WORLD METEOROLOGICAL ORGANIZATION

GLOBAL ATMOSPHERE WATCH

WORLD DATA CENTRE FOR GREENHOUSE GASES

WMO WDCGG DATA SUMMARY

WDCGG No. 39

GAW DATA

Volume IV-Greenhouse Gases and Other Atmospheric Gases

PUBLISHED BY
JAPAN METEOROLOGICAL AGENCY
IN CO-OPERATION WITH
WORLD METEOROLOGICAL ORGANIZATION

MARCH 2015

Acknowledgements

This issue of *Data Summary* reports the latest status of greenhouse and some reactive gases in the global atmosphere. This *Data Summary* has been prepared by the World Data Centre for Greenhouse Gases (WDCGG), established under the Global Atmosphere Watch (GAW) Programme of the World Meteorological Organization (WMO) and operated by the Japan Meteorological Agency (JMA). This *Data Summary* is based on the data submitted by many contributors worldwide (Appendix: LIST OF CONTRIBUTORS). These contributors include both organizations and individuals involved in observations and research of greenhouse and some reactive gases at stations and laboratories operating within the framework of GAW and some other monitoring and research programmes. The WDCGG thanks all of these organizations and individuals, including those from the global air sampling network of the National Oceanic and Atmospheric Administration (NOAA), for their efforts in maintaining the observation programme and continuous provision of observational data. Not all of the contributors may be explicitly acknowledged in this publication, owing to lack of space, but all the organizations and individuals that have submitted data to the WDCGG are nevertheless here acknowledged as invaluable contributors to this latest issue of *Data Summary*.

CONTENTS

	Page
SUMMARY	1
1. INTRODUCTION	5
2. ANALYSIS	7
3. CARBON DIOXIDE	9
4. METHANE	17
5. NITROUS OXIDE	23
6. HALOCARBONS AND OTHER HALOGENATED SPECIES	29
7. SURFACE OZONE	35
8. CARBON MONOXIDE	39
9. NITROGEN MONOXIDE AND NITROGEN DIOXIDE	45
10. SULPHUR DIOXIDE	49
11. VOLATILE ORGANIC COMPOUNDS	53
REFERENCES	59
APPENDICES	63
CALIBRATION AND STANDARD SCALES	64
LIST OF ABBREVIATIONS IN THE CALIBRATION AND STANDARD SCALES	75
LIST OF OBSERVATIONAL STATIONS	77
LIST OF UCI SAMPLING SITES	90
LIST OF CONTRIBUTORS	92
GLOSSARY	121
LIST OF WMO/WDCCC PURLICATIONS	123

SUMMARY

This Data Summary reports the results of basic analyses of greenhouse and some reactive gas data submitted to the WMO World Data Centre for Greenhouse Gases (WDCGG) by contributing organizations and individuals. This issue covers observations from 1968 through 2013, based on data reported to the WDCGG by November 2014, except for the greenhouse gas species CO₂, CH₄, N₂O, SF₆ and halocarbons, for which the submission period ended in July 2014. The Data Summary includes analyses of global, hemispheric and latitudinal monthly mean mole fractions of greenhouse and some reactive gases calculated using data from observations at marine and continental surface-based stations, and provides current information on the state of mole fractions of these gases.

Although monthly mean mole fractions were mainly used for the analyses, the WDCGG greatly appreciates those stations that submit daily, hourly and occasional mean mole fractions, which are important for analysis of variations on shorter time scales. All data submitted to the WDCGG are available on its website, http://ds.data.jma.go.jp/gmd/wdcgg/. In this *Data Summary*, data are reported as dry air mole fractions defined as the number of molecules of a target gas species divided by the number of all molecules in the air including the target itself, but excluding water vapor. Mole fractions are expressed as parts per million (ppm), parts per billion (ppb), and parts per trillion (ppt), which correspond to the SI units of µmol/mol, nmol/mol and pmol/mol, respectively.

Variations in the mole fractions of some gases are presented as combinations of seasonal cycles and deseasonalized long-term trends. Growth rates are presented as time derivatives of the long-term trends. Global average mole fractions are presented with accompanying uncertainty. The analytical results are summarized below for each greenhouse and reactive gas.

Carbon Dioxide (CO₂)

The level of carbon dioxide (CO₂), which contributes the most to increases in anthropogenic induced radiative forcing, has been increasing since the beginning of the industrial era. The global average mole fraction of CO₂ reached a new high of 396.0±0.1 ppm in 2013, which constitutes 142% of the pre-industrial level (in 1750). The annual average increase of 2.9 ppm from 2012 to 2013 was the largest year to year change in the period 1984 to 2013, and much greater than the average growth rate for the 1990s (about 1.5 ppm/year) and that for the past decade (about 2.1 ppm/year).

The global growth rate of CO₂ has a significant

interannual variability driven by natural processes. Interannual changes higher than 2 ppm/year in 1987/1988, 1997/1998, 2002/2003 and 2009/2010 resulted from warmer conditions caused by El Niño-Southern Oscillation (ENSO) events. anomalously strong El Niño event in 1997/1998 resulted in greater annual increases in CO₂ worldwide in 1998 than during any other one-year period. The high growth rate in 2006 may have been related to the global high temperature during the same year. The high growth rate in 2012/2013 may be the result of small changes in fluxes between the atmosphere and terrestrial biosphere (WMO, 2014). The exceptionally low growth rate in 1992, including negative values in northern high latitudes, may have been due to low global temperatures following the eruption of Mount Pinatubo in 1991. Variations in CO₂ mole fraction can be seen both on seasonal and long-term scales. The seasonal amplitudes are large in northern high and mid-latitudes and small in the Southern Hemisphere. In southern low latitudes, there is no clear annual cycle, but a semiannual cycle can be determined.

Methane (CH₄)

Methane (CH₄) is the second most significant greenhouse gas which is largely influenced by anthropogenic activity and whose level has been increasing since the beginning of the industrial era. The annual average mole fraction was 1824±2 ppb in 2013, an increase of 6 ppb since 2012. The mole fraction is now 253% of that in the pre-industrial period. This is the seventh year of marked methane increases since levelling-off at the beginning of this century.

The latitudinal gradient of CH₄ mole fraction is large from the northern mid-latitudes to the tropics, suggesting that the major sources of CH₄ are located in the Northern Hemisphere.

CH₄ growth rates decreased significantly in some years, including 1992, when negative values were recorded in northern high and mid-latitudes. However, both hemispheres experienced high growth rates in 1998, caused by the higher than average global mean temperature. The global growth rates were generally low from 1999 to 2006, except during the El Niño event of 2002/2003. The global growth rate averaged over the period 1984-1990 was 11.7 ppb/year, but decreased markedly in the 1990s. The mean annual absolute increase during the last 10 years was 3.8 ppb/year, but in the last seven years through 2013, the global mole fraction increased by 5.6 ppb/year.

CH₄ mole fractions vary seasonally, being relatively high in winter and low in summer. Unlike CO₂, the seasonal amplitudes of CH₄ are large, not only in the

Northern Hemisphere but also in southern high and mid-latitudes which are associated with methane sinks. In southern low latitudes, a distinct secondary maximum in boreal winter overlies the annual cycle.

Nitrous Oxide (N₂O)

Nitrous oxide (N_2O) is an important greenhouse gas whose level is increasing globally. N_2O data submitted to the WDCGG show that mole fractions are increasing in both hemispheres. The global mean mole fraction reached a new high of 325.9 ± 0.1 ppb in 2013, which is 0.8 ppb higher than that in the previous year. This mole fraction corresponds to 121% of that in the pre-industrial period. The mean annual absolute increase during the last 10 years was 0.82 ppb/year and the inter-hemispheric gradient in N_2O is 1.0 ppb (averaged over the years 1980 to 2013), indicating that the majority of N_2O sources are situated in the Northern Hemisphere.

Halocarbons and Other Halogenated Species

Halocarbons, most of which are anthropogenic and generated since the 20th century, are potent greenhouse gases, with some also acting as ozone-depleting compounds. Levels of some halocarbons (*e.g.* CFCs) increased in the 1970s and 1980s, but this increase has almost ceased by now, due to the production and consumption control of halocarbons under the Montreal Protocol on Substances that Deplete the Ozone Layer and its subsequent Adjustments and Amendments. However, some substances targeted by the Kyoto Protocol but not regulated by the Montreal Protocol, such as HFCs and SF₆, are increasing.

The mole fraction of CFC-11 peaked around 1992 and then started decreasing. The mole fraction of CFC-12 increased until around 2005 and then started decreasing gradually. The mole fraction of CFC-113 stopped increasing in the 1990s, followed by a slight decrease over about twenty years. The mole fractions of HCFCs, used mainly as substitutes for CFCs, have increased significantly during the last decade. The growth of HCFC-141b decelerated around 2005, but has accelerated over the last few years. The mole fraction of Halon-1211 has decreased since 2005, whereas the mole fraction of Halon-1301 is increasing. The mole fraction of CCl₄ was maximal around 1991 and has since decreased slowly. The mole fraction of CH₃CCl₃ peaked around 1992 and decreased thereafter. The mole fractions of HFC-134a, HFC-152a and SF₆ are increasing, but the growth of HFC-152a decelerated in the second half of the decade.

