INRNE<br>Institute for Nuclear Research and Nuclear Energy<br>Tsarigradsko shose Blvd.<br>1784 Sofia<br>Bulgaria             |
| Monte Cimone<br>(Italy)                      | Jgor Arduini        | Università degli Studi di Urbino<br>Istituto di Scienze Chimiche, piazza Rinascimento 6,<br>61029 Urbino - Italy             |
| Monte Cimone<br>(Italy)                      | Jgor Arduini        | Università degli Studi di Urbino<br>Istituto di Scienze Chimiche, piazza Rinascimento 6,<br>61029 Urbino - Italy             |
|                                              | Paolo Cristofanelli | ISAC-CNR<br>ISAC-CNR, VIa Gobetti 101 - 40129 Bologna -Italy                                                                 |
| Pallas-Sammaltunturi<br>(Finland)            | Juha Hatakka        | Finnish Meteorological Institute<br>P.O.Box 503,FI-00101 Helsinki, Finland                                                   |

| Station<br>Country/Territory                                                                                                                                | Name              | Address                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hegyhatsal<br>K-puszta<br>(Hungary)                                                                                                                         | Laszlo Haszpra    | Hungarian Meteorological Service<br>P.O. Box 39, H-1675 Budapest, Hungary                                                                                                                                                                                                                                                        |
| Hohenpeissenberg<br>(Germany)                                                                                                                               | Lindauer Matthias | Deutscher Wetterdienst (DWD, German Meteorological<br>Service) Meteorologisches Observatorium<br>Hohenpeissenberg<br>Albin-Schwaiger-Weg 10<br>82383 Hohenpeissenberg                                                                                                                                                            |
|                                                                                                                                                             | Schumacher Marcus | Deutscher Wetterdienst (DWD, German Meteorological<br>Service) Meteorologisches Observatorium<br>Hohenpeissenberg<br>Albin-Schwaiger-Weg 10<br>82383 Hohenpeissenberg                                                                                                                                                            |
|                                                                                                                                                             | Dagmar Kubistin   | Deutscher Wetterdienst (DWD, German Meteorological<br>Service) Meteorologisches Observatorium<br>Hohenpeissenberg<br>Albin-Schwaiger-Weg 10<br>D-82383 Hohenpeissenberg<br>Germany                                                                                                                                               |
| Brotjacklriegel<br>Deuselbach<br>Waldhof<br>Neuglobsow<br>Schauinsland<br>Westerland<br>Zingst<br>Zugspitze /<br>Schneefernerhaus<br>Zugspitze<br>(Germany) | Ludwig Ries       | Umweltbundesamt (UBA, Federal Environmental<br>Agency) Air Monitoring Network                                                                                                                                                                                                                                                    |
| Monte Cimone<br>(Italy)                                                                                                                                     | Marco Galli       | Italian Air Force Mountain Centre                                                                                                                                                                                                                                                                                                |
| Krvavec<br>(Slovenia)                                                                                                                                       | Marijana Murovec  | Slovenian Environment Agency<br>Ministrstvo za okolje in prostor / Ministry of<br>Environment andSpatial Planning<br>Agencija RS za okolje / Slovenian Environment Agency<br>Urad za meteorologijo / Meteorology Office<br>Sektor za kakovost zraka / Air Quality Division<br>Vojkova 1b, 1001 Ljubljana,<br>p.p. 2608, Slovenia |

| <u> </u>                     | ΝŢ                  | 4.1.1                                                   |
|------------------------------|---------------------|---------------------------------------------------------|
| Station<br>Country/Torritory | Name                | Address                                                 |
| Country/Territory            |                     |                                                         |
| T C · 1                      |                     |                                                         |
| Jungtraujoch                 | Markus Leunberger   | University of Bern                                      |
| (Switzerland)                |                     | University of Bern                                      |
|                              |                     | Physics Institute                                       |
|                              |                     | Sidlerstrasse 5                                         |
|                              |                     | CH-3012 Bern                                            |
|                              |                     |                                                         |
| Jungfraujoch                 | Martin Steinbacher  | Empa - Swiss Federal Laboratories for Materials Science |
| (Switzerland)                |                     | and Technology                                          |
|                              |                     | Ueberlandstrasse 129                                    |
|                              |                     | 8600 Duebendorf                                         |
|                              |                     | Switzerland                                             |
|                              |                     |                                                         |
|                              | Thomas Seitz        | Empa - Swiss Federal Laboratories for Materials Science |
|                              |                     | and Technology                                          |
|                              |                     | Überlandstrasse 129                                     |
|                              |                     | CH 8600 Dübenderf                                       |
|                              |                     | Switzenland                                             |
|                              |                     | Switzenand                                              |
| Pic du Midi                  | Meverfeld Yves      | Laboratoire d'Aérologie                                 |
| (France)                     |                     |                                                         |
| (1101100)                    |                     |                                                         |
|                              | Gheusi Francois     |                                                         |
|                              |                     |                                                         |
| Ile Grande                   | Michel Ramonet      | LSCE (Laboratoire des Sciences du Climat et de          |
| Pic du Midi                  |                     | l'Environnement) UMR CEA-CNRS-UVSQ                      |
| Puv de Dome                  |                     | LSCE - CEA Saclay - Orme des Merisiers - 91191          |
| (France)                     |                     | Gif-sur-Vyette France                                   |
| (Trance)                     |                     |                                                         |
| Finokalia                    |                     |                                                         |
| (Greece)                     |                     |                                                         |
| (checce)                     |                     |                                                         |
| Mace Head                    |                     |                                                         |
| (Iroland)                    |                     |                                                         |
| (inclaine)                   |                     |                                                         |
| Begur                        |                     |                                                         |
| (Spain)                      |                     |                                                         |
| (Spain)                      |                     |                                                         |
| Kosetice                     | Milan Vana          | Czech Hydrometeorological Institute, Kosetice           |
| (Czech Bepublic)             |                     | Observatory                                             |
| (Ozeen Republic)             |                     | Na Sabateo 17, 143 06 Praha 4, Komorany, Czech          |
|                              |                     | Devel lie                                               |
|                              |                     | Republic                                                |
| Ocean Station Charlie        | Nina Paramonova     | Main Geophysical Observatory (MCO)                      |
| Toriborko                    |                     | Kanbuchar Street 7 St. Detershirer 104021 Ducci-        |
| Teriberka                    |                     | Karbysnev Street 7, St. Petersburg, 194021, Russian     |
| (Russian Federation)         |                     | Federation                                              |
| <b>7</b>                     | O II                | Name in Institute for Air D 1 (NULL)                    |
| Zeppeimijellet               | Ove Hermansen       | Norwegian Institute for Air Research (NILU)             |
| (Ny-Alesund)                 |                     | P. O. Box 100 Instituttveien 18, N-2027 Kjeller, Norway |
| (Norway)                     |                     |                                                         |
| a a                          |                     |                                                         |
| Capo Granitola               | Paolo Cristofanelli | ISAC-CNR                                                |
| (Italy)                      |                     | ISAC-CNR, VIa Gobetti 101 - 40129 Bologna -Italy        |
|                              |                     |                                                         |

| Station                                                                                              | Name                 | Address                                                                                                                                                                                                                                                      |
|------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Country/Territory                                                                                    |                      |                                                                                                                                                                                                                                                              |
| Puy de Dome<br>(France)                                                                              | Pichon Jean-Marc     | Laboratoire de Météorologie Physique                                                                                                                                                                                                                         |
|                                                                                                      | Meyerfeld Yves       | Laboratoire d'Aérologie                                                                                                                                                                                                                                      |
| Kollumerwaard<br>Kloosterburen<br>(Netherlands (the))                                                | Ronald Spoor         | RIVM - Centre for Environmental Quality (MIL/MMK)<br>PO Box 1<br>3720 BA Bilthoven<br>the Netherlands                                                                                                                                                        |
| Lampedusa<br>(Italy)                                                                                 | Salvatore Chiavarini | Italian National Agency for New Technology, Energy,<br>and Sustainable Economic Development (ENEA)<br>ENEA-UTPRA<br>Via Anguillarese, 301<br>00123 Rome, Italy                                                                                               |
|                                                                                                      | Salvatore Piacentino | Italian National Agency for New Technology, Energy,<br>and Sustainable Economic Development (ENEA)<br>Laboratory for Earth Observations and Analyses<br>(UTMEA-TER)<br>ENEA ACS-CLIMOSS, Via Catania 2, 90141 Palrmo,<br>Italy.                              |
|                                                                                                      | Damiano Sferlazzo    | Italian National Agency for New Technology, Energy,<br>and Sustainable Economic Development (ENEA)<br>Laboratory for Earth Observations and Analyses<br>(UTMEA-TER)<br>Station for Climate Observations<br>Contrada Capo Grecale<br>92010 Lampedusa<br>Italy |
|                                                                                                      | Alcide di Sarra      | Italian National Agency for New Technology, Energy,<br>and Sustainable Economic Development (ENEA)<br>Laboratory for Earth Observations and Analyses<br>(UTMEA-TER)<br>Via Anguillarese, 301<br>00123 Rome, Italy.                                           |
| Ridge Hill<br>Tacolneston Tall Tower<br>(United Kingdom of Great<br>Britain and Northern<br>Ireland) | Simon O'Doherty      | Atmospheric Chemistry Research Group School of<br>Chemistry University of Bristol<br>Atmospheric Chemistry Research Group School of<br>Chemistry University of Bristol<br>Cantocks Close<br>BS8 1TS Bristol<br>United Kingdom                                |

| Station                                                                    | Name              | Address                                                                                                                                                                                                                       |
|----------------------------------------------------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Country/Territory                                                          |                   |                                                                                                                                                                                                                               |
|                                                                            | Aoife Grant       | Atmospheric Chemistry Research Group School of<br>Chemistry University of Bristol<br>Atmospheric Chemistry Research Group School of<br>Chemistry University of Bristol<br>Cantocks Close<br>BS8 1TS Bristol<br>United Kingdom |
| Zugspitze<br>(Germany)                                                     | Thomas Trickl     | Karlsruhe Institute of Technology (KIT), IMK-IFU<br>Kreuzeckbahnstraße 19<br>82467 Garmisch-Partenkirchen, Germany                                                                                                            |
| ANTARCTICA                                                                 |                   |                                                                                                                                                                                                                               |
| Jubany<br>(Italy)                                                          | Claudio Rafanelli | ICES (Int.l Center for Earth Sciences) c/o CNR-Istituto<br>di Acustica-<br>Area della Ricerca di Roma Tor Vergata,via Fosso del<br>Cavaliere 100, 00133 Rome, Italy                                                           |
| King Sejong<br>(Republic of Korea)                                         | Haeyoung Lee      | Climate Change Monitoring Division, Korea<br>Meteorological Administration<br>61 Yeouidaebang-ro 16 gil, Dongjak-gu, Seoul, 07062,<br>Republic of Korea                                                                       |
|                                                                            | Taejin Choi       | Division of Polar Climate Research, KOPRI<br>Get-Pearl Tower, 12 Gaetbeol-ro, Yeonsu-gu, Incheon,<br>406-840, Republic of Korea                                                                                               |
| Halley Bay<br>(United Kingdom of Great<br>Britain and Northern<br>Ireland) | Neil Brough       | British Antarctic Survey<br>http://www.antarctica.ac.uk<br>High Cross, Madingley road, Cambridge, CB3 0ET                                                                                                                     |
| Arrival Heights<br>(New Zealand)                                           | Sylvia Nichol     | National Institute of Water & Atmospheric Research<br>Ltd.<br>301 Evans Bay Parade, Greta Point, Private Bag<br>14-901, Kilbirnie, Wellington, New Zealand                                                                    |
|                                                                            | Gordon Brailsford | National Institute of Water & Atmospheric Research<br>Ltd.<br>301 Evans Bay Parade, Greta Point,Private Bag 14-901,<br>Kilbirnie, Wellington, New Zealand                                                                     |
|                                                                            | Ross Martin       | National Institute of Water & Atmospheric Research<br>Ltd.<br>301 Evans Bay Parade, Greta Point, Private Bag<br>14-901, Kilbirnie, Wellington, New Zealand                                                                    |
| Mizuho<br>(Japan)                                                          | Takakiyo Nakazawa | Center for Atmospheric and Oceanic Studies, Graduate<br>School of Science, Tohoku University<br>Aoba, Sendai 980-8578, Japan                                                                                                  |