Surface Ozone (O₃)

Ozone (O₃) plays important roles in the atmospheric environment through radiative and chemical processes. It absorbs solar UV radiation in the stratosphere, influencing the vertical temperature profile as well as

terrestrial IR radiation, and contributing to the greenhouse effect as a greenhouse gas. Ozone is also involved in the chemical transformations of the primary air pollutants, as its mole fraction in the boundary layer serves as an indicator of air quality.

The mole fraction of O_3 near the surface, so-called surface ozone, reflects various processes. While some of the O_3 in the troposphere comes from the stratosphere, the rest is chemically produced in the troposphere through oxidation of CO or hydrocarbons in the presence of NO_x .

The mole fraction of surface ozone is measured at many locations in various environments. Continuous ozone observations are reported mostly as wet mole fraction. Due to uneven geographic distribution of surface ozone, it is difficult to identify its global long-term trend (WMO, 2011b).

Carbon Monoxide (CO)

Carbon monoxide (CO) is not a greenhouse gas itself but influences the mole fractions of greenhouse gases by affecting hydroxyl radicals (OH). Beginning in 1950, the CO mole fraction increased at a rate of 1% per year but started to decrease in the late 1980s (WMO, 1999). In 2013, the global mean mole fraction of CO was about 90±2 ppb. The mole fraction is high in the Northern Hemisphere and low in the Southern Hemisphere, suggesting substantial anthropogenic emissions in the Northern Hemisphere.

There is a large interannual variability of CO growth rates. The growth rate increases are usually attributed to biomass burning emissions during El Niño conditions.

The monthly mean mole fractions show seasonal variations, with large amplitudes in the Northern Hemisphere and small amplitudes in the Southern Hemisphere with opposite phase.

Nitrogen Monoxide (NO) and Nitrogen Dioxide (NO₂)

Nitrogen oxides (NO_x, *i.e.*, NO and NO₂) are not greenhouse gases, but they are involved in the photochemical production of ozone in the troposphere. In the presence of NO_x, CO and hydrocarbons are oxidized to produce ozone (O₃), which affects the Earth's radiative balance as a greenhouse gas and the oxidization capacity of the atmosphere by reproducing OH

Most of the stations that have so far reported NO_x data to the WDCGG are located in Europe. NO_x has a large temporal and spatial variability, and it is difficult to identify its long-term global trend based on a spatially limited dataset.

Sulphur Dioxide (SO₂)

Sulphur dioxide (SO₂) is not a greenhouse gas but a precursor of atmospheric sulphate aerosols. Sulphate

aerosols are produced by SO_2 oxidation through photochemical gas-to-particle conversion. SO_2 has also been a major source of acid rain and deposition throughout the industrial era.

Most of the stations reporting SO₂ data to the WDCGG are located in Europe, and it is difficult to identify its long-term global trend based on a spatially limited dataset.

Volatile Organic Compounds (VOCs)

Volatile organic compounds (VOCs) are organic chemicals that easily evaporate or sublimate at ordinary atmospheric temperatures (vapor pressure ≥ 0.01 kPa at 20°C). Many are in the form of non-methane hydrocarbons (NMHCs) of different complexity including aliphatics and aromatics which dominate anthropogenic emissions, and unsaturated molecules including terpenes which dominate natural emissions. They also exist as oxygenated hydrocarbons such as acetone and methanol, and sulphur-containing molecules such as dimethyl sulphide.

Although they are not important greenhouse gases in themselves, they are of interest to Global Atmosphere Watch (GAW) because of their environmental impacts, including ozone production and precursors to aerosols. Their main interest to GAW is as tracers of processes which either produce or destroy other major species in the atmosphere measured by GAW. An example is given in chapter 11 of how ethane measurements increase understanding of the behavior of methane.

In its role as the World Data Centre for reactive gases and GHGs, as of November 2014, WDCGG records 53 individual species of VOCs from which a subset, widespread throughout the global atmosphere has been selected as a focus for the GAW VOC Programme. Temporal coverage of VOC measurements has grown extensively over the last decade, since a global flask network came into operation in 2005, supplementing the longer series of measurements made at a few continental sites.

In this 39th edition of the WDCGG Data Summary, global analyses are performed for ethane and propane with their relatively long lifetime and wide measurement network. The data coverage in the analyses was remarkably expanded from the last issue with including the European Monitoring and Evaluation Programme (EMEP) non-GAW data and the massive dataset newly submitted from the Department of Chemistry, University of California, Irvine (UCI).

Ethane mole fractions are relatively high in winter and low in summer. The seasonal amplitudes are large in northern high and mid-latitudes but very small in the southern latitudes. Observed seasonal differences are connected with photochemical processes, whereas hemispheric differences indicate the majority of ethane sources in northern latitudes. The propane distribution shows features similar to those of ethane albeit with greater seasonality and more pronounced latitudinal gradients in the Northern Hemisphere during winter. This greater seasonality is mainly because of its higher reactivity. Also, due to its shorter atmospheric lifetime compared to ethane, the Northern Hemisphere seasonal cycle of propane shows a maximum close to mid-winter.

1. INTRODUCTION

Human activities have had major impacts on the global environment. Since the beginning of the industrial era, mankind has increasingly made use of land, water, minerals and other natural resources, and continuous growth of the world human population and economies may further increase our impact on the environment. As the climate, biogeochemical processes and natural ecosystems are closely interlinked, changes in any one of these may affect the others and be detrimental to humans Emissions of anthropogenic and other organisms. gaseous species and particulate matter alter the energy balance of the atmosphere, which in turn has implications for the multiple interactions within the complex Earth's system. These interactions are not fully understood, partly due to the lack of high quality observations.

The World Meteorological Organization (WMO) established the Global Atmosphere Watch (GAW) Programme in 1989 to promote systematic and reliable observations of the global environment, including but not limited to greenhouse gases (e.g., CO2, CH4, CFCs, and N₂O) and some reactive gases (e.g., O₃, CO, VOCs, NO_x, and SO₂) in the atmosphere. In October 1990, WMO designated the Japan Meteorological Agency (JMA) in Tokyo to serve as the World Data Centre for Greenhouse Gases (WDCGG). The WDCGG is responsible for collecting, archiving and providing data on greenhouse and reactive gases in the atmosphere and oceans from a number of observational sites throughout the world that participate in GAW and other scientific monitoring programmes (Appendix: LIST OF OBSERVATIONAL STATIONS). In August 2002, the WDCGG took over the role of the World Data Centre for Surface Ozone from the Norwegian Institute for Air Research (NILU).

With regard to the issue of climate change the Kyoto Protocol to the United Nations Framework Convention on Climate Change came into force in February 2005. In March 2006, WMO commenced annual publication of the WMO Greenhouse Gas Bulletin, which summarizes the state of greenhouse gases in the atmosphere. The tenth issue of the Bulletin was published in November 2014. The WDCGG contributes to the production of the Bulletin through timely and adequate collection and analysis of data in cooperation with the contributors of the data.

Since its establishment, the WDCGG has provided its users with data and other information through its regular publications, including the Data Summary and DVD (Appendix: LIST OF WMO **WDCGG** In accordance with the GAW PUBLICATIONS). Strategic Plan: (2008-2015) and its Addendum, all data and information have been made available on the WDCGG web site, improving the accessibility of data, information and products (WMO, 2007a; WMO, 2011a). The WDCGG published the Data Submission and Dissemination Guide in 2007 (WMO, 2007b), which, with its revision in 2009 (WMO, 2009b), is designed to facilitate submission of observational data and provide access to archived data in the WDCGG. Clear guidelines for data submission are included in the measurement guidelines published by GAW for the variables, which are under the responsibility of WDCGG.

The GAW Strategic Plan requests that World Data Centres assist data users by providing the data and analysis related to atmospheric observations. To this end, the WDCGG provides global and integrated diagnostics on the state of greenhouse and some reactive gases as analytical information in the *Data Summary*. The WDCGG global analysis method has been described in a GAW technical report (WMO, 2009a). The content of the *Data Summary* is revised and improved based on comments from data contributors and scientists. We hope the diagnostic information presented here will promote the use of data on greenhouse and reactive gases and will enhance appreciation of the value of the GAW Programme.

All users are required to accept the following statement endorsed by the Commission for Atmospheric Sciences (CAS) at its thirteenth session: "For scientific purposes, access to these data is unlimited and provided without By their use you accept that an offer of co-authorship will be made through personal contact with the data providers or owners whenever substantial use is made of their data. In all cases, an acknowledgement must be made to the data providers or owners and to the data centre when these data are used within a publication." The WDCGG requests data users to make appropriate The principal investigators and acknowledgements. other contacts can be obtained from the WDCGG website, as well as from the GAW Station Information System (GAWSIS) website, http://gaw.empa.ch/gawsis/. Information on these websites is updated in cooperation with the data contributors and the WMO Secretariat.

Finally, the WDCGG would like to thank all data contributors worldwide, including those involved in on-site measurements, for their efforts in maintaining the observational programmes and for continuous data provision.

Mailing address:

WMO World Data Centre for Greenhouse Gases (WDCGG)

c/o Japan Meteorological Agency

1-3-4, Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan

E-mail: wdcgg@met.kishou.go.jp

Telephone: +81-3-3287-3439 Facsimile: +81-3-3211-4640

Web Site: http://ds.data.jma.go.jp/gmd/wdcgg/

2. ANALYSIS

The WDCGG gathers, archives and provides observational data on the mole fractions of greenhouse and some reactive gases, and publishes diagnostic information on these gases based on the reported data.

The long-term trends and seasonal variations in the mole fractions of CO₂, CH₄, N₂O and CO are calculated for the whole globe (global means) and for latitudinal belts (zonal means). Global long-term trends in the surface O₃, are not analyzed due to its substantial spatial gradients, and its uneven geographic distribution which is poorly covered by observational sites. Zonal mean time series for selected VOCs (ethane and propane) are also calculated. For halocarbons, NO_x and SO₂, only monthly mean mole fractions over time are presented without global, hemispheric or zonal averaging, due to insufficient number of reporting sites for each compound.

Mole fractions are expressed as parts per million (ppm), parts per billion (ppb), and parts per trillion (ppt), which correspond to the SI units of µmol/mol, nmol/mol and pmol/mol, respectively.

The method of analysis for CO₂, CH₄, N₂O and CO is summarized below. The details of the global analysis method are provided in the *Technical Report* of Global Analysis Method for Major Greenhouse Gases by the World Data Centre for Greenhouse Gases, published as a GAW technical report (WMO, 2009a). Additional uncertainty can be expected in the result of CO global analysis due to diversity of scales. When assessing long-term trends for CO₂, CH₄ and N₂O, the growth rates at both ends of the period were assumed to be simple linear extensions of the adjacent year, thus avoiding end effects. For simplicity, the rates for the rest of the period were approximated using linear functions.

(1) Site selection

For CO₂, CH₄ and N₂O, the diagnostic analyses, including global, hemispheric and zonal means, were based on data from sites that have adopted a standard scale traceable to the Primary Standard designated by WMO. These analyses also utilize data on other standard scales that are convertible to the WMO scale through a proven equation. Letters informing data submitters of the most recent WMO scales are sent out regularly by the WDCGG as well as discussed at the regular expert meetings (WMO, 2014a).

Selection of observational sites is also based on whether they provide data representing a reasonably large geographical area, considering the fact that some sites may be susceptible to local sources and sinks. Sites are selected objectively using data submitted to the WDCGG. For CO₂, CH₄ and CO, only those sites that provide annual mean mole fractions falling within

a range of $\pm 3\sigma$ from a curve fitted to the LOESS model curve (Cleveland and Devlin, 1988) have been selected, with outliers rejected in an iterative manner. This procedure does not affect the datasets residing in the WDCGG, and these data may be useful for purposes other than global analysis, such as identification of sources and sinks.

The sites selected according to the above criteria are marked with asterisks in Plate 3.1 for CO_2 , Plate 4.1 for CH_4 , Plate 5.1 for N_2O and Plate 8.1 for CO, which represent 124 (65%), 121 (74%), 33 (39%) and 113 (78%) of the submitted datasets respectively (detailed in 'LIST OF OBSERVATIONAL STATIONS' in this issue).

(2) Analysis of long-term trends

The mole fractions of greenhouse and reactive gases over time, measured under unpolluted conditions, exhibit variations on different time scales. The two major components are seasonal variations and long-term trends. Several attempts have been made to separate these various scales from the measured data, including objective curve fitting (Keeling *et al.*, 1989), digital filtering (Thoning *et al.*, 1989; Nakazawa *et al.*, 1991), or both (Conway *et al.*, 1994; Dlugokencky *et al.*, 1994).

In this report, seasonal variations derived from components of Fourier harmonics and long-term trends are extracted by low-pass filtering with a cut-off frequency of 0.48 year⁻¹ for each selected site. Details are described in WDCGG *Data Summary* No. 22 (WMO, 2000).

(3) Estimation for missing periods and gaps

The number and distribution of sites used to assess trends during the analysis period should be kept as invariable as possible to avoid the effects of changes in the availability of data over time. However, only a small number of sites provided data throughout the entire analysis period; others may have covered shorter periods or had gaps in measurements due to different reasons. To use as many sites as possible, data for missing values are constructed using interpolation and extrapolation in the calculation of zonal means as described below.

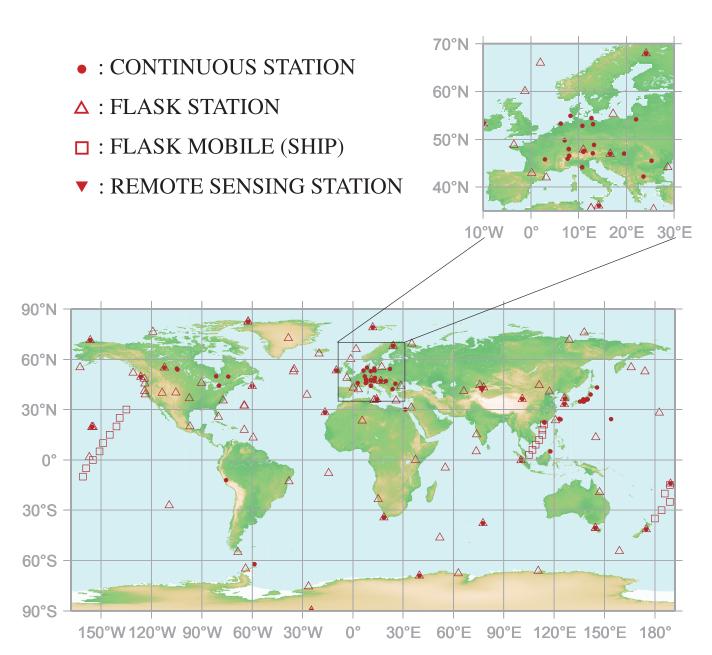
Gaps in some data were filled by linear interpolation based on available data, by subtracting the seasonal variation calculated from the longest consecutive period of data with Lanczos filters (Duchon, 1979). The subtracted variation was added back to the data to obtain estimated mole fractions in a single sequence.

In the case of extrapolation, long-term trends from the existing or interpolated series of data were extrapolated based on zonal mean growth rates calculated from other sites in the same latitudinal zone. The seasonal variation was added to the extrapolated long-term trend to obtain estimated mole fractions for the entire period of analysis.

Using these statistical procedures, the future addition of new stations should not affect the consistency in global estimates over time.

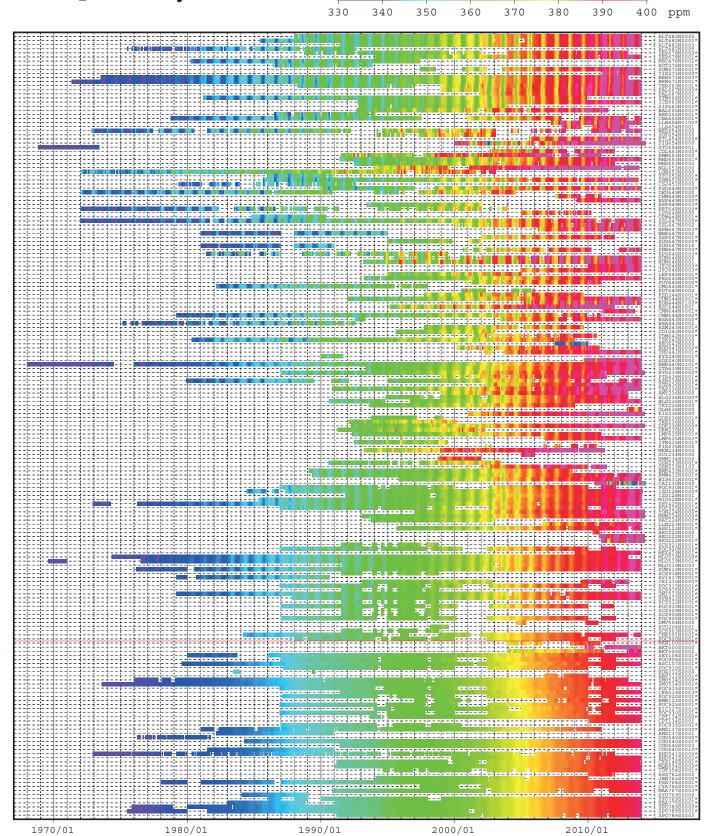
Nevertheless, while adding new sites in the analysis WDCGG performs calculations both with and without the new information to ensure the consistency of the global average calculations.