| Station                                                                                   | Name                             | Address                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Country/Territory                                                                         |                                  |                                                                                                                                                                          |
| Syowa Station<br>(Japan)                                                                  | Takakiyo Nakazawa                | Center for Atmospheric and Oceanic Studies, Graduate<br>School of Science, Tohoku University<br>Aoba, Sendai 980-8578, Japan                                             |
|                                                                                           | Gen Hashida                      | National Institute of Polar Research<br>Kaga 1-9-10, Itabashi-ku, Tokyo 173-8515, Japan                                                                                  |
|                                                                                           | Shinji Morimoto                  | National Institute of Polar Research<br>Kaga 1-9-10, Itabashi-ku, Tokyo 173-8515, Japan                                                                                  |
| MOBILE STATION                                                                            |                                  |                                                                                                                                                                          |
| NOPACCS - Hakurei Maru<br>-                                                               | General Environmental<br>Texhnos | The General Environmental Technos Co., Ltd.<br>(Old:Kansai Environmental Engineering Center, Co.,                                                                        |
| WEST COSMIC - Hakurei<br>Maru No.2 -<br>(Japan)                                           |                                  | Ltd.)<br>1-3-5, Azuchi machi, Chuo-ku, Osaka 541-0052, Japan                                                                                                             |
| INSTAC-I (International<br>Strato/Tropospheric Air<br>Chemistry Project)<br>(Japan)       | Hidekazu Matsueda                | Geochemical Research Department, Meteorological<br>Research Institute<br>Nagamine 1-1, Tsukuba, Ibaraki 305-0052, Japan                                                  |
| Comprehensive Observation<br>Network for TRace gases by<br>AIrLiner (CONTRAIL)<br>(Japan) | Hidekazu Matsueda                | Geochemical Research Department, Meteorological<br>Research Institute<br>Nagamine 1-1, Tsukuba, Ibaraki 305-0052, Japan                                                  |
|                                                                                           | Toshinobu Machida                | National Institute for Environmental Studies<br>16-2 Onogawa, Tsukuba 305-8506, Japan                                                                                    |
| MRI Research, Mirai, R/V<br>(Japan)                                                       | Hisayuki Yoshikawa-Inoue         | Laboratory of Marine and Atmospheric<br>GeochemistryGraduate School of Environmental Earth<br>ScienceHokkaido University<br>N10W5, Kita-ku, Sapporo 060-0810, Japan      |
| Aircraft Observation of<br>Atmospheric trace gases by<br>JMA<br>(Japan)                   | Kazuyuki SAITO                   | Atmospheric Environment Division, Global<br>Environment and Marine Department, Japan<br>Meteorological Agency (JMA)<br>1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan |
| Alligator liberty, M/V<br>Keifu Maru, R/V<br>Kofu Maru, R/V<br>Ryofu Maru, R/V<br>(Japan) | Keizo Sakurai                    | Marine Division, Global Environment and Marine<br>Department, Japan Meteorological Agency (JMA)<br>1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan                     |
|                                                                                           | KojiKadono                       | Marine Division, Global Environment and Marine<br>Department, Japan Meteorological Agency (JMA)<br>1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan                     |

| Station<br>Country/Territory                                                                                                                                                                                                        | Name                | Address                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| northern and western<br>Pacific<br>(Japan)                                                                                                                                                                                          | Kentaro Ishijima    | Japan Agency for Marine-earth Science and Technology<br>(JAMSTEC)<br>3173-25 Showamachi, Kanazawa-ku, Yokohama,<br>236-0001, Japan                               |
|                                                                                                                                                                                                                                     | Shuji Aoki          | Center for Atmospheric and Oceanic Studies, Graduate<br>School of Science, Tohoku University<br>Aoba, Sendai 980-8578, Japan                                     |
|                                                                                                                                                                                                                                     | Takakiyo Nakazawa   | Center for Atmospheric and Oceanic Studies, Graduate<br>School of Science, Tohoku University<br>Aoba, Sendai 980-8578, Japan                                     |
| Santarem<br>(Brazil)                                                                                                                                                                                                                | Luciana Vanni Gatti | IPEN<br>Atmospheric Chemistry Laboratory<br>Av. Prof. Lineu Prestes, 2242, Cidade Universitaria,<br>Sao Paulo, SP- BRAZIL<br>CEP 05508-900                       |
| MRI Research, Hakuho<br>Maru, R/V<br>MRI Research, Kaiyo<br>Maru, R/V<br>MRI Research, 1978-1986,<br>R/V<br>MRI Research, Natushima,<br>R/V<br>MRI Research, Ryofu<br>Maru, R/V<br>MRI Research, Wellington<br>Maru, R/V<br>(Japan) | Masao Ishii         | Geochemical Research Department, Meteorological<br>Research Institute<br>Nagamine 1-1, Tsukuba, Ibaraki 305-0052, Japan                                          |
| Aircraft: Orleans<br>(France)                                                                                                                                                                                                       | Michel Ramonet      | LSCE (Laboratoire des Sciences du Climat et de<br>l'Environnement) UMR CEA-CNRS-UVSQ<br>LSCE - CEA Saclay - Orme des Merisiers - 91191<br>Gif-sur-Yvette, France |
| Observation of Atmospheric<br>Chemistry Over Japan<br>The Observation of<br>Atmospheric Methane Over<br>Japan<br>The Observation of<br>Atmospheric Sulfur<br>Hexafluoride Over Japan<br>(Japan)                                     | Michio Hirota       | Geochemical Research Department, Meteorological<br>Research Institute<br>1-1, Nagamine, Tsukuba, Ibaraki 305-0052, Japan                                         |
| Pacific Ocean<br>(New Zealand)                                                                                                                                                                                                      | Sylvia Nichol       | National Institute of Water & Atmospheric Research<br>Ltd.<br>301 Evans Bay Parade, Greta Point, Private Bag<br>14-901, Kilbirnie, Wellington, New Zealand       |

| Station<br>Country/Territory                                                                                                                                                                                     | Name              | Address                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                  | Gordon Brailsford | National Institute of Water & Atmospheric Research<br>Ltd.<br>301 Evans Bay Parade, Greta Point,Private Bag 14-901,<br>Kilbirnie, Wellington, New Zealand |
| Comprehensive Observation<br>Network for TRace gases by<br>AIrLiner (CONTRAIL)<br>over the Pacific Ocean<br>20-50 km off the coast of<br>the Sendai plain<br>over Japan between Sendai<br>and Fukuoka<br>(Japan) | Taku Umezawa      | National Institute for Environmental Studies                                                                                                              |
|                                                                                                                                                                                                                  | Shuji Aoki        | Center for Atmospheric and Oceanic Studies, Graduate School of Science, Tohoku University                                                                 |
| Soyo Maru, R/V<br>Wakataka-Maru<br>(Japan)                                                                                                                                                                       | Tsuneo Ono        | Hokkaido National Fisheries Research Institute<br>116 Katsurakoi, Kushiro 085-0802, Japan                                                                 |