(4) Calculation of global, hemispheric and zonal means

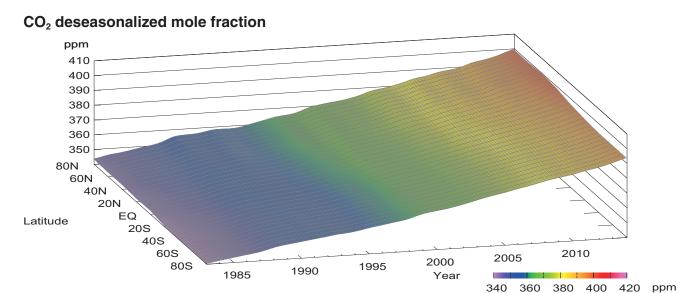

Zonal means were calculated by determining the arithmetic average of the mole fractions in each latitudinal zone, based on consistent datasets derived as above

Global and hemispheric means were calculated as the weighted averages of the zonal means taking account of the area of each latitudinal zone.

Deseasonalized long-term trends and growth rates for the globe, each hemisphere and each latitudinal zone were calculated from the global, hemispheric and zonal means, respectively, using the low-pass filter mentioned above and the time derivatives after filtering.


Error ranges estimated by a bootstrap method (Conway *et al.*, 1994) are included with the global means of major GHGs (CO₂, CH₄, N₂O and CO), where uncertainty is estimated as the standard deviation of many global means calculated by each bootstrap network.

3.
CARBON DIOXIDE
(CO₂)


This map shows locations of the stations that have submitted data for monthly mean mole fractions.

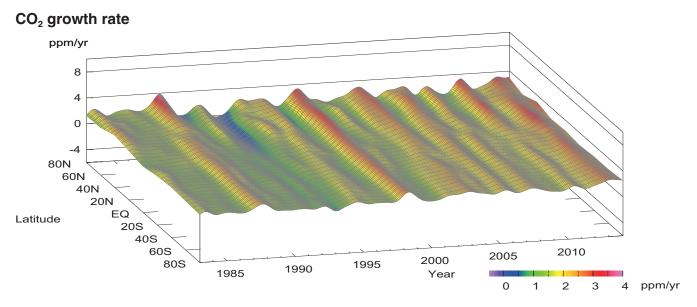

CO₂ Monthly Data

Plate 3.1 Monthly mean CO₂ mole fractions that have been reported to the WDCGG. The mole fractions are illustrated in different colors. The sites are listed in order from north to south. The red line indicates the equator. In cases where data are reported for two or three different altitudes, only the data at the highest altitudes are illustrated. In cases where monthly means are not reported, the WDCGG calculates them from hourly or other mole fractions reported to the WDCGG by simple arithmetic mean. The data from the sites with an asterisk at the end of the station index were used for the analyses shown in Plate 3.2. (see Chapter 2)

CO₂ mole fraction ppm 410 400 390 380 370 360 350 340 80N 60N 40N 20N EQ Latitude 20S 40S 60S 2010 2005 2000 80S 1995 1990 1985 Year 340 360 380 400 ppm

Plate 3.2 Variation of zonally averaged monthly mean CO_2 mole fractions (top), deseasonalized long-term trends (middle), and growth rates (bottom). The zonally averaged mole fractions were calculated for each 20° zone. The deseasonalized trends and growth rates were derived as described in Chapter 2.

3. CARBON DIOXIDE (CO₂)

Basic information on CO₂ with regard to environmental issues

Carbon dioxide (CO_2) has strong absorption bands in the infrared region and is the biggest anthropogenic contributor to anthropogenic greenhouse effect. CO_2 accounts for about 65% of total increase in the radiative forcing (since 1750) due to long-lived greenhouse gases in the atmosphere (WMO, 2014b). It is responsible for 84% of the increase in radiative forcing over the past decade and 83% over the past five years.

The balance of the fluxes between the atmosphere, the oceans and the biosphere determines the mole fraction of CO₂ in the atmosphere. An amount of 515 [445 to 585] PgC was emitted between 1870 and 2011 (IPCC, 2013) and annual anthropogenic emissions mainly due to fossil fuel combustion and cement production reached 9.7±0.5 PgC in 2012 (http://www.globalcarbonproject.org/). Carbon in the atmosphere is exchanged with two other large reservoirs, the terrestrial biosphere and the oceans. CO₂ exchanges between the atmosphere and terrestrial biosphere occur mainly through absorption by photosynthesis and emission from the respiration of plants and the decomposition of organic soils. These biogenic activities vary seasonally, resulting in large seasonal variations in the level of CO₂. The direction of CO₂ exchange between the atmosphere and oceans is determined by the gradient of CO₂ mole fraction, and varies in time and space.

The current mole fractions of atmospheric CO₂ far exceed historic records, dating back at least 2.1 million years (Tans, 2009). Based on the results of ice core studies, the mole fraction of atmospheric CO2 in pre-industrial times was about 278 ppm (IPCC, 2013). The emission of CO₂ due to human activities has increased dramatically since the beginning of the industrial era, impacting CO₂ exchange rates between different reservoirs and CO2 levels not only in the atmosphere but in the oceans and terrestrial biosphere. The global carbon cycle, which is comprised mainly of CO₂, is not fully understood. About half of anthropogenic CO₂ emissions has remained in the atmosphere, with the remainder removed by sinks, including the terrestrial biosphere and oceans. However, the amount of CO₂ removed from the atmosphere varies significantly over time (Figure 3.1) without noticeable trend (Levin, 2012).

Carbon isotopic studies have shown the importance of the terrestrial biosphere and oceans as sources and sinks of CO₂ (Francey *et al.*, 1995; Keeling *et al.*, 1995; and Nakazawa *et al.*, 1993, 1997). In contrast, the atmospheric content of O₂ depends primarily on its removal by the burning of fossil fuels and on its release

from the terrestrial biosphere. Therefore, the uptake of carbon by the terrestrial biosphere and oceans can be estimated from the combination of measurements of O_2 (O_2/N_2) and CO_2 (Manning and Keeling, 2006; WMO, 2014b). A quasi-equilibrium amount of CO_2 is expected to be retained in the atmosphere by the end of the millennium that is surprisingly large: typically 40% of the peak concentration enhancement over pre-industrial values (278 ppm) (Solomon *et al.*, 2009).

Large amounts of CO_2 are exchanged among the reservoirs in nature, and the global carbon cycle is coupled with the climate system on seasonal, yearly and decadal time scales. Complete understanding of the global carbon cycle is essential for estimating future CO_2 mole fractions in the atmosphere.

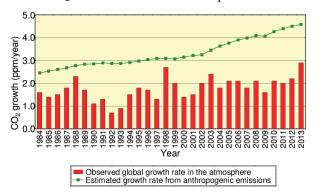


Fig. 3.1 Annual mean growth rates of CO₂ in the atmosphere, calculated from observational data (red columns) and from data for anthropogenic emissions (green curve). The estimated growth rates were calculated using CO2 emissions as a proxy (from CDIAC, Boden et al., 2013). The values from 2011 to 2013 are estimations of Carbon Dioxide Information Analysis Center (CDIAC), expressed as moles divided by the total mass of gas in the atmosphere (5.2 petatonnes) converted to moles based on the mean molar mass of dry air (about 29.0 g/mol). The observed growth rates were calculated by the WDCGG. The observed CO₂ abundance is expressed as mole fraction with respect to dry air, while the CO₂ amount calculated from anthropogenic emissions is based on the atmosphere, including water vapor, usually in a proportion less than 1%.

Mole fractions of CO₂ can be analyzed utilizing data submitted to the WDCGG from fixed stations and some ships. The observational sites from which data were used for the analysis are shown on the map at the beginning of this chapter. They include fixed stations performing continuous measurements as well as flask-sampling stations, including those in the NOAA/ESRL cooperative air sampling network. In

addition, mobile platforms such as ships and aircraft and other stations observing on an event basis report their data to the WDCGG (see Appendix: LIST OF OBSERVATIONAL STATIONS), which are not used for global analysis.

Annual variation of CO₂ mole fraction in the atmosphere

The monthly mean mole fractions of CO2 used in the analysis are shown in Plate 3.1, with mole fraction levels illustrated in different colors. hemispheric and zonal mean mole fractions were analyzed based on data from selected stations under unpolluted conditions (see the caption for Plate 3.1). Zonally averaged mole fractions of atmospheric CO₂, together with their deseasonalized components and growth rates, are shown as three-dimensional representations in Plate 3.2. These plots show that the seasonal variations in mole fraction are large in northern high and mid-latitudes, but are indistinct in the Southern Hemisphere. The increases in the Northern Hemisphere precede those in the Southern Hemisphere by one or two years, and the interannual variations in growth rate are larger in the Northern Hemisphere.

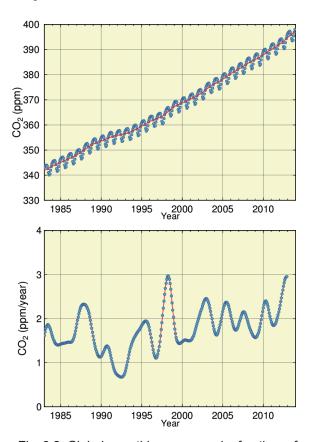


Fig. 3.2 Global monthly mean mole fraction of $\rm CO_2$ from 1983 to 2013, including deseasonalized long-term trend shown as a red line (top) and annual growth rate (bottom).

Figure 3.2 shows global monthly mean CO_2 mole fractions and their growth rates from 1983 to 2013. The global average mole fraction reached a new high of 396.0 \pm 0.1 ppm in 2013, which is 142% of the pre-industrial level of 278 ppm. The 2.9 ppm annual increase in 2012-2013 was the largest year to year change in the period 1984 to 2013 and much greater than the average growth rate for the 1990s (about 1.5 ppm/year) and that of the past decade (about 2.1 ppm/year).

The global growth rate shows large interannual variations, with an instantaneous maximum of about 3 ppm/year in 1998 and a minimum below 1 ppm/year in 1992. There were short periods of high rates in 1987/1988, 1997/1998, 2002/2003, 2005/2006, 2007, 2009/2010 and 2012/2013.

Figure 3.3 shows monthly mean mole fractions and long-term trends from 1983 to 2013 for each 30° latitudinal zone, indicating that there were clear long-term increases in both hemispheres and seasonal variations in the Northern Hemisphere.

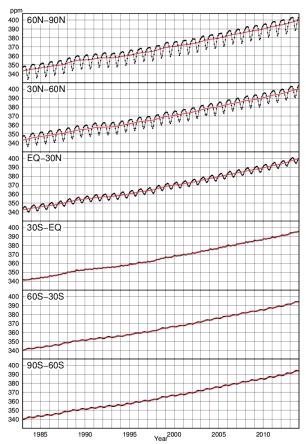


Fig. 3.3 Monthly mean mole fractions of CO₂ from 1983 to 2013 for each 30° latitudinal zone (dots) and their deseasonalized long-term trends (red lines).

As shown in Figure 3.4, the growth rates for each 30° latitudinal zone fluctuated between -0.3 and 3.6

ppm/year, with the largest interannual variability in northern high latitudes. High growth rates for all 30° latitudinal zones were observed in 1987/1988, 1997/1998, 2002/2003, 2005, 2007, 2010 and 2012/2013, with negative rates recorded in northern high latitudes in 1992.

Changes in growth rate are partly associated with ENSO. The El Niño events in 1982/1983, 1986–1988, 1991/1992, 1997/1998, 2002/2003 and 2009/2010 coincided with high growth rates of CO₂, apart from in 1992, 2005/2006 and 2012/2013. The growth rates of CO₂ observed by aircraft at high altitudes (8–13 km) over the Pacific Ocean were also associated with ENSO (Matsueda *et al.*, 2002).

During El Niño events, the up-welling of CO₂-rich ocean water in the eastern equatorial Pacific is suppressed, resulting in reduced CO₂ emissions from El Niño events induce high temperature anomalies in many areas, particularly in the tropics, resulting in increased CO₂ emissions from the terrestrial biosphere due to the enhanced respiration of plants and activated decomposition of organic matter in soil (Keeling et al., 1995). This effect is enhanced by the suppression of plant photosynthesis in areas of anomalously low precipitation, particularly in the These oceanic and terrestrial processes during El Niño events have opposing effects, but Heimann and Reichstein (2008) suggested that the latter was the main cause of the variation in the CO₂ growth rate.

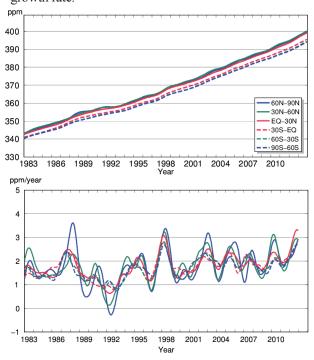


Fig. 3.4 Long-term trends in the mole fractions of CO_2 for each 30° latitudinal zone (top) and their growth rates (bottom) .

However, an exceptionally low CO₂ growth rate

occurred during the El Niño event in 1991/1992. The injection of 14 - 20 megatonnes (Mt) of SO₂ aerosols into the stratosphere by the Mount Pinatubo eruption in June 1991 affected the radiation budget and atmospheric circulation (Hansen *et al.*, 1992; Stenchikov *et al.*, 2002), resulting in a drop in global temperature. Angert *et al.* (2004) suggested that the low CO₂ growth rate observed during this El Niño event was due to reduced CO₂ emissions caused by consequent changes in the respiration of terrestrial vegetation and the decomposition of organic matter (Conway *et al.*, 1994; Lambert *et al.*, 1995; Rayner *et al.*, 1999), and by enhanced CO₂ absorption due to intensive photosynthesis caused by an increase in diffuse radiation (Gu *et al.*, 2003).

In contrast, exceptionally high CO₂ growth rates occurred in 2005/2006 and 2012/2013. That in the former period may have been related to the global high temperature. That in the latter period may be the result of small changes in fluxes between the atmosphere and terrestrial biosphere (WMO, 2014b). Typically, ~120 PgC is exchanged between the atmosphere and terrestrial biosphere annually. This accounts for the observed seasonal cycle in atmospheric CO₂ abundance in the Northern Hemisphere. Small interannual variability (1-2%) in these fluxes, either from a change in the balance between photosynthesis and respiration or the amount of biomass burned, have a large impact on the growth rate of CO₂ (~4 PgC /yr).

Seasonal cycle of CO₂ mole fraction in the atmosphere

Figure 3.5 shows average seasonal cycles in the mole fraction of CO₂ for each 30° latitudinal zone. The seasonal cycles are clearly large in amplitude in northern high and mid-latitudes and small in the Southern Hemisphere. The seasonal cycle in the Northern Hemisphere is mainly dominated by the land biosphere (Nevison *et al.*, 2008), and it is characterized by rapid decreases from June to August and large returns from September to December.

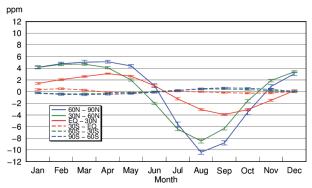


Fig. 3.5 Average seasonal cycles in the mole fractions of CO_2 for each 30° latitudinal zone obtained by subtracting long-term trends from the zonal mean time series. Vertical error bars represent the range of $\pm 1\sigma$ which is calculated for each month. (Averages from 1983 to 2013)

The mole fractions of CO_2 in northern low latitudes lagged behind that in high latitudes by one or two months. Minimum values appeared in August in northern high and mid-latitudes and in September in northern low latitudes.

In the Southern Hemisphere, seasonal variations showed small amplitudes with a half-year delay due to small amounts of net emission and absorption by the terrestrial biosphere. Seasonal variations in both northern and southern mid-latitudes were apparently superimposed in southern low latitudes (0–30°S). The direct influence of sources and sinks in the Southern Hemisphere may be partially cancelled by the propagation of an antiphase variation from the Northern Hemisphere.

Figure 3.6 shows latitudinal distributions of the mole fractions of CO_2 in January, April, July and October 2013, from sites marked with an asterisk in Plate 3.1. In latitudes north of 30°N, the mole fractions increased towards higher latitudes in January and April, and decreased towards higher latitudes in July, corresponding to the large seasonal variations in northern high and mid-latitudes, variations associated with activities of the terrestrial biosphere.

It can be seen that during periods of seasonal maximum many stations in the Northern Hemisphere observed monthly mean CO₂ mole fractions above the "symbolic" threshold of 400 ppm.

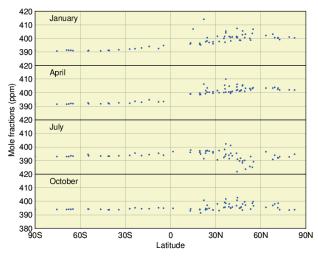
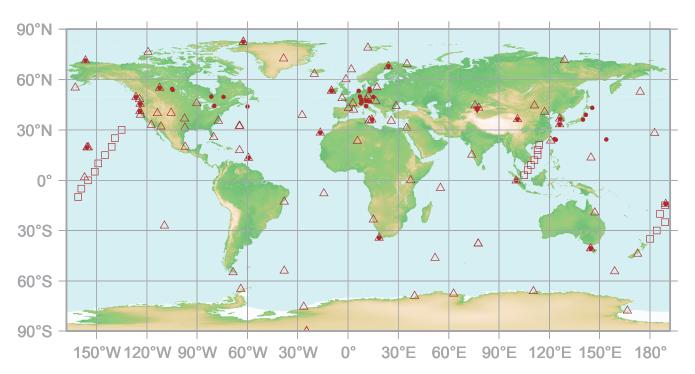
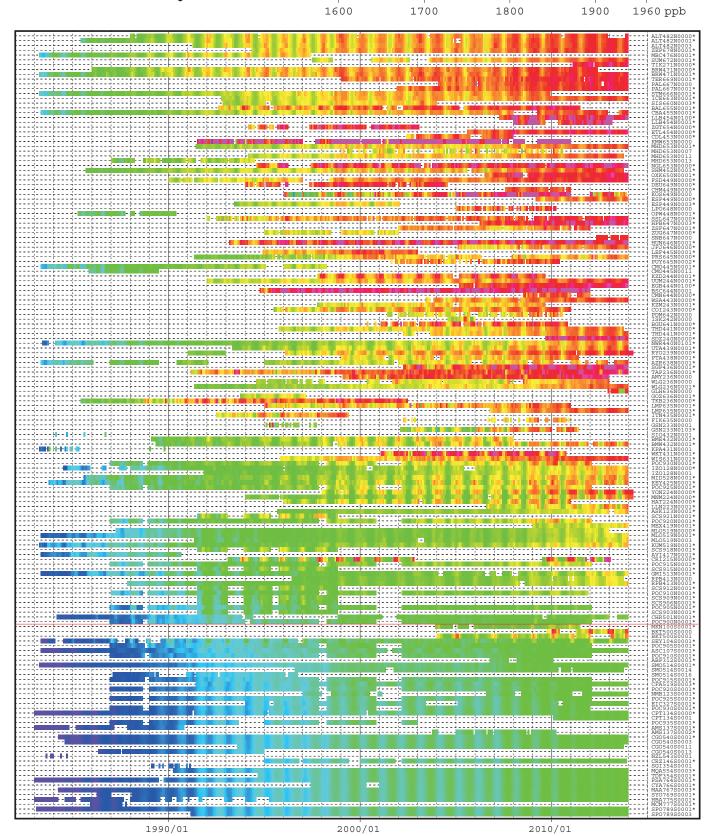


Fig. 3.6 Latitudinal distributions of the monthly mean mole fractions of CO₂ in January, April, July and October 2013.