| Country/Territory         NOAA/ESRL Flack Network         Assekem       Brace Vaughn**       (*)NOAA/ESRL Global Monitoring Division         Algeria)       Jones White**       (*)NOAA/ESRL Global Monitoring Division         (Algeria)       Jocelyn Turnbull       (**)Institute of Aretic and Alpine Research (INSTAAR)         Cape Grim       Campus box 420, University of Colorado, Boulder, CO         (Australia)       Edward DJougokencle*       (**)Institute of Aretic and Alpine Research (INSTAAR)         Cape Grim       Babados)       Fault C. Novelli*       (**)Institute of Aretic and Alpine Research (INSTAAR)         (Chi and CO)       Babados)       Baudodos)       USA.         Natal       Bruce Vaughn**       (2004-0450, USA.         (Barbudos)       Paul C. Novelli*       (Col and IL)         (Chi and CO)       Babados)       State Bible         Mould Bay       (Not and SFo)       State Island         (Chaudo)       Instrumenturi       Instrumenturi         (Palma-Sammaltunturi       (Falmad)       State Island         Nummit       Instrumenturi       Instrumenturi         (France)       Instrumenturi       Instrumenturi         (France)       Instrumenturi       Instrumenturi         (Indomesia)       Instrumenturi <th>Station</th> <th>Name</th> <th>Address</th>                                                                                                                                                                                                                                                                                                                                                                     | Station                 | Name                                                                         | Address                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| NOAA/ESRL FlackAsskerm<br>(Ageria)Bruco Vaugha**<br>Jamea Wikto**<br>(*CGL **Co. and C*O.)(*PLOAA/ESRL Global Monitoring Division<br>(25 Broadway R/GMD1 Boudder, CO 80305.3328,<br>U.S.A.Usinais<br>(Argentian)[c*CO.](**Institute of Aretic and Alpine Research (INSTAAR)<br>(C*O.)<br>Sumps hox 500, Uviversity of Colorade, Boulder, CO<br>80309.0150, U.S.A.Rageof Prin<br>(Australia)Edward J.Dlugokenck*<br>(CH and CO.)(**Institute of Aretic and Alpine Research (INSTAAR)<br>(Damps hox 500, U.S.A.Arembope<br>MaralPaul C. Novell*<br>(CO and H?)(**Institute of Aretic and Alpine Research (INSTAAR)<br>(Damps hox 500, U.S.A.Arembope<br>MaralPaul C. Novell*<br>(CO and H?)(**Institute of Aretic and Alpine Research (INSTAAR)<br>(Damps hox 500, U.S.A.Arembope<br>MaralPaul C. Novell*<br>(CO and H?)(**Institute of Aretic and Alpine Research (INSTAR)<br>(Damps hox 500, U.S.A.Arembope<br>MaralPaul C. Novell*<br>(CO and H?)(**Institute of Aretic and Alpine Research (INSTAR)<br>(Damps hox 500, U.S.A.Arembope<br>MaralPaul C. Novell*<br>(CO and H?)(**Institute of Aretic and Alpine Research (INSTAR)<br>(Damps hox 500, U.S.A.Arembope<br>MaralPaul C. Novell*<br>(CO and H?)(**Institute of Aretic and Alpine Research (INSTAR)<br>(Damps hox 500, U.S.A.Arembope<br>MaralPaul C. Novell*<br>(CO and H?)(**Institute of Aretic and Alpine Research (INSTAR)<br>(Damps hox 50, U.S.A.Arembope<br>MaralPaul C. Novell*<br>(CO and H?)(**Institute of Aretic and Alpine Research (INSTAR)<br>(Damps hox 50, U.S.A.BabersfaundState State Sta                                                                        | Country/Territory       |                                                                              |                                                                                                              |
| Assekrem<br>(Algeria)       Bruce Vaughn**<br>James White**<br>("CG, and C"bog)       (*)NOAA/ESRL Global Monitoring Division<br>325 Broadway R/GMD1 Boukler, CO 80305-3228,<br>U.S.A.         (Argentina)       Jocelyn Tumbull<br>("CO, or       (*)Investive of Arctic and Alpine Research (INSTAAR)<br>Campus box 450, University of Colorado, Boulder, CO<br>80309-0150, U.S.A.         (Australia)       Edward J.Dlogokencky*<br>(CH and CO)       (*)Investive of Colorado, Boulder, CO<br>80309-0150, U.S.A.         Arcarbope<br>Natal       Paul C. Novelli*<br>(CO and ID)       (*)Investive of Colorado, Boulder, CO<br>80309-0150, U.S.A.         Arcarbope<br>Natal       Bruce Vaughn**<br>(NoO and SFs)       (*)Investive of Colorado, Boulder, CO<br>80309-0150, U.S.A.         Alert<br>Lac La Biche<br>Mould Bay<br>(Canada)       Bruce Vaughn**<br>(NoO and SFs)       (*)Investive of Colorado, Boulder, CO<br>80309-0150, U.S.A.         Shangdianzi<br>Mt. Waliguan<br>(China)       Friee Vaughn**<br>(China)       (*)Investive of Colorado, Boulder, CO<br>80309-0150, U.S.A.         Summit<br>(Demaark)       Friee Vaughn**<br>(NoO and SFs)       (*)Investive of Colorado, Boulder, CO<br>80309-0150, U.S.A.         Summit<br>(China)       Friee Vaughn**<br>(NoO and SFs)       (*)Investive of Colorado, Boulder, CO<br>80309-0150, U.S.A.         Summit<br>(Demaark)       Friee Vaughn**<br>(Prince)       (*)Investive of Colorado, Boulder, CO<br>80309-0150, U.S.A.         Palae-Sammaltunturi<br>(Frinand)       Investive of Colorado, Boulder, CO<br>80309, U.S.A.       (*)Investive of Colorado, Boulder, CO<br>80309, U.S.A.         Palae-Sammaltuntu | NOAA/ESRL Flask N       | <b>Vetwork</b>                                                               |                                                                                                              |
| (Algeria)       James White**       225 Broadway R/GMD1 Boulder, CO 80305-3328,<br>(**CH*, **CO and C*O)         Ushnaia       Jocelyn Turnbull       (**)Institute of Arctic and Alpine Research (INSTAAR)         (Argentina)       Jocelyn Turnbull       (**)Institute of Arctic and Alpine Research (INSTAAR)         (Anstrulia)       Edward J. Dingohendey*       000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Assekrem                | Bruce Vaughn <sup>**</sup>                                                   | (*)NOAA/ESRL Global Monitoring Division                                                                      |
| (1 <sup>a</sup> CH, <sup>1</sup> aCos and C <sup>a</sup> Os)       U.S.A.         (Argentina)       Jocelyn Turnbull       (**Institute of Arctic and Alpine Research (INSTAAR)<br>Campus hox 450, University of Colorado, Boulder, CO         Cape Grim       (**COs)       S0309-0150, U.S.A.         (Anstralia)       Edward J.Dingokenck*<br>(CG and Co)       U.S.A.         Ragged Point       (Barbados)       Paul C. Novell*<br>(CG and E)       U.S.A.         Arembepe       Harce Vougln**<br>(CG and SP*)       Harce Vougln**         Matal       Bruce Vaugln**<br>(CG and SP*)       Harce Vougln**         Matal       Bruce Vaugln**       Harce Vaugln**         (Chaid)       (No O and SP*)       Harce Vaugln**         Mould Bay       (Chaid)       Harce Vaugln**         (Chaid)       Summit       Harce Vaugln**         (Deumark)       Harce Vaugln**       Harce Vaugln**         Pallas-Sammaltunturi       Harce Vaugln*       Harce Vaugln*         (Chaid)       Harce Vaugln*       Harce Vaugln*         Pallas-Sammaltunturi       Harce Vaugln*       Harce Vaugln*         (Paunark)       Harce Vaugln*       Harce Vaugln*         Pallas-Sammaltunturi       Harce Vaugln*       Harce Vaugln*         (Paunark)       Harce Vaugln*       Harce Vaugln*         Harce Vau                                                                                                                                                                                                                                                                                                                                                                                     | (Algeria)               | James White**                                                                | 325 Broadway R/GMD1 Boulder, CO 80305-3328,                                                                  |
| Ushaia       (**)Institute of Arctic and Alpine Research (INSTAAR)         (Argentina)       Jocelyn Turnbull       (**)Institute of Arctic and Alpine Research (INSTAAR)         (Australia)       Edward J.Dlugokencky*       80009-0450, U.S.A.         (Australia)       Edward J.Dlugokencky*       80009-0450, U.S.A.         (Raged Point       Paul C. Novelli*       80009-0450, U.S.A.         (Brazil)       Paul C. Novelli*       80009-0450, U.S.A.         Arembepe       Free Vaugin**       80009-0450, U.S.A.         (Brazil)       Paule C. Novelli*       80009-0450, U.S.A.         Arembepe       Free Vaugin**       80000         (Gradi)       Paule C. Novelli*       80000         (Canado)       State I Biand       Nove O and SF9)         Calian       K. Walguan       State I Sland         (Chia)       Summit       State I Sland         Summit       Nangedianzi       State I Sland         (China)       State I Sland       State I Sland         (China) </td <td></td> <td><math>(^{13}CH_4, ^{13}CO_2 \text{ and } C^{18}O_2)</math></td> <td>U.S.A.</td>                                                                                                                                                                                                                                                                                                                                                                      |                         | $(^{13}CH_4, ^{13}CO_2 \text{ and } C^{18}O_2)$                              | U.S.A.                                                                                                       |
| (Argentina)     Jocelyn Turnbull     (**)Institute of Arctic and Alpine Research (INSTAAR)       (**C0)     Campus box 450, University of Colorado, Boulder, CO       80309-0450, U.S.A.     (CIII and CO.)       Ragged Point     (Barbados)       Paul C. Novelli*     (CO and Ha)       Arembepe     "Natal       Arembepe     "Natal       Arembepe     "Natal       Bruee Vaugin**     (Brazil)       (Conada)     Ester Island       (Chile)     "Natal       Lulin     Shengdianzi       Mt. Waliguan     "Simput faith"       (Panados)     "Simput faith"       (Domark)     "Simput faith"       Pallas-Sammaltunturi     "Finland"       (France)     "Simput faith"       Hahenpeissenberg     Chenkopf       (Gerrany)     "Simput faith"       Heimaey     "Simput faith"       Heimaey     Simput faith"       Heimaey     "Simput faith"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ushuaia                 |                                                                              |                                                                                                              |
| Cape Grim       B3090-0450, U.S.A.         (Australia)       Edward J.Dingolencky*<br>(CH and CO.)         Ragged Point       Barbados)         [Barbados)       Paul C. Novelit*<br>(CO and H.)         Arembere       Bruce Vaughn**         Natal       Bruce Vaughn**         (Brand)       (No and SP.)         Alert       Inco Vaughn**         Mould Bay       (Canada)         Zaster Island       Stangdinzi         (Chile)       Stangdinzi         Mut Kaliguan       Stangdinzi         (China)       Stangdinzi         Summit       Stangdinzi         (Pomark)       Stangdinzi         Pallas-Sammaltunturi       Stangdinzi         (Finalend)       Stangdinzi         Amsterdam Island       Stangdinzi         (Pomark)       Stangdinzi         Pallas-Sammaltunturi       Stangdinzi         (Finalend)       Stangdinzi         Heingay)       Stangdinzi         Heingay)       Stangdinzi         Heingay)       Stangdinzi         Bukit Koto Tabang       Stoto Tabang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (Argentina)             | $\begin{array}{c} \text{Jocelyn Turnbull} \\ (^{14}\text{CO}_2) \end{array}$ | (**)Institute of Arctic and Alpine Research (INSTAAR)<br>Campus box 450, University of Colorado, Boulder, CO |
| (Anstralia)       Edward J.Diugokeneky*         (CHa and COa)       Paul C. Novelli*         (Barbados)       Paul C. Novelli*         (CO and Ha)       Arembepe         Natal       Bruce Vaugha**         (Brazil)       (NoO and SFa)         Alert       Lac La Biche         Mould Bay       (Cauda)         Easter Island       (Chile)         Lulin       Shangdinazi         Mt. Waliguan       Summit         (Denmark)       Pallas-Sammalumturi         (France)       Summit         Pallas-Sammalumturi       Fraidand         (Cravet)       Summit         Hohenpeissenberg       Summit         Odsenkopf       Germany)         Heimaey       Summit         Hohenpeissenberg       Summit         Odsenkopf       Summit         Budit Koto Tabang       Summit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cape Grim               |                                                                              | 80309-0450, U.S.A.                                                                                           |
| Ragel Point<br>(Barbados)       Paul C. Novelli*<br>(CO and Ha)         Arent<br>Brazil       Bruce Vaughn**<br>(NoO and SFe)         Alert<br>Lac La Biche<br>Mould Bay<br>(Canada)       Bruce Vaughn**<br>(NoO and SFe)         Faster Island<br>(Chile)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (Australia)             | Edward J.Dlugokencky*<br>(CH <sub>4</sub> and CO <sub>2</sub> )              |                                                                                                              |
| (Barbados)       Pail C. Novelli*<br>(CO and H)         Arembepe       Bruce Vaughn**<br>(Chail)         Natal       Bruce Vaughn**<br>(NaO and SFo)         Alert       Lac La Biche         Mould Bay<br>(Canada)       Single Second Stope         Easter Island<br>(Chile)       Single Second Stope         Lulin       Shangdianzi         Mt. Waliguan<br>(Chima)       Single Second Stope         Summit<br>(Denmark)       Single Second Stope         Palles-Sammaltunturi<br>(Finland)       Single Second Stope         Amsterdam Island<br>(Crozet<br>(France)       Single Second Stope         Hobenpeissenberg<br>Ochsenkopf<br>(Germany)       Single Second Stope         Heighatsal<br>(Hungay)       Single Second Stope         Bukit Koto Tabang<br>(Indonesia)       Single Second Stope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ragged Point            |                                                                              |                                                                                                              |
| Arenbee       Bruce Vaughu**         (Brazi)       (N=O and SFe)         Alert       Lac La Biche         Mould Bay       Summition         Easter Island       Shangdianzi         Lulin       Shangdianzi         Mt. Waliguan       Summition         (Denmark)       Pallas-Sammaltunturi         Pallas-Sammaltunturi       Summition         (France)       Sumpi senberg         Hohenpeissenberg       Sumition         Pilapustasi       Summition         Heighatsal       Summition         Heighatsal       Summition         Heighatsal       Summition         Heighatsal       Summition         Heimaey       Summition         Bukit Koto Tabang       Summition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (Barbados)              | Paul C. Novelli <sup>*</sup><br>(CO and H <sub>2</sub> )                     |                                                                                                              |
| Natal     Bruce Vaughn**       (Brazil)     (NsO and SFs)         Alert     Lac La Biche       Mould Bay     (Canada)   Easter Island (Chile)       Easter Island                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Arembepe                |                                                                              |                                                                                                              |
| (Brazil)       (No and SFe)         Alert       Lac La Biche         Mould Bay       (Canada)         Easter Island       (Chile)         Lulin       Shangdianzi         Nt. Waliguan       (China)         Summit       (Denmark)         Pallas-Sammaltunturi       (Finland)         Amsterdam Island       (Prace)         Hohenpeisenberg       (Odesmkopf)         (Germany)       Hohenpeisenberg         Hokenpeisenberg       (Leand)         Bukit Koto Tabang       Lukit Koto Tabang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Natal                   | Bruce Vaughn <sup>**</sup>                                                   |                                                                                                              |
| Alert<br>bing<br>(Canad)Easter Island<br>(Chile)Lulin<br>bibangdianzi<br>Mt. Waliguan<br>(China)Summit<br>(Denmark)Pallas-Sammaltunturi<br>(Finland)Ansterdam Island<br>Crozet<br>(France)Boghatsal<br>(Chinagray)Iegyhatsal<br>(Linagray)Bukt Koto Tabang<br>(Indonesia)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (Brazil)                | (N <sub>2</sub> O and SF <sub>6</sub> )                                      |                                                                                                              |
| Lac La Biche<br>Mould Bay<br>(Canada)<br>Easter Island<br>(Chile)<br>Lulin<br>Shangdianzi<br>Mt. Waliguan<br>(China)<br>Mt. Waliguan<br>(China)<br>Summit<br>(Denmark)<br>Pallas-Sammaltunturi<br>(Finland)<br>Amsterdam Island<br>Crozet<br>(France)<br>Hohenpeissenberg<br>Ochsenkopf<br>(Germany)<br>Hegyhatsal<br>(Hungary)<br>Hedimay<br>(Iceland)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Alert                   |                                                                              |                                                                                                              |
| Nould Bay<br>(Canada)Raster Island<br>(Chile)Julin<br>Shangdianzi<br>Mt. Waliguan<br>(China)Summit<br>(Denmark)Pallas-Sammaltunturi<br>(Pinland)Rusterdam Island<br>Crozet<br>(France)Bohenpeissenberg<br>(Chemany)Hegyhatsal<br>(Hungary)Iclimaey<br>(Icleand)Bukit Koto Tabang<br>(Indonesia)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Lac La Biche            |                                                                              |                                                                                                              |
| (Canada)Easter Island<br>(Chile)Julin<br>Shangdianzi<br>Mt. Waliguan<br>(China)Summit<br>(Denmark)Pallas-Sammaltunturi<br>(Finland)Rusterdam Island<br>Crozet<br>(France)Bohenpeissenberg<br>Ochsenkopf<br>(Germany)Hegyhatsal<br>(Hungary)Righatsal<br>(Leland)Bukit Koto Tabang<br>(Indonesia)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mould Bay               |                                                                              |                                                                                                              |
| Easter Island         (Chile)         Shangdianzi         Mt. Waliguan         (China)         Summit         (Denmark)         Pallas-Sammaltunturi         (Finland)         Amsterdam Island         Crozet         (Prance)         Dehenpeissenberg         (Germany)         Hiumagy         Leinaey         (Rudowsia)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (Canada)                |                                                                              |                                                                                                              |
| Lulin         Shangdianzi         Mt. Waliguan         (China)         Summit         (Denmark)         Pallas-Sammaltunturi         (Finland)         Amsterdam Island         Crozet         (France)         Hohenpeissenberg         Ochsenkopf         (Germany)         Hegyhatsal         H(Hungary)         Beimaey         (Iceland)         Dukit Koto Tabang         Nukit Koto Tabang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Easter Island           |                                                                              |                                                                                                              |
| Luin         Shangdianzi         Xt. Waliguan         China)         Summit         Summit         (China)         Summit         (Denmark)         Pallas-Sammaltunturi         (Finland)         Amsterdam Island         Crozet         (France)         Abenepissenberg         Chesenbopf         Schsenbopf         Rigynatsal         Hungary)         Leinaey         Rienaeng         Sukt Koto Tabang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (Onne)                  |                                                                              |                                                                                                              |
| Shangdianzi         Mt. Waliguan         (China)         Summit         (Denmark)         Pallas-Sammaltunturi         (Finland)         Amsterdam Island         Crozet         (France)         Bohenpeissenberg         Ochsenkopf         (Germany)         Hegyhatsal         Hungary)         Belinaey         Iceland)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Lulin                   |                                                                              |                                                                                                              |
| Mt. Waliguan<br>(China)<br>Summit<br>(Denmark)<br>Pallas-Sammaltunturi<br>(Finland)<br>Amsterdam Island<br>Crozet<br>(France)<br>Hohenpeissenberg<br>Ochsenkopf<br>(Germany)<br>Hegyhatsal<br>(Hungary)<br>Hegimasa<br>Ieinaey<br>(Iceland)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Shangdianzi             |                                                                              |                                                                                                              |
| (China)         Summit<br>(Denmark)         Pallas-Sammaltunturi<br>(Finland)         Amsterdam Island<br>Crozet<br>(France)         Hohenpeissenberg<br>Ochsenkopf<br>(Germany)         Hegyhatsal<br>(Hungary)         Heimaey<br>(Iceland)         Bukit Koto Tabang<br>(Indonesia)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Mt. Waliguan            |                                                                              |                                                                                                              |
| Summit<br>(Denmark)         Pallas-Sammaltunturi<br>(Finland)         Amsterdam Island<br>Crozet<br>(France)         Hohenpeissenberg<br>Ochsenkopf<br>(Germany)         Hohenpeissenberg<br>Chsenkopf         Summit (Hungary)         Heimaey<br>(Iceland)         Bukit Koto Tabang<br>(Indonesia)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (China)                 |                                                                              |                                                                                                              |
| Summe         (Denmark)         Pallas-Sammaltunturi         (Finland)         Amsterdam Island         Crozet         (France)         Hohenpeissenberg         Ochsenkopf         (Germany)         Hegyhatsal         (Hungary)         Bukit Koto Tabang         (Indonesia)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Summit                  |                                                                              |                                                                                                              |
| Pallas-Sammaltunturi<br>(Finland)<br>Amsterdam Island<br>Crozet<br>(France)<br>Hohenpeissenberg<br>Ochsenkopf<br>(Germany)<br>Hegyhatsal<br>(Hungary)<br>Heimaey<br>(Iceland)<br>Bukit Koto Tabang<br>(Indonesia)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (Denmark)               |                                                                              |                                                                                                              |
| Pallas-Sammaltunturi<br>(Finland)<br>Amsterdam Island<br>Crozet<br>(France)<br>Hohenpeissenberg<br>Ochsenkopf<br>(Germany)<br>Hegyhatsal<br>(Hungary)<br>Heimaey<br>(Iceland)<br>Bukit Koto Tabang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (20000000)              |                                                                              |                                                                                                              |
| (Finland)<br>Amsterdam Island<br>Crozet<br>(France)<br>Hohenpeissenberg<br>Ochsenkopf<br>(Germany)<br>Hegyhatsal<br>(Hungary)<br>Heimaey<br>(Iceland)<br>Bukit Koto Tabang<br>(Indonesia)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pallas-Sammaltunturi    |                                                                              |                                                                                                              |
| Amsterdam Island         Crozet         (France)         Hohenpeissenberg         Ochsenkopf         (Germany)         Hegyhatsal         (Hungary)         Heimaey         (Iceland)         Bukit Koto Tabang         (Indonesia)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (Finland)               |                                                                              |                                                                                                              |
| Crozet<br>(France)<br>Hohenpeissenberg<br>Ochsenkopf<br>(Germany)<br>Hegyhatsal<br>(Hungary)<br>Heimaey<br>(Iceland)<br>Bukit Koto Tabang<br>(Indonesia)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Amsterdam Island        |                                                                              |                                                                                                              |
| (France)<br>Hohenpeissenberg<br>Ochsenkopf<br>(Germany)<br>Hegyhatsal<br>(Hungary)<br>Heimaey<br>(Iceland)<br>Bukit Koto Tabang<br>(Indonesia)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Crozet                  |                                                                              |                                                                                                              |
| Hohenpeissenberg<br>Ochsenkopf<br>(Germany)<br>Hegyhatsal<br>(Hungary)<br>Heimaey<br>(Iceland)<br>Bukit Koto Tabang<br>(Indonesia)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (France)                |                                                                              |                                                                                                              |
| Hohenpeissenberg<br>Ochsenkopf<br>(Germany)<br>Hegyhatsal<br>(Hungary)<br>Heimaey<br>(Iceland)<br>Bukit Koto Tabang<br>(Indonesia)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |                                                                              |                                                                                                              |
| Ochsenköpf   (Germany)   Hegyhatsal   (Hungary)   Heimaey   (Iceland)   Bukit Koto Tabang   (Indonesia)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Hohenpeissenberg        |                                                                              |                                                                                                              |
| Hegyhatsal<br>(Hungary)<br>Heimaey<br>(Iceland)<br>Bukit Koto Tabang<br>(Indonesia)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ochsenkopf<br>(Cormony) |                                                                              |                                                                                                              |
| Hegyhatsal<br>(Hungary)<br>Heimaey<br>(Iceland)<br>Bukit Koto Tabang<br>(Indonesia)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (Germany)               |                                                                              |                                                                                                              |
| (Hungary)<br>Heimaey<br>(Iceland)<br>Bukit Koto Tabang<br>(Indonesia)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Hegyhatsal              |                                                                              |                                                                                                              |
| Heimaey<br>(Iceland)<br>Bukit Koto Tabang<br>(Indonesia)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (Hungary)               |                                                                              |                                                                                                              |
| Heimaey<br>(Iceland)<br>Bukit Koto Tabang<br>(Indonesia)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>TT</b> .             |                                                                              |                                                                                                              |
| (Iceiand)<br>Bukit Koto Tabang<br>(Indonesia)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Heimaey<br>(Jacland)    |                                                                              |                                                                                                              |
| Bukit Koto Tabang<br>(Indonesia)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (iceiand)               |                                                                              |                                                                                                              |
| (Indonesia)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bukit Koto Tabang       |                                                                              |                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (Indonesia)             |                                                                              |                                                                                                              |