4. METHANE (CH₄)

• : CONTINUOUS STATION

△ : FLASK STATION


□ : FLASK MOBILE (SHIP)

▼ : REMOTE SENSING STATION

This map shows locations of the stations that have submitted data for monthly mean mole fractions.

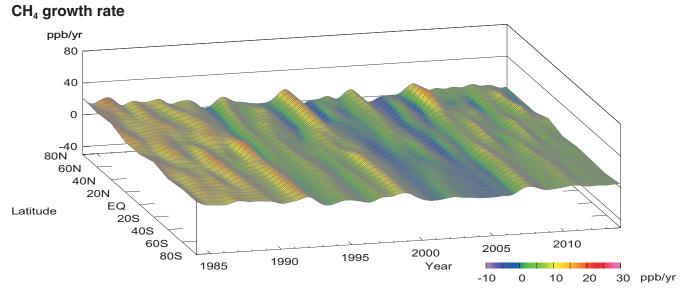

CH₄ Monthly Data

Plate 4.1 Monthly mean CH_4 mole fractions that have been reported to the WDCGG. The mole fractions are illustrated in different colors. The sites are listed in order from north to south. The red line indicates the equator. In cases where data are reported for two or three different altitudes, only the data at the highest altitudes are illustrated. In cases where monthly means are not reported, the WDCGG calculates them from hourly or other mole fractions reported to the WDCGG by simple arithmetic mean. The data from the sites with an asterisk at the end of the station index were used for the analyses shown in Plate 4.2. (see Chapter 2)

CH₄ mole fraction 1950 1850 1750 1650 80N 60N 40N 20N EQ Latitude 20S 40S 60S 2010 2005 2000 80S 1995 1990 1985 Year 16001700180019002000 ppb

CH₄ deseasonalized mole fraction ppb 1950 1850 1750 1650 80N 60N 40N 20N EQ Latitude 40S 60S 2010 2005 2000 1995 1990 1985 Year 16001700180019002000 ppb

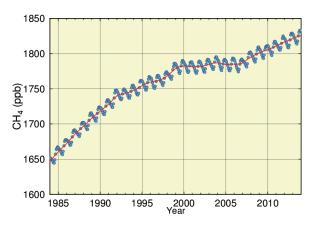
Plate 4.2 Variation of zonally averaged monthly mean CH_4 mole fractions (top), deseasonalized long-term trends (middle), and growth rates (bottom). The zonally averaged mole fractions were calculated for each 20° zone. The deseasonalized trends and growth rates were derived as described in Chapter 2.

4. METHANE (CH₄)

Basic information on CH₄ with regard to environmental issues

Methane (CH₄) is the second most important anthropogenic greenhouse gas, with an estimated global warming potential per molecule 28 times greater over a 100 year horizon and 84 times greater over a 20 years horizon than CO₂ (IPCC, 2013). Between 1750 and 2013, CH₄ accounted for about 17% of the total increase in radiative forcing due to long-lived greenhouse gases in the atmosphere (WMO, 2014).

Analyses of air trapped in ice cores from Antarctica and the Arctic revealed that the current atmospheric CH₄ mole fraction is the highest over the last 680,000 years (Nisbet et al., 2014). The mole fraction of CH₄ remained at about 700 ppb from 1000 A.D. until the start of the industrial era when it started increasing. Measurements in ice cores have shown that interpolar differences in CH₄ mole fractions between Greenland and Antarctica ranged from 24 to 58 ppb between 1000 and 1800 A.D. (Etheridge et al., 1998). Atmospheric observations show that difference of the mole fractions between the high latitudinal belts of the Northern and Sourthern Hemisphere (see Fig 4.3) averaged over the years 1984 to 2013 reached about 140 ppb. Increase in the inter-hemispheric gradient reflects the dominant impact of the emissions from the Northern Hemisphere, where major anthropogenic and natural sources are situated. Increased emissions from the Arctic have not contributed to the continued increase in atmospheric CH₄ since 2007 (WMO, 2013), though have had an impact on annual increase in 2007.


CH₄ is emitted by both natural and anthropogenic sources, including natural wetlands, oceans, landfills, rice paddies, enteric fermentation, fossil fuel production and consumption and biomass burning. The global emission of CH₄ was 548 teragrams (Tg) CH₄ per year, with about 60% related to anthropogenic activities (http://www.globalcarbonproject.org/

methanebudget/13/hl-compact.htm). CH₄ is removed from the atmosphere by reaction with hydroxyl radicals (OH) in both the troposphere and stratosphere, and by reaction with chlorine atoms and O(¹D), an excited state of oxygen, in the stratosphere. CH₄ is one of the most important sources of water vapor in the stratosphere and has an atmospheric lifetime of about 10 years. More information regarding sources and sinks of CH₄ must be collected to better understand the budget of atmospheric CH₄.

Mole fractions of CH₄ are analyzed using data submitted to the WDCGG from fixed stations and some ships. These observational sites are shown on the map at the beginning of this chapter.

Annual variation of CH₄ mole fraction in the atmosphere

The monthly mean dry mole fractions of CH₄ used in this analysis are shown in Plate 4.1, with the mole fraction levels illustrated in different colors. Global, hemispheric and zonal mean mole fractions have been calculated based on data from selected stations under unpolluted conditions (see the caption for Plate 4.1). Zonally averaged atmospheric CH₄ mole fractions, together with their deseasonalized components and growth rates, are shown as three-dimensional representations in Plate 4.2. These plots show that the seasonal variations in CH₄ mole fraction are larger in the Northern than in the Southern Hemisphere and that the increase in the Northern Hemisphere propagates to the Southern Hemisphere. The growth rates vary on a global scale with the patterns similar to those for CO₂ (see Chapter 3). There is a large latitudinal gradient in CH₄ mole fraction from the northern mid-latitudes to the tropics, suggesting major sinks in the tropics, where the mole fraction of OH radicals is higher.

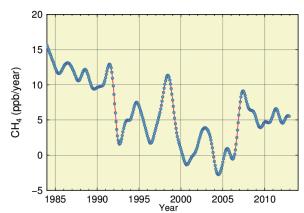


Fig. 4.1 Global monthly mean mole fraction of CH_4 from 1984 to 2013, including deseasonalized long-term trend in red line (top) and annual growth rate (bottom).

Figure 4.1 shows globally averaged monthly mean mole fractions and the growth rates for CH_4 from 1984 to 2013. The global average mole fraction was 1824±2 ppb in 2013, an increase of 6 ppb from 2012. The mole fraction changed little between 1999 and 2006. The mean annual absolute increase during the last 10 years was 3.8 ppb/year. The current mole fraction is 253% of its pre-industrial level of 722 ppb (based on IPCC (2013), the estimated pre-industrial CH_4 value was updated from previous summaries).

Figure 4.2 shows monthly mean mole fractions from 1984 to 2013 for each 30° latitudinal zone. The smallest magnitude of the seasonal variations is occurred in the latitudinal zone between the equator and 30° S.

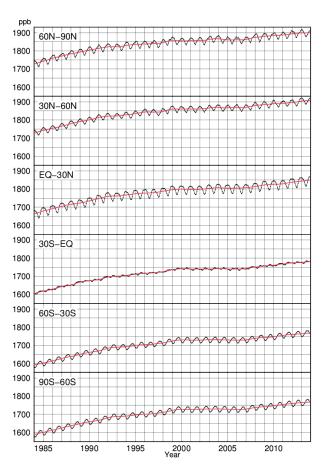


Fig. 4.2 Monthly mean mole fractions of CH_4 from 1984 to 2013 for each 30° latitudinal zone (dots) and their deseasonalized long-term trends (red lines).