| Station<br>Country/Territory                                                  | Name | Address |  |
|-------------------------------------------------------------------------------|------|---------|--|
| Country/ Territory                                                            |      |         |  |
| Mace Head<br>(Ireland)                                                        |      |         |  |
| Sede Boker<br>(Israel)                                                        |      |         |  |
| Lampedusa<br>(Italy)                                                          |      |         |  |
| Syowa Station<br>(Japan)                                                      |      |         |  |
| Sary Taukum<br>Plateau Assy<br>(Kazakhstan)                                   |      |         |  |
| Mt. Kenya<br>(Kenya)                                                          |      |         |  |
| Christmas Island<br>(Kiribati)                                                |      |         |  |
| Kaashidhoo<br>(Maldives)                                                      |      |         |  |
| Dwejra Point<br>(Malta)                                                       |      |         |  |
| Mex High Altitude Global<br>Climate Observation<br>Center, Mexico<br>(Mexico) |      |         |  |
| Ulaan Uul<br>(Mongolia)                                                       |      |         |  |
| Gobabeb<br>(Namibia)                                                          |      |         |  |
| Baring Head<br>Kaitorete Spit<br>(New Zealand)                                |      |         |  |
| Ocean Station "M"<br>Zeppelinfjellet<br>(Ny-Alesund)<br>(Norway)              |      |         |  |
| Baltic Sea<br>(Poland)                                                        |      |         |  |