Figure 4.3 summarizes deseasonalized long-term trends for each 30° latitudinal zone and their growth rates. A latitudinal gradient between the high and mid-latitudes of the Northern and Southern Hemispheres is practically missing, while the difference between high/mid-latitudes and low latitudes of the Northern Hemisphere is larger than

similar difference in the Southern Hemisphere. Fig. 4.3 also shows that mole fractions in most latitudinal belts have similar tendencies. In the 1990s, the growth rates clearly decreased in all latitudinal zones, but remained positive. The declined growth rate was especially evident during the second half of 1992, in 1996, and almost even in 1999 and in 2004/2005, when growth rates were less than 5 ppb/year in all latitudes. During the year 1998, the maximum global growth rate reached about 11 ppb/year (Fig. 4.1). Maximum increases occurred in high and mid-latitudes of the Northern Hemisphere, where the growth rates exceeded 15 ppb/year. In 2000 and 2001, the global growth rate decreased to around -1 ppb/year. Around 2002/2003, the growth rates increased in the Northern Hemisphere, especially in northern high latitudes where they exceeded 10 ppb/year. The global growth rate was as low as -3 ppb/year in 2004 and 1 ppb/year in 2005. Despite the large growth rates in 1998 and 2002/2003, during El Niño events, the global mean mole fraction was relatively stable between 1999 and However, the global mean mole fraction increased on average by 5.6 ppb/year in the last seven years through 2013.

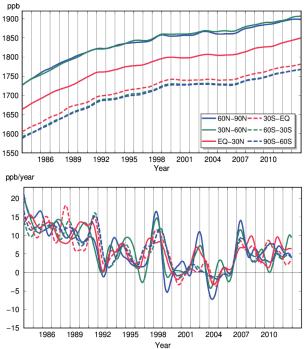


Fig. 4.3 Long-term trends in the mole fractions of CH_4 for each 30° latitudinal zone (top) and their growth rates (bottom).

The large increase in CH₄ growth rate in 1991 may have been caused by decreased levels of OH radicals in the atmosphere due to reduced UV radiation resulting from the eruption of Mt. Pinatubo in 1991 (Dlugokencky *et al.*, 1996), and the subsequent decrease in 1992 may have been due to an increase in OH radicals resulting from the depletion of

stratospheric ozone following this eruption (Bekki et al., 1994).

In 1998, the growth rates were high in all latitudes, which may have been due to increased emissions in northern high latitudes and tropical wetlands caused by high temperatures and increased precipitation, as well as by biomass burning in boreal forests, mainly in Siberia (Dlugokencky *et al.*, 2001). In contrast, Morimoto *et al.* (2006) estimated from isotope observations that the contribution of biomass burning to the increase in 1998 was about half that of wetlands. The growth rates were low from 1999 to 2006, with an exception during the El Niño event of 2002/2003. The causes of these decreases and increases in CH₄ growth rates are not yet determined.

Since 2007, atmospheric CH₄ has increased significantly throughout the entire monitoring network (Rigby *et al.*, 2008; Dlugokencky *et al.*, 2009). This is due to increased emissions in the tropical and mid-latitude Northern Hemisphere (Nisbet *et al.*, 2014). The attribution of this increase to anthropogenic and natural sources is difficult because the current network is insufficient to characterize emissions by region and source process (Bergamaschi *et al.*, 2013).

The WMO/GAW observational network includes the observations of carbon stable isotopes in methane, with 20 datasets submitted to the WDCGG. Such observations can be useful for the identification of primary methane sources.

Seasonal cycle of CH₄ mole fraction in the atmosphere

Figure 4.4 shows seasonal cycles in the mole fraction of CH₄ for each 30° latitudinal zone. The seasonal cycles are driven mainly by reaction with OH radicals, a major CH₄ sink in the atmosphere. Seasonal cycles are also affected by the magnitude and timing of CH₄ emissions from sources such as wetlands and biomass burning as well as by its atmospheric transport. The seasonal cycles are large in amplitude in the Northern Hemisphere. Unlike CO₂, amplitudes were also large in high and mid-latitudes of the Southern Hemisphere. Seasonally, the Northern Hemisphere shows minima in summer and maxima in winter, while the Southern Hemisphere shows a seasonal cycle lagging two-thirds to three-quarter years behind. The seasonal variations in the mole fraction of CH4 were almost consistent with those of the OH radical that reacts with CH₄. Southern low latitudes have a distinct antiphase annual component with that of the seasonal cycle arising from southern mid-latitudes. The maximum in the former component occurs in boreal winter due to the interhemisphere transport of CH₄ from the Northern Hemisphere.

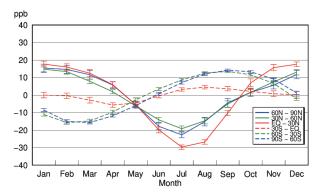
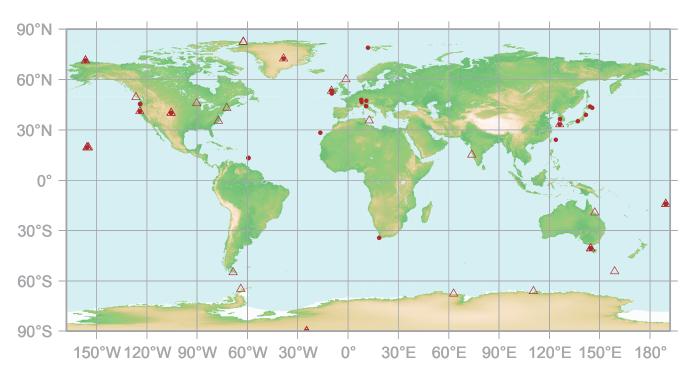
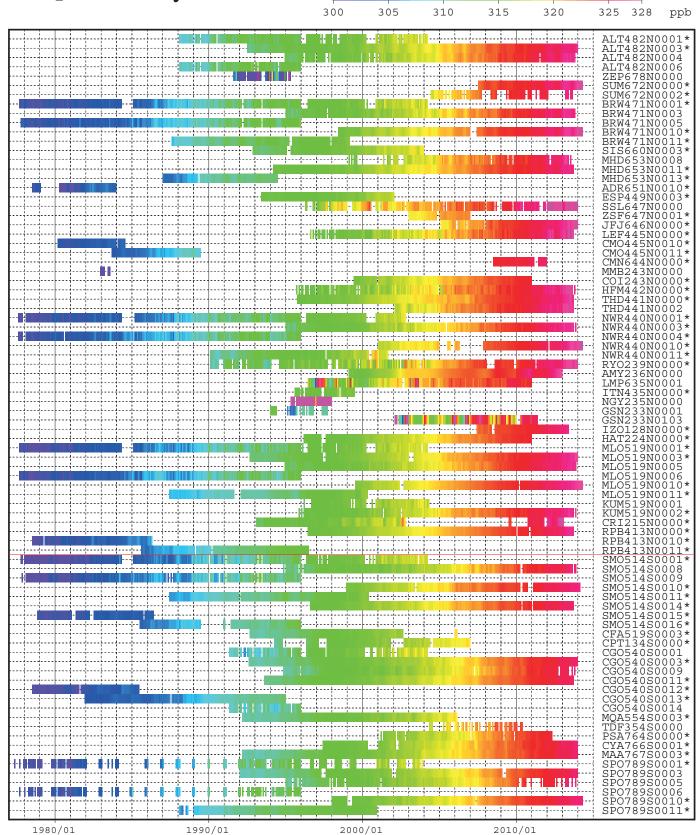
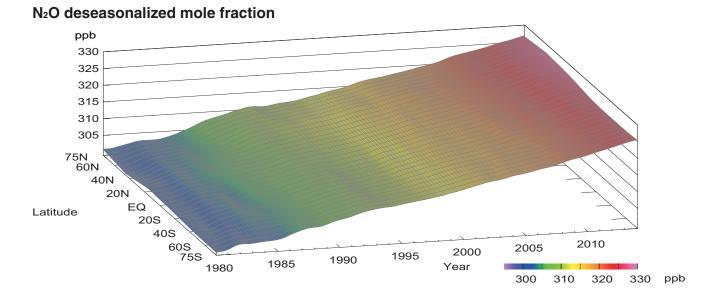



Fig. 4.4 Average seasonal cycles of CH_4 mole fractions for each 30° latitudinal zone obtained by subtracting long-term trends from the zonal mean time series. Vertical error bars represent the range of $\pm 1\sigma$ calculated for each month. (Averages from 1984 to 2013)

5.
NITROUS OXIDE
(N₂O)


• : CONTINUOUS STATION

△ : FLASK STATION


This map shows locations of the stations that have submitted data for monthly mean mole fractions.