#### Station Name Address Country/Territory Terceira Island (Portugal) Anmyeon-do Tae-ahn Peninsula (Republic of Korea) Black Sea (Romania) Tiksi (Russian Federation) Mahe Island (Seychelles) Cape Point (South Africa) Izaña (Tenerife) (Spain) Ascension Island St. David's Head Tudor Hill Halley Bay Bird Island Tacolneston Tall Tower (United Kingdom of Great Britain and Northern Ireland) Akademik Korolev, R/V Argyle Atlantic Ocean St. Croix Barrow Cold Bay Cape Meares Discoverer 1983 & 1984, R/VDrake Passage Discoverer 1985, R/V

| Station<br>Country/Territory      | Name | Address |
|-----------------------------------|------|---------|
| Guam                              |      |         |
| Grifton                           |      |         |
| John Biscoe, $R/V$                |      |         |
| Key Biscayne                      |      |         |
| Korolev, $R/V$                    |      |         |
| Kitt Peak                         |      |         |
| Cape Kumukahi                     |      |         |
| Park Falls                        |      |         |
| Long Lines Expedition,<br>R/V     |      |         |
| McMurdo Station                   |      |         |
| Sand Island                       |      |         |
| Mauna Loa                         |      |         |
| Mexico Naval H-02, $\mathrm{R/V}$ |      |         |
| Niwot Ridge (T-van)               |      |         |
| Oceanographer, $\mathrm{R/V}$     |      |         |
| Olympic Peninsula                 |      |         |
| Pacific-Atlantic Ocean            |      |         |
| Polar Star, $R/V$                 |      |         |
| Pacific Ocean                     |      |         |
| Palmer Station                    |      |         |
| Point Arena                       |      |         |
| South China Sea                   |      |         |
| Southern Great Plains             |      |         |
| Shemya Island                     |      |         |
| La Jolla                          |      |         |
| Tutuila (Cape Matatula)           |      |         |

| Station                    | Name | Address |
|----------------------------|------|---------|
| Country/Territory          |      |         |
| South Pole                 |      |         |
| Ocean Station Charlie      |      |         |
| Surveyor, $R/V$            |      |         |
| Trinidad Head              |      |         |
| Wendover                   |      |         |
| West Branch                |      |         |
| Moody                      |      |         |
| Western Pacific            |      |         |
| (United States of America) |      |         |

#### NOAA/ESRL/HATS Network

| Ushuaia<br>(Argentina) | Geoffrey S. Dutton<br>James W. Elkins<br>Stephen A. Montzka | Halocarbons and Other Atmosphere Trace Species<br>Group (HATS)/NOAA/ESRL Global Monitoring<br>Division |
|------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Cape Grim              |                                                             | 325 Broadway R/GMD1 Boulder, CO 80305-3328,                                                            |
| (Australia)            |                                                             | U.S.A.                                                                                                 |
|                        |                                                             |                                                                                                        |
| Alert                  |                                                             |                                                                                                        |
| (Canada)               |                                                             |                                                                                                        |
| Summit                 |                                                             |                                                                                                        |
| (Denmark)              |                                                             |                                                                                                        |
| (Deminark)             |                                                             |                                                                                                        |
| Mace Head              |                                                             |                                                                                                        |
| (Ireland)              |                                                             |                                                                                                        |
|                        |                                                             |                                                                                                        |
| BACPAC 99              |                                                             |                                                                                                        |
|                        |                                                             |                                                                                                        |
| BLAST1                 |                                                             |                                                                                                        |
| DI ለፍጥ <u>ን</u>        |                                                             |                                                                                                        |
| DLA512                 |                                                             |                                                                                                        |
| BLAST3                 |                                                             |                                                                                                        |
|                        |                                                             |                                                                                                        |
| Barrow                 |                                                             |                                                                                                        |
|                        |                                                             |                                                                                                        |
| CLIVAR 01              |                                                             |                                                                                                        |
| Cag Change Erneningert |                                                             |                                                                                                        |
| Gas Unange Experiment  |                                                             |                                                                                                        |
| Harvard Forest         |                                                             |                                                                                                        |
|                        |                                                             |                                                                                                        |
| HATS Ocean Projects    |                                                             |                                                                                                        |

| Station<br>Country/Territory | Name | Address |
|------------------------------|------|---------|
|                              |      |         |
| Grifton                      |      |         |
| Cape Kumukahi                |      |         |
| Park Falls                   |      |         |
| Mauna Loa                    |      |         |
| Niwot Ridge (C-1)            |      |         |
| PHASE I-04                   |      |         |
| Palmer Station               |      |         |
| Tutuila (Cape Matatula)      |      |         |
| South Pole                   |      |         |
| Trinidad Head                |      |         |
| (United States of America)   |      |         |
|                              |      |         |

| Station                                                                                                                                                | Name                                                        | Address                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Country/ Territory                                                                                                                                     |                                                             |                                                                                                                                                                                       |
| CSIRO Flask Network                                                                                                                                    |                                                             |                                                                                                                                                                                       |
| Aircraft (over Bass Strait<br>and Cape Grim)<br>Cape Ferguson<br>Cape Grim<br>Casey Station<br>Gunn Point<br>Mawson<br>Macquarie Island<br>(Australia) | Ray Langenfelds<br>Paul Krummel<br>Zoe Loh<br>Colin Allison | Commonwealth Scientific and Industrial Research<br>Organisation (CSIRO)<br>CSIRO Oceans and Atmosphere - Climate Science<br>Centre<br>Private Bag 1<br>Aspendale, Vic, Australia 3195 |
| Alert<br>Estevan Point<br>(Canada)                                                                                                                     |                                                             |                                                                                                                                                                                       |
| Cape Rama<br>(India)                                                                                                                                   |                                                             |                                                                                                                                                                                       |
| Shetland<br>(United Kingdom of Great<br>Britain and Northern<br>Ireland)                                                                               |                                                             |                                                                                                                                                                                       |
| Mauna Loa<br>South Pole<br>(United States of America)                                                                                                  |                                                             |                                                                                                                                                                                       |
| ALE/GAGE/AGAGE                                                                                                                                         | Network                                                     |                                                                                                                                                                                       |
| Cape Grim<br>(Australia)                                                                                                                               | Martin Vollmer<br>Stefan Reimann<br>Simon O'Doherty         | Università degli Studi di Urbino<br>Istituto di Scienze Chimiche, piazza Rinascimento 6,<br>61029 Urbino - Italy                                                                      |
| Ragged Point                                                                                                                                           | Paul Krummel                                                |                                                                                                                                                                                       |
| (Barbados)                                                                                                                                             | Jgor Arduini<br>Paul Steele                                 |                                                                                                                                                                                       |
| Adrigole                                                                                                                                               | Ray Wang                                                    |                                                                                                                                                                                       |
| Mace Head                                                                                                                                              | Ray F. Weiss                                                |                                                                                                                                                                                       |
| (Ireland)                                                                                                                                              | Michela Maione                                              |                                                                                                                                                                                       |

Monte Cimone (Italy)

Zeppelinfjellet (Ny-Alesund) (Norway)

Gosan (Republic of Korea)

Jungfraujoch (Switzerland)

-85-

Station Name Country/Territory Address

Cape Meares Tutuila (Cape Matatula) Trinidad Head (United States of America)

#### LIST OF ABBREVIATIONS

#### **ORGANIZATIONS:**

| AEMET           | Agencia Estatal de Meteorología (Spain)                                     |  |  |  |
|-----------------|-----------------------------------------------------------------------------|--|--|--|
| AGAGE           | Advanced Global Atmospheric Gases Experiment                                |  |  |  |
| Aichi           | Aichi Prefecture (Japan)                                                    |  |  |  |
| AIST            | National Institute of Advanced Industrial Science and Technology (Japan)    |  |  |  |
| AMERIFLUX       | AmeriFlux Network (USA)                                                     |  |  |  |
| ARSO            | Agencija Republike Slovenije za Okolje (Slovenia)                           |  |  |  |
| BAS             | British Antarctic Survey (United Kingdom)                                   |  |  |  |
| BLG             | Bowling Lab Group, Terrestrial Biogeochemistry, Department of Biology,      |  |  |  |
|                 | University of Utah (USA)                                                    |  |  |  |
| BMKG            | Agency for Meteorology, Climatology and Geophysics (Indonesia)              |  |  |  |
| BoM             | Commonwealth Bureau of Meteorology (Australia)                              |  |  |  |
| CALTECH         | California Institute of Technology, Division of Geological and Planetary    |  |  |  |
|                 | Science (USA)                                                               |  |  |  |
| CHMI            | Czech Hydrometeorological Institute (Czech Republic)                        |  |  |  |
| CMA             | China Meteorological Administration (China)                                 |  |  |  |
| <b>CNR-ICES</b> | International Centre for Earth Sciences, Consiglio Nazionale delle Ricerche |  |  |  |
|                 | (Italy)                                                                     |  |  |  |
| CSIRO           | Commonwealth Scientific and Industrial Research Organisation (Australia)    |  |  |  |
| DMC             | Dirección Meteorológica de Chile (Chile)                                    |  |  |  |
| DNA-IAA         | Direccion Nacional del Antartico-Instituto Antartico Argentino (Argentina)  |  |  |  |
| DWD             | Deutscher Wetterdienst (German Meteorological Service, Germany)             |  |  |  |
| ECCC (EC)       | Environment and Climate Change Canada (Canada)                              |  |  |  |
| ECN             | Energy Research Centre of the Netherlands (Netherlands)                     |  |  |  |
| EMA             | Egyptian Meteorological Authority (Egypt)                                   |  |  |  |
| EMD             | Ecole des Mines de Douai (France)                                           |  |  |  |
| Empa            | Swiss Federal Laboratories for Material Testing and Research (Switzerland)  |  |  |  |
| ENEA            | Italian National Agency for New Technology, Energy and the Environment      |  |  |  |
|                 | (Italy)                                                                     |  |  |  |
| FMI             | Finnish Meteorological Institute (Finland)                                  |  |  |  |
| GAGE            | Global Atmospheric Gases Experiment                                         |  |  |  |
| GAW             | Global Atmosphere Watch (WMO)                                               |  |  |  |
| HATS            | Halocarbons and other Atmospheric Trace Species Group, NOAA/ESRL            |  |  |  |
| НКО             | Hong Kong Observatory (Hong Kong, China)                                    |  |  |  |
| HMS             | Hungarian Meteorological Service (Hungary)                                  |  |  |  |
| HU              | Harvard University (USA)                                                    |  |  |  |
| IAFMS           | Italian Air Force Meteorological Service (Italy)                            |  |  |  |
| ICOS            | Integrated Carbon Observation System                                        |  |  |  |
| IGP             | Instituto Geofísico del Perú (Peru)                                         |  |  |  |
| IMK-IFU         | Institut für Meteorologie und Klimatologie, Atmosphärische                  |  |  |  |
| NINIE           | Umweltforschung, Forschungszentrum Karlsruhe (Germany)                      |  |  |  |
| INKNE           | Institute for Nuclear Research and Nuclear Energy (Bulgaria)                |  |  |  |
| INSTAAK         | Institute of Arctic and Alpine Research (USA)                               |  |  |  |
| IUEP            | Institute of Environmental Protection (Poland)                              |  |  |  |
| ISAC            | Istituto di Scienze dell'Atmosfera e del Clima, Consiglio Nazionale delle   |  |  |  |
| TTNA            | Kicercne (Italy)                                                            |  |  |  |
| 1111            | Department of Applied Environmental Science, Stocknoim University,          |  |  |  |
|                 | (Sweden)                                                                    |  |  |  |

| JMA                                       | Japan Meteorological Agency (Japan)                                      |
|-------------------------------------------|--------------------------------------------------------------------------|
| KIT                                       | Karlsruhe Institute of Technology (Germany)                              |
| KMA                                       | Korea Meteorological Administration (Republic of Korea)                  |
| KMD                                       | Kenya Meteorological Department (Kenya)                                  |
| KRISS                                     | Korea Research Institute of Standards and Science (Republic of Korea)    |
| KSNU                                      | Kyrgyz State National University (Kyrgyzstan)                            |
| KUP                                       | Physics Institute, Climate and Environmental Physics, University of Bern |
|                                           | (Switzerland)                                                            |
| LA                                        | Laboratoire d'Aérologie (France)                                         |
| LAMP                                      | Laboratoire de Météorologie Physique (France)                            |
| LSCE                                      | Laboratoire des Sciences du Climat et de l'Environnement (France)        |
| MGO                                       | Main Geophysical Observatory, Roshydromet (Russian Federation)           |
| MPI-BGC                                   | Max-Planck Institute (MPI) for Biogeochemistry in Jena (Germany)         |
| MMD                                       | Malaysian Meteorological Department (Malaysia)                           |
| MRI                                       | Meteorological Research Institute, JMA (Japan)                           |
| Nagoya Univ.                              | Nagoya University (Japan)                                                |
| NCAR                                      | National Center For Atmospheric Research (USA)                           |
| NEON                                      | National Ecological Observatory Network (USA)                            |
| NHMS                                      | National Hydro-Meteorological Service (Vietnam)                          |
| NIER                                      | National Institute of Environmental Research (Republic of Korea)         |
| NIES                                      | National Institute for Environmental Studies (Japan)                     |
| NILU                                      | Norwegian Institute for Air Research (Norway)                            |
| NIMR                                      | National Institute of Meteorological Reserch, KMA (Republic of Korea)    |
| NIPR                                      | National Institute of Polar Research (Japan)                             |
| NIST                                      | National Institute of Standards and Technology (USA)                     |
| NIWA                                      | National Institute of Water & Atmospheric Research (New Zealand)         |
| NMA                                       | National Meteorological Administration (Romania)                         |
| NMI                                       | Nederlands Meetinstituut (Netherlands)                                   |
| NOAA                                      | National Oceanic and Atmospheric Administration (USA)                    |
| NOAA-CSD                                  | Chemical Sciences Division, NOAA (USA)                                   |
| NOAA/ESRL                                 | Earth System Research Laboratory, NOAA (USA)                             |
| NPL                                       | National Physical Laboratory (United Kingdom)                            |
| ONM                                       | Office National de la Météorologie (Algeria)                             |
| Osaka Univ.                               | Osaka University (Japan)                                                 |
| PolyU                                     | Hong Kong Polytechnic University (Hong Kong, China)                      |
| PSU                                       | Penn State University (USA)                                              |
| RHUL                                      | Royal Holloway University London (United Kingdom)                        |
|                                           | National Institute for Health and Environment (Netherlands)              |
| Rosnyaromet                               | Federal Service for Hydrometeorology and Environmental Monitoring        |
| DGE                                       | (Russian Federation)                                                     |
| KSE                                       | Ricerca sul Sistema Elettrico (Italy)                                    |
| RUG                                       | University of Groningen (RUG), Centre for Isotope Research (CIO)         |
| <b>C</b> - <b>! ! : : : : : : : : : :</b> | (Netherlands)                                                            |
| Saltama                                   | Saitama Prefecture (Japan)                                               |
| SAWS                                      | South African Weather Service (South Africa)                             |
| Snizuoka Univ.                            | Snizuoka University (Japan)                                              |
| <b>DIU</b>                                | Scripps Institution of Oceanography (USA)                                |
| SIMIN(SIMINA)                             | Servicio Meteorologico Nacional (Argentina)                              |
| I ONOKU UNIV.                             | Ionoku University (Japan)                                                |
| (TU)                                      |                                                                          |
| UBA                                       | Umweitbundesamt (Germany)                                                |

| UBA-SCHAU   | Umweltbundesamt, Station Schauinsland (Germany)                      |
|-------------|----------------------------------------------------------------------|
| UBA/ZUG     | Umweltbundesamt, Zugspitze GAW Station (Germany)                     |
| UEA         | University of East Anglia (United Kingdom)                           |
| UHEI-IUP    | University of Heidelberg, Institut fuer Umweltphysik (Germany)       |
| UNIURB      | University of Urbino (Italy)                                         |
| Univ. Malta | University of Malta (Malta)                                          |
| Univ. York  | University of York (United Kingdom)                                  |
| WCC-Empa    | World Calibration Centre (Empa)                                      |
| WDCGG       | World Data Centre for Greenhouse Gases, operated by JMA, Japan (WMO) |
| WMO         | World Meteorological Organization                                    |

#### **ATMOSPHERIC SPECIES:**

| CCl <sub>4</sub>                 | tetrachloromethane (carbon tetrachloride)                                                      |
|----------------------------------|------------------------------------------------------------------------------------------------|
| $C_2Cl_4$                        | tetrachloroethylene                                                                            |
| <b>CFC-11</b>                    | chlorofluorocarbon-11 (trichlorofluoromethane, CCl <sub>3</sub> F)                             |
| <b>CFC-12</b>                    | chlorofluorocarbon-12 (dichlorodifluoromethane, CCl <sub>2</sub> F <sub>2</sub> )              |
| CFC-113                          | chlorofluorocarbon-113 (1,1,2-trichlorotrifluoroethane, CCl <sub>2</sub> FCClF <sub>2</sub> )  |
| CFCs                             | chlorofluorocarbons                                                                            |
| CH <sub>4</sub>                  | methane                                                                                        |
| CHBr <sub>3</sub>                | tribromomethane (bromoform)                                                                    |
| CH <sub>2</sub> Br <sub>2</sub>  | dibromomethane                                                                                 |
| CH <sub>3</sub> Br               | bromomethane                                                                                   |
| CH <sub>3</sub> CCl <sub>3</sub> | 1,1,1-trichloroethane (methyl chloroform)                                                      |
| CHCl <sub>3</sub>                | trichloromethane (chloroform)                                                                  |
| CH <sub>2</sub> Cl <sub>2</sub>  | dichloromethane (methylene chloride)                                                           |
| CH <sub>3</sub> Cl               | chloromethane (methyl chloride)                                                                |
| C <sub>2</sub> HCl <sub>3</sub>  | trichloroethylene                                                                              |
| CO                               | carbon monoxide                                                                                |
| CO <sub>2</sub>                  | carbon dioxide                                                                                 |
| $H_2$                            | hydrogen                                                                                       |
| Halon-1211                       | chlorodifluorobromomethane (CBrClF <sub>2</sub> )                                              |
| Halon-1301                       | bromotrifluoromethane (CBrF <sub>3</sub> )                                                     |
| HCFC-141b                        | hydrochlorofluorocarbon-141b (1,1-dichloro-1-fluoroethane, CH <sub>3</sub> CCl <sub>2</sub> F) |
| HCFC-142b                        | hydrochlorofluorocarbon-142b (1,1-difluoro-1-chloroethane, CH <sub>3</sub> CClF <sub>2</sub> ) |
| HCFC-22                          | hydrochlorofluorocarbon-22 (chlorodifluoromethane, CHClF <sub>2</sub> )                        |
| HCFCs                            | hydrochlorofluorocarbons                                                                       |
| HFC-134a                         | hydrofluorocarbon-134a (1,1,1,2-tetrafluoroethane, CH <sub>2</sub> FCF <sub>3</sub> )          |
| HFC-152a                         | hydrofluorocarbon-152a (1,1-difluoroethane, CHF <sub>2</sub> CH <sub>3</sub> )                 |
| HFCs                             | hydrofluorocarbons                                                                             |
| $N_2O$                           | nitrous oxide                                                                                  |
| NO <sub>X</sub>                  | nitrogen oxides                                                                                |
| <b>O</b> <sub>3</sub>            | ozone                                                                                          |
| PFCs                             | perfluorocarbons                                                                               |
| Rn                               | radon                                                                                          |
| SF <sub>6</sub>                  | sulphur hexafluoride                                                                           |
| $SO_2$                           | sulphur dioxide                                                                                |
| TIC                              | total inorganic carbon                                                                         |
| VOCs                             | volatile organic compounds                                                                     |

| <b>UNITS:</b> |                    |
|---------------|--------------------|
| ppm           | parts per million  |
| ppb           | parts per billion  |
| ppt           | parts per trillion |

#### **Others:**

| ENSO | El Niño-Southern Oscillation |
|------|------------------------------|
| M/V  | merchant vessel              |
| R/V  | research vessel              |

#### LIST OF WMO/WDCGG PUBLICATIONS

#### **DATA REPORTING MANUAL:**

WDCGG No. 1 January 1991

#### WMO WDCGG DATA REPORT:

| WDCGG No. 2 Part A | October   | 1992 |
|--------------------|-----------|------|
| WDCGG No. 2 Part B | October   | 1992 |
| WDCGG No. 3        | October   | 1993 |
| WDCGG No. 5        | March     | 1994 |
| WDCGG No. 6        | September | 1994 |
| WDCGG No. 7        | March     | 1995 |
| WDCGG No. 9        | September | 1995 |
| WDCGG No.10        | March     | 1996 |
| WDCGG No.11        | September | 1996 |
| WDCGG No.12        | March     | 1997 |
| WDCGG No.14        | September | 1997 |
| WDCGG No.16        | March     | 1998 |
| WDCGG No.17        | September | 1998 |
| WDCGG No.18        | March     | 1999 |
| WDCGG No.20        | September | 1999 |
| WDCGG No.21        | March     | 2000 |
| WDCGG No.23        | September | 2000 |
| WDCGG No.25        | March     | 2001 |

#### ~~~~ 1990 October August 1992 1990 October August 1992 September 1992 ~ March 1993 1993 April ~ September 1993 September 1993 ~ March 1994 April 1994 ~ December 1994 January 1995 ~ June 1995 July 1995 December 1995 ~ January 1996 ~ June 1996 July 1996 ~ November 1996 December 1996 ~ June 1997 1997 December 1997 July ~ January 1998 1998 ~ June July 1998 ~ December 1998 1999 January ~ June 1999 1999 December 1999 July ~ 2000 2000 January ~ June July 2000 ~ December 2000

(period of data accepted)

#### WMO WDCGG DATA CATALOGUE:

| WDCGG No. 4 | December | 1993 |
|-------------|----------|------|
| WDCGG No.13 | March    | 1997 |
| WDCGG No.19 | March    | 1999 |
| WDCGG No.24 | March    | 2001 |

#### WMO WDCGG DATA SUMMARY:

| WDCGG No. 8 | October | 1995 |
|-------------|---------|------|
| WDCGG No.15 | March   | 1998 |
| WDCGG No.22 | March   | 2000 |
| WDCGG No.26 | March   | 2002 |
| WDCGG No.27 | March   | 2003 |
| WDCGG No.28 | March   | 2004 |
| WDCGG No.29 | March   | 2005 |
| WDCGG No.30 | March   | 2006 |
| WDCGG No.31 | March   | 2007 |
| WDCGG No.32 | March   | 2008 |
| WDCGG No.33 | March   | 2009 |
| WDCGG No.34 | March   | 2010 |
| WDCGG No.35 | March   | 2011 |
| WDCGG No.36 | March   | 2012 |
| WDCGG No.37 | March   | 2013 |
| WDCGG No.38 | March   | 2014 |
| WDCGG No.39 | March   | 2015 |
| WDCGG No.40 | March   | 2016 |
| WDCGG No.41 | March   | 2017 |

#### WMO WDCGG CD-ROM:

| CD-ROM No. 1 | March | 1995 |
|--------------|-------|------|
| CD-ROM No. 2 | March | 1996 |
| CD-ROM No. 3 | March | 1997 |
| CD-ROM No. 4 | March | 1998 |
| CD-ROM No. 5 | March | 1999 |
| CD-ROM No. 6 | March | 2000 |
| CD-ROM No. 7 | March | 2001 |
| CD-ROM No. 8 | March | 2002 |
| CD-ROM No. 9 | March | 2003 |
| CD-ROM No.10 | March | 2004 |
| CD-ROM No.11 | March | 2005 |
| CD-ROM No.12 | March | 2006 |
| CD-ROM No.13 | March | 2007 |
| CD-ROM No.14 | March | 2008 |
|              |       |      |

#### (period of data accepted)

| October | 1990 | ~ | December | 1994 |
|---------|------|---|----------|------|
| October | 1990 | ~ | June     | 1995 |
| October | 1990 | ~ | June     | 1996 |
| October | 1990 | ~ | December | 1997 |
| October | 1990 | ~ | December | 1998 |
| October | 1990 | ~ | December | 1999 |
| October | 1990 | ~ | December | 2000 |
| October | 1990 | ~ | January  | 2002 |
| October | 1990 | ~ | December | 2002 |
| October | 1990 | ~ | December | 2003 |
| October | 1990 | ~ | December | 2004 |
| October | 1990 | ~ | December | 2005 |
| October | 1990 | ~ | November | 2006 |
| October | 1990 | ~ | November | 2007 |
|         |      |   |          |      |

#### WMO WDCGG DVD:

| D:    |                                                                                     | (period                                                                                                            | of data                                                                                                                                                                                    | acc                                                                                                                                                                                                                                        | epted)                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                              |
|-------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| March | 2009                                                                                | October                                                                                                            | 1990                                                                                                                                                                                       | ~                                                                                                                                                                                                                                          | November                                                                                                                                                                                                                                                       | 2008                                                                                                                                                                                                                                                                                                                                         |
| March | 2010                                                                                | October                                                                                                            | 1990                                                                                                                                                                                       | ~                                                                                                                                                                                                                                          | November                                                                                                                                                                                                                                                       | 2009                                                                                                                                                                                                                                                                                                                                         |
| March | 2011                                                                                | October                                                                                                            | 1990                                                                                                                                                                                       | ~                                                                                                                                                                                                                                          | November                                                                                                                                                                                                                                                       | 2010                                                                                                                                                                                                                                                                                                                                         |
| March | 2012                                                                                | October                                                                                                            | 1990                                                                                                                                                                                       | ~                                                                                                                                                                                                                                          | November                                                                                                                                                                                                                                                       | 2011                                                                                                                                                                                                                                                                                                                                         |
| March | 2013                                                                                | October                                                                                                            | 1990                                                                                                                                                                                       | ~                                                                                                                                                                                                                                          | November                                                                                                                                                                                                                                                       | 2012                                                                                                                                                                                                                                                                                                                                         |
| March | 2014                                                                                | October                                                                                                            | 1990                                                                                                                                                                                       | ~                                                                                                                                                                                                                                          | November                                                                                                                                                                                                                                                       | 2013                                                                                                                                                                                                                                                                                                                                         |
| March | 2015                                                                                | October                                                                                                            | 1990                                                                                                                                                                                       | ~                                                                                                                                                                                                                                          | November                                                                                                                                                                                                                                                       | 2014                                                                                                                                                                                                                                                                                                                                         |
| March | 2016                                                                                | October                                                                                                            | 1990                                                                                                                                                                                       | ~                                                                                                                                                                                                                                          | November                                                                                                                                                                                                                                                       | 2015                                                                                                                                                                                                                                                                                                                                         |
|       | D:<br>March<br>March<br>March<br>March<br>March<br>March<br>March<br>March<br>March | D:<br>March 2009<br>March 2010<br>March 2011<br>March 2012<br>March 2013<br>March 2014<br>March 2015<br>March 2016 | D: (period<br>March 2009 October<br>March 2010 October<br>March 2011 October<br>March 2012 October<br>March 2013 October<br>March 2014 October<br>March 2015 October<br>March 2016 October | D: (period of data<br>March 2009 October 1990<br>March 2010 October 1990<br>March 2011 October 1990<br>March 2012 October 1990<br>March 2013 October 1990<br>March 2014 October 1990<br>March 2015 October 1990<br>March 2016 October 1990 | D: (period of data acc<br>March 2009 October 1990 ~<br>March 2010 October 1990 ~<br>March 2011 October 1990 ~<br>March 2012 October 1990 ~<br>March 2013 October 1990 ~<br>March 2014 October 1990 ~<br>March 2015 October 1990 ~<br>March 2016 October 1990 ~ | D: (period of data accepted)<br>March 2009 October 1990 ~ November<br>March 2010 October 1990 ~ November<br>March 2011 October 1990 ~ November<br>March 2012 October 1990 ~ November<br>March 2013 October 1990 ~ November<br>March 2014 October 1990 ~ November<br>March 2015 October 1990 ~ November<br>March 2016 October 1990 ~ November |

# REFERENCES

#### References

- Aoki, S., T. Nakazawa, S. Murayama, and S. Kawaguchi, Measurements of atmospheric methane at the Japanese Antarctic station, Syowa, *Tellus*, 44B, 273–281, 1992.
- Angert, A., S. Biraud, C. Bonfils, W. Buermann, and I. Fung, CO<sub>2</sub> seasonality indicates origins of post-Pinatubo sink, *Geophys. Res. Lett.*, **31**, L11103, doi:10.1029/2004GL019760, 2004.
- Bekki, S., K. S. Law, and J. A. Pyle, Effect of ozone depletion on atmospheric CH<sub>4</sub> and CO concentrations, *Nature*, **371**, 595–597, 1994.
- Bergamaschi, P., S. Houweling, A. Segers, M. Krol, C. Frankenberg, R. A. Scheepmaker, E. Dlugokencky, S. C. Wofsy, E. A. Kort, C. Sweeney, T. Schuck, C. Brenninkmeijer, H. Chen, V. Beck, and C. Gerbig, Atmospheric CH<sub>4</sub> in the first decade of the 21st century: Inverse modeling analysis using SCIAMACHY satellite retrievals and NOAA surface measurements, *J. Geophys. Res. Atmos.*, 118, 7350–7369, 2013.
- Boden, T. A., G. Marland, and R. J. Andres, Global, Regional, and National Fossil-Fuel CO<sub>2</sub> Emissions. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., USA, doi: 10.3334/CDIAC/00001 V2017, 2017.
- Cleveland, W. S., and S. J. Devlin, Locally weighted regression: an approach to regression analysis by local fitting, *J. Amer. Statist. Assn.*, **83**, 596–610, 1988.
- Conway, T. J., P. P. Tans, L. S. Waterman, K. W. Thoning, D. R. Kitzis, K. A. Masarie, and N. Zhang, Evidence for interannual variability of the carbon cycle from the National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostics Laboratory global air sampling network, J. Geophys. Res., 99, 22831–22855, 1994.
- Dlugokencky, E. J., L. P. Steele, P. M. Lang, and K. A. Masarie, The growth rate and distribution of atmospheric methane, *J. Geophys. Res.*, **99**, 17021– 17043, 1994.
- Dlugokencky, E. J., E. G. Dutton, P. C. Novelli, P. P. Tans, K. A. Masarie, K. O. Lantz, and S. Mardronich, Changes in CH<sub>4</sub> and CO growth rates after the eruption of Mt. Pinatubo and their link with changes in tropical tropospheric UV flux, *Geophys. Res. Lett.*, 23, 2761–2764, 1996.
- Dlugokencky, E. J., B. P. Walter, K. A. Masarie, P. M. Lang, and E. S. Kasischke, Measurements of an anomalous global methane increase during 1998, *Geophys. Res. Lett.*, 28, 499–502, 2001.
- Dlugokencky, E. J., R. C. Myers, P. M. Lang, K. A. Masarie, A. M. Crotwell, K. W. Thoning, B. D. Hall, J. W. Elkins, and L. P. Steele, Conversion of

NOAA atmospheric dry air CH<sub>4</sub> mole fractions to a gravimetrically prepared standard scale, *J. Geophys. Res.*, **110**, D18306, doi: 10.1029/2005JD006035, 2005.

- Dlugokencky, E. J., L. Bruhwiler, J. W. C. White, L. K. Emmons, P. C. Novelli, S. A. Montzka, K. A. Masarie, P. M. Lang, A. M. Crotwell, J. B. Miller, and L. V. Gatti, Observational constraints on recent increases in the atmospheric CH<sub>4</sub> burden, *Geophys. Res. Lett.*, **36**, L18803, 2009.
- Duchon, C. E., Lanczos filtering in one and two dimensions, J. Appl. Meteor., 18, 1016-1022, 1979.
- Etheridge, D. M., L. P. Steele, R. J. Francey, and R. L. Langenfelds, Atmospheric methane between 1000 A.D. and present: Evidence of anthropogenic emissions and climatic variability, *J. Geophys. Res.*, 103, 15979–15993, 1998.
- Francey, R. J., P. P. Tans, C. E. Allison, I. G. Enting, J. W. C. White, and M. Trolier, Changes in oceanic and terrestrial carbon uptake since 1982, *Nature*, **373**, 326–330, 1995.
- Gu, L., D. D. Baldocchi, S. C. Wofsy, J. W. Munger, J. J. Michalsky, S. P. Urbanski, and T. A. Boden, Response of a deciduous forest to the Mount Pinatubo eruption: enhanced photosynthesis, *Science*, **299**, 2035–2038, 2003.
- Haan, D. and D. Raynaud, Ice core record of CO variations during the last two millennia: atmospheric implications and chemical interactions within the Greenland ice, *Tellus*, **50B**, 253–262, 1998.
- Hall, B. D. (ed.), J. W. Elkins, J. H. Butler, S. A. Montzka, T. M. Thompson, L. Del Negro, G. S. Dutton, D. F. Hurst, D. B. King, E. S. Kline, L. Lock, D. MacTaggart, D. Mondeel, F. L. Moore, J. D. Nance, E. A. Ray, and P. A. Romashkin, Halocarbons and Other Atmospheric Trace Species, Section 5 in Climate Monitoring and Diagnostics Laboratory Summary Report No. 25, 1998–1999, R. S. Schnell, D. B. King, R. M. Rosson (eds.), NOAA-CMDL, Boulder, CO., USA, 2001.
- Hall, B. D., G. S. Dutton, and J. W. Elkins, The NOAA nitrous oxide standard scale for atmospheric observations, *J. Geophys. Res.*, **112**, D09305, doi:10.1029/2006JD007954, 2007.
- Hansen, J., A. Lacis, R. Ruedy, and M. Sato, Potential Climate Impact of Mount-Pinatubo Eruption, *Geophys. Res. Lett.*, **19**, 215–218, 1992.
- IPCC, Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T. F., D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley (eds.)].

Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013.

- Ishijima, K., T. Nakazawa, and S. Aoki, Variations of atmospheric nitrous oxide concentration in the northern and western Pacific, *Tellus*, **61B**, 408–415, 2009.
- Keeling, C. D., R. B. Bacastow, A. F. Carter, S. C. Piper, T. P. Whorf, M. Heimann, W. G. Mook, and H. Roeloffzen, A three-dimensional model of atmospheric CO<sub>2</sub> transport based on observed winds: 1. Analysis of observational data, in aspects of climate variability in the Pacific and the Western Americas, edited by D. H. Peterson, *Geophysical Monograph* 55, 165–236, American Geophysical Union, Washington, D.C., 1989.
- Keeling, C. D., T. P. Whorf, M. Wahlen, and J. van der Plicht, Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980, *Nature*, 375, 666–670, 1995.
- Lambert, G., P. Monfray, B. Ardouin, G. Bonsang, A. Gaudry, V. Kazan and G. Polian, Year-to-year changes in atmospheric CO<sub>2</sub>, *Tellus*, **47B**, 35–55, 1995.
- Le Quéré C., R. M. Andrew, P. Friedlingstein, S. Sitch, J. Pongratz, A. C. Manning, J. I. Korsbakken, G. P. Peters, J. G. Canadell, R. B. Jackson, T. A. Boden, P. P. Tans, O. D. Andrews, V. K. Arora, D. C. E. Bakker, L. Barbero, M. Becker, R. A. Betts, L. Bopp, F. Chevallier, L. P. Chini, P. Ciais, C. E. Cosca, J. Cross, K. Currie, T. Gasser, I. Harris, J. Hauck, V. Haverd, R. A. Houghton, C. W. Hunt, G. Hurtt, T. Ilyina, A. K. Jain, E. Kato, M. Kautz, R. F. Keeling, K. K. Goldewijk, A. Körtzinger, P. Landschützer, N. Lefèvre, A. Lenton, S. Lienert, I. Lima, D. Lombardozzi, N. Metzl, F. Millero, P. M. S. Monteiro, D. R. Munro, J. E. M. S. Nabel, S. Nakaoka, Y. Nojiri, X. A. Padín, A. Peregon, B. Pfeil, D. Pierrot, B. Poulter, G. Rehder, J. Reimer, C. Rödenbeck, J. Schwinger, R. Séférian, I. Skjelvan, B. D. Stocker, H. Tian, B. Tilbrook, I. T. van der Laan-Luijkx, G. R. van der Werf, S. van Heuven, N. Viovy, N. Vuichard, A. P. Walker, A. J. Watson, A. J. Wiltshire, S. Zaehle, and D. Zhu, Global Carbon Budget 2017, Earth Syst. Sci. Data Discuss., doi:10.5194/essd-2017-123.
- Levin, I., T. Naegler, R. Heinz, D. Osusko, E. Cuevas,
  A. Engel, J. Ilmberger, R. L. Langenfelds, B. Neininger, C. v. Rohden, L. P. Steele, R. Weller, D. E. Worthy, and S. A. Zimov, The global SF<sub>6</sub> source inferred from long-term high precision atmospheric measurements and its comparison with emission inventories, *Atmos. Chem. Phys.*, 10, 2655–2662, 2010.
- Levin, I., Earth science: The balance of the carbon budget, *Nature*, **488**, 35–36, 2012.
- Manning, A. C., and R. F. Keeling, Global oceanic and land biotic carbon sinks from the Scripps

atmospheric oxygen flask sampling network, *Tellus*, **58B**, 95–116, 2006.

- Morimoto, S., S. Aoki, T. Nakazawa, and T. Yamanouchi, Temporal variations of the carbon isotopic ratio of atmospheric methane observed Ny Ålesund, Svalbard from 1996 to at 2004. Geophys. Res. Lett., 33, L01807, doi:10.1029/2005GL024648, 2006.
- Nakazawa, T., K. Miyashita, S. Aoki, and M. Tanaka, Temporal and spatial variations of upper tropospheric and lower stratospheric carbon dioxide, *Tellus*, **43B**, 106–117, 1991.
- Nakazawa, T., S. Morimoto, S. Aoki and M. Tanaka, Time and space variations of the carbon isotopic ratio of tropospheric carbon dioxide over Japan, *Tellus*, **45B**, 258–274, 1993.
- Nakazawa, T., S. Morimoto, S. Aoki and M. Tanaka, Temporal and spatial variations of the carbon isotopic ratio of atmospheric carbon dioxide in the western Pacific region, *J. Geophys. Res.*, **102**, 1271–1285, 1997.
- Nevison, C. D., N. M. Mahowald, S. C. Doney, I. D. Lima, G. R. van der Werf, J. T. Randerson, D. F. Baker, P. Kasibhatla, and G. A. McKinley, Contribution of ocean, fossil fuel, land biosphere, and biomass burning carbon fluxes to seasonal and interannual variability in atmospheric CO<sub>2</sub>, *J. Geophys. Res.*, **113**, doi:10.1029/2007JG000408, 2008.
- Nevison, C. D., E. Dlugokencky, G. Dutton, J. W. Elkins, P. Fraser, B. Hall, P. B. Krummel, R. L. Langenfelds, S. O'Doherty, R. G. Prinn, L. P. Steele, and R. F. Weiss, Exploring causes of interannual variability in the seasonal cycles of tropospheric nitrous oxide, *Atmos. Chem. Phys.*, **11**, 3713–3730, 2011.
- Novelli, P. C., K. A. Masarie, and P. M. Lang, Distributions and recent changes of carbon monoxide in the lower troposphere, *J. Geophys. Res.*, **103**, 19015–19033, 1998.
- Novelli, P. C., K. A. Masarie, P. M. Lang, B. D. Hall, R. C. Myers, and J. W. Elkins, Reanalysis of tropospheric CO trends: Effects of the 1997–1998 wildfires, *J. Geophys. Res.*, **108**, 4464, doi:10.1029/2002JD003031, 2003.
- Prinn, R. G., J. Huang, R. F. Weiss, D. M. Cunnold, P. J. Fraser, P. G. Simmonds, A. McCulloch, C. Harth, P. Salameh, S. O'Doherty, R. H. J. Wang, L. Porter, and B. R. Miller, Evidence for substantial variations of atmospheric hydroxyl radicals in the past two decades, *Science*, **292**, 1882–1888, 2001.
- Rayner, P. J., I. G. Enting, R. J. Francey, and R. Langenfelds, Reconstructing the recent carbon cycle from atmospheric  $CO_2$ ,  $\delta^{13}C$  and  $O_2/N_2$  observations, *Tellus*, **51B**, 213–232, 1999.
- Ravishankara, A. R., J. S. Daniel, and R. W. Portmann, Nitrous Oxide (N<sub>2</sub>O): the dominant

ozone-depleting substance emitted in the 21st century, *Science*, **326**, 123-125, 2009.

- Rigby, M., R. G. Prinn, P. J. Fraser, P. G. Simmonds, R. L. Langenfelds, J. Huang, D. M. Cunnold, L. P. Steele, P. B. Krummel, R. F. Weiss, S. O'Doherty, P. K. Salameh, H. J. Wang, C. M. Harth, J. Mühle, and L. W. Porter, Renewed growth of atmospheric methane, *Geophys. Res. Lett.*, **35**, L22805, 2008.
- Saikawa, E., C. A. Schlosser, and R. G. Prinn, Global modeling of soil nitrous oxide emissions from natural processes, *Global Biogeochem. Cycles*, 27, 972–989, 2013.
- Saunois M., P. Bousquet, B. Poulter, A. Peregon, P. Ciais, J. G. Canadell, E. J. Dlugokencky, G. Etiope, Bastviken, S. Houweling, D. G Janssens-Maenhout, F. N. Tubiello, S. Castaldi, R. B. Jackson, M. Alexe, V. K. Arora, D. J. Beerling, P. Bergamaschi, D. R. Blake, G. Brailsford, V. Brovkin, L. Bruhwiler, C. Crevoisier, P. Crill, K. Covey, C. Curry, C. Frankenberg, N. Gedney, L. Höglund-Isaksson, M. Ishizawa, A. Ito, F. Joos, H. Kim, T. Kleinen, P. Krummel, J. Lamarque, R. Langenfelds, R. Locatelli, T. Machida, S. Maksyutov, K. C. McDonald, J. Marshall, J. R. Melton, I. Morino, V. Naik, S. O'Doherty, F. W. Parmentier, P. K. Patra, C. Peng, S. Peng, G. P. Peters, I. Pison, C. Prigent, R. Prinn, M. Ramonet, W. J. Riley, M. Saito, M. Santini, R. Schroeder, I. J. Simpson, R. Spahni, P. Steele, A. Takizawa, B. F. Thornton, H. Tian, Y. Tohjima, N. Viovy, A. Voulgarakis, M. van Weele, G. R. van der Werf, R. Weiss, C. Wiedinmyer, D. J. Wilton, A. Wiltshire, D. Worthy, D. Wunch, X. Xu, Y. Yoshida, B. Zhang, Z. Zhang, and Q. Zhu, The global methane budget 2000-2012, Earth Syst. Sci. Data, 8, 697-751, doi:10.5194/essd-8-697-2016, 2016.
- Seinfeld, J. H., and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, John Wiley & Sons, Inc., New York, 1326 pp., 1998.
- Stenchikov, G., A. Robock, V. Ramaswamy, M. D. Schwarzkopf, K. Hamilton, and S. Ramachandran, Arctic Oscillation response to the 1991 Mount Pinatubo eruption: Effects of volcanic aerosols and ozone depletion, J. Geophys. Res., 107, 4803, doi:10.1029/2002JD002090, 2002.
- Thompson, R. L., F. Chevallier, A. M. Crotwell, G. Dutton, R. L. Langenfelds, R. G. Prinn, R. F. Weiss, Y. Tohjima, T. Nakazawa, P. B. Krummel, L. P. Steele, P. Fraser, S. O'Doherty, K. Ishijima, and S. Aoki, Nitrous oxide emissions 1999 to 2009 from a global atmospheric inversion, *Atmos. Chem. Phys.*, 14, 1801–1817, 2014.
- Thoning, K. W., P. P. Tans, and W. D. Komhyr, Atmospheric carbon dioxide at Mauna Loa observatory: 2. Analysis of the NOAA GMCC data, 1974-1985, J. Geophys. Res., 94, 8549–8565, 1989.

- van der Werf, G. R., J. T. Randerson, L. Giglio, T. T. van Leeuwen, Y. Chen, B. M. Rogers, M. Mu, M. J. E. van Marle, D. C. Morton, G. J. Collatz, R. J. Yokelson, and P. S. Kasibhatla, Global fire emissions estimates during 1997–2016, *Earth Syst. Sci. Data*, 9, 697–720, 2017.
- WMO, Scientific assessment of ozone depletion: 1998.
   WMO global ozone research and monitoring project—Report No. 44, 2-43, World Meteorological Organization, Geneva, 1999.
- WMO, World Data Centre for Greenhouse Gases (WDCGG) Data Summary, WDCGG No. 22, 84pp, 2000.
- WMO, World Data Centre for Greenhouse Gases Data Submission and Dissemination Guide, GAW Report No. 174, WMO TD No. 1416, 2007.
- WMO, Technical Report of Global Analysis Method for Major Greenhouse Gases by the World Data Center for Greenhouse Gases, GAW Report No. 184, WMO TD No. 1473, 2009a.
- WMO, Revision of the World Data Centre for Greenhouse Gases Data Submission and Dissemination Guide, GAW Report No. 188, WMO TD No. 1507, 2009b.
- WMO, WMO Greenhouse Gas Bulletin No.9, 2013.
- WMO, WMO Greenhouse Gas Bulletin No.10, 2014.
- WMO, WMO Greenhouse Gas Bulletin No.11, 2015.
- WMO, 18th WMO/IAEA Meeting on Carbon Dioxide, Other Greenhouse Gases and Related Tracers Measurement Techniques (GGMT-2015), ed. P. Tans and C. Zellweger, GAW Report No.229, 2016a.
- WMO, WMO Greenhouse Gas Bulletin No.12, 2016b.
- WMO, WMO Global Atmosphere Watch (GAW) Implementation Plan: 2016-2023, GAW Report No.228, 2017a.
- WMO, WMO Greenhouse Gas Bulletin No.13, 2017b.
- WMO, 19th WMO/IAEA Meeting on Carbon Dioxide, Other Greenhouse Gases, and Related Measurement Techniques (GGMT-2017), 2017c.

(http://www.wmo.int/pages/prog/arep/gaw/gg mt2017.html, accessed on 15 Oct. 2018)

- Worthy, D. E. J., I. Levin, N. B. A. Trivett, A. J. Kuhlmann, J. F. Hopper, and M. K. Ernst, Seven years of continuous methane observations at a remote boreal site in Ontario, Canada, *J. Geophys. Res.*, **103**, 15995–16007, 1998.
- Yoon, J., and A. Pozzer, Model-simulated trend of surface carbon monoxide for the 2001–2010 decade, *Atmos. Chem. Phys.*, **14**, 10465–10482, 2014.
- Zeng, N., A. Mariotti, P. Wetzel, Terrestrial mechanisms of interannual CO<sub>2</sub> variability, *Global Biogeochem. Cycles*, **19**, GB1016, 2005.
- Zhao, C. L., P. P. Tans, and K. W. Thoning, A high precision manometric system for absolute

calibrations of  $CO_2$  in dry air, J. Geophys. Res., **102**, 5885–5894, 1997.