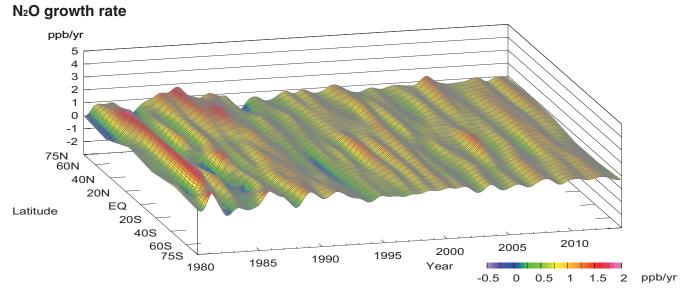

N₂O Monthly Data

Plate 5.1 Monthly mean N_2O mole fractions that have been reported to the WDCGG. The mole fractions are illustrated in different colors. The sites are listed in order from north to south. The red line indicates the equator. The data from the sites with an asterisk at the end of the station index were used for the analyses shown in Plate 5.2. (see Chapter 2)

N₂O mole fraction 330 325 320 315 310 305 75N 60N 40N 20N EQ Latitude 20S 40S 60S 75S 2010 2005 2000 1995 1990 1985 1980 Year 300 310 320 330 ppb

Plate 5.2 Variation of zonally averaged monthly mean N_2O mole fractions (top), deseasonalized long-term trends (middle), and growth rates (bottom). The zonally averaged mole fractions were calculated for each 30° zone. The deseasonalized trends and growth rates were derived as described in Chapter 2.

5. NITROUS OXIDE (N2O)

Basic information on N₂O with regard to environmental issues

Nitrous oxide (N₂O) is a relatively stable greenhouse gas in the troposphere with a lifetime of 121 years Between 1750 and 2013, N₂O (IPCC, 2013). accounted for about 6% of the total increase in radiative forcing due to long-lived greenhouse gases (WMO, 2014b). N₂O is the third most important anthropogenic greenhouse gas in the atmosphere. It also plays an important role in stratospheric ozone depletion (Ravishankara et al., 2009). The mole fraction of N2O in the atmosphere has increased steadily from its pre-industrial level of 270 ppb to its current value, which is 21% higher. Prior to industrialization, the atmospheric N₂O burden reflected the balance between emissions from natural systems (soils and oceans), and chemical losses in the stratosphere. In the industrial era, additional emissions result from use of synthetic nitrogen fertilizers (direct emissions from agricultural fields and indirect emissions from waterways affected by agricultural runoff), fossil fuel combustion, biomass burning and other minor processes.

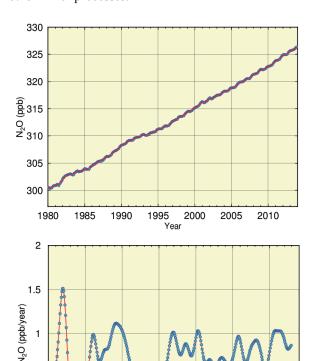


Fig. 5.1 Globally averaged monthly mean mole fraction of N_2O from 1980 to 2013, including deseasonalized long-term trend shown as a red line (top) and annual growth rate (bottom).

1995 Year

2000

2005

0 <u>-</u> 1980

1985

1990

Currently, anthropogenic sources are responsible for $\sim 40\%$ of total emissions or about 16 TgN/year (WMO, 2014b). Most of the anthropogenic N₂O enters the atmosphere from the transformation of fertilizer nitrogen into N₂O and its subsequent emission from agricultural soils.

However, more research are needed to understand the role of N₂O in the global nitrogen cycle.

Long-term trend of N₂O mole fraction in the atmosphere

Dry mole fractions of N_2O are analyzed using the data submitted to the WDCGG from fixed stations and some ships. The observational sites that supplied data used for this analysis are shown on the map at the beginning of this chapter. The monthly mean mole fractions of N_2O , including the ones used in the global analysis, are shown in Plate 5.1, with the various mole fraction levels illustrated in different colors. The data submitted to the WDCGG show that N_2O mole fractions have increased at almost all stations. Zonally averaged atmospheric N_2O mole fractions, together with their deseasonalized components and growth rates, are shown as three-dimensional representations from 1980 to 2013 in Plate 5.2.

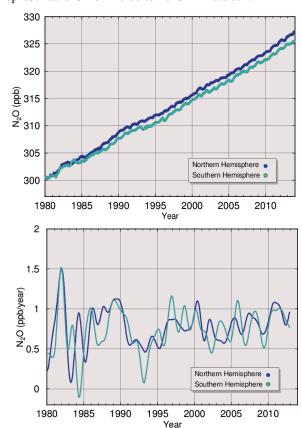
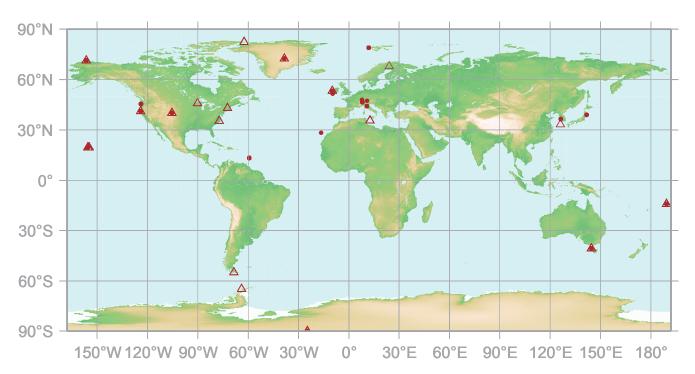


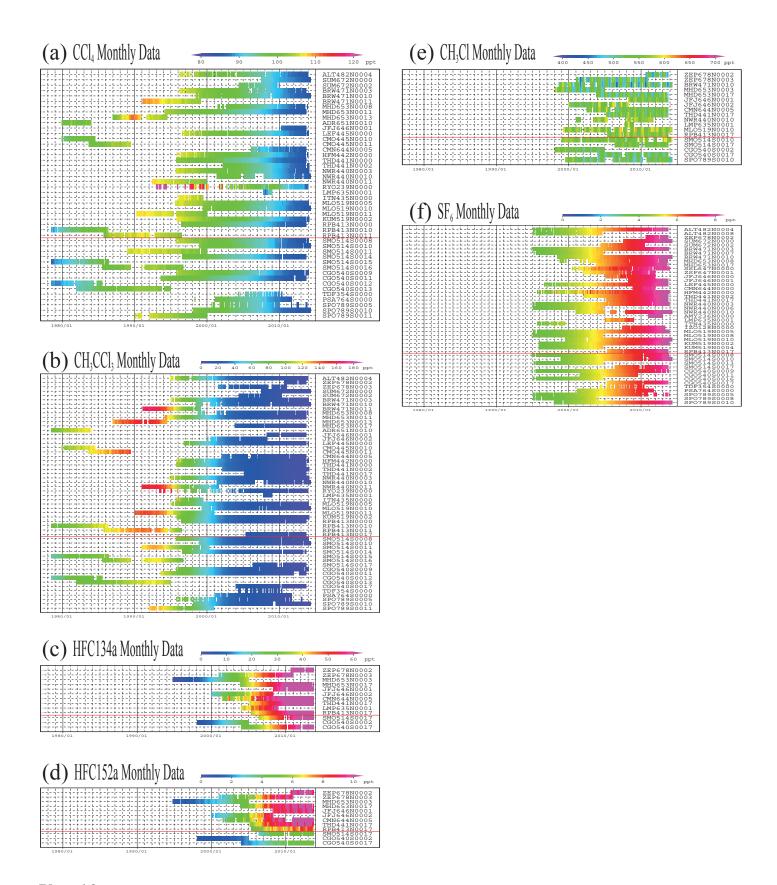
Fig. 5.2 Monthly mean mole fractions of N_2O from 1980 to 2013 (top) and annual growth rates (bottom), averaged over the Northern and Southern Hemispheres.


Figure 5.1 shows globally averaged monthly mean N_2O mole fractions from 1980 to 2013 and its long-term trend. The global average mole fraction reached a new high of 325.9±0.1ppb in 2013, an increase of 0.8 ppb over the previous year. The mean annual absolute increase during the last 10 years was 0.82 ppb/year. Annual averages of atmospheric growth rate showed substantial variability (from 0.4 to 1.1 ppb/year) from the beginning of observations. The interhemispheric gradient in the yearly averaged mole fraction of N_2O rose from 0.0 ppb in 1980 to 1.6 ppb in 2013 (Figure 5.2 upper panel), indicating that the majority of N_2O sources are situated in the Northern Hemisphere .

6.

HALOCARBONS AND OTHER HALOGENATED SPECIES

• : CONTINUOUS STATION


△ : FLASK STATION

This map shows locations of the stations that have submitted data for monthly mean mole fractions.

Plate 6.1 Monthly mean (a) CFC-11, (b) CFC-12, (c) CFC-113, (d) Halon-1211, (e) Halon-1301, (f) HCFC-22, (g) HCFC-141b, (h) HCFC-142b mole fractions that have been reported to the WDCGG. The mole fractions are illustrated in different colors. The sites are listed in order from north to south. The red line indicates the equator.

Plate 6.2 Monthly mean (a) CCl_4 , (b) CH_3CCl_3 , (c) HFC134a, (d) HFC152a, (e) CH_3Cl , (f) SF_6 mole fractions that have been reported to the WDCGG. The mole fractions are illustrated in different colors. The sites are listed in order from north to south. The red line indicates the equator.

6. HALOCARBONS AND OTHER HALOGENATED SPECIES

Basic information on halocarbons with regard to environmental issues

Halocarbons are carbon compounds containing one or more halogens, i.e., fluorine, chlorine, bromine or iodine, with most being industrial products. Halocarbons are classified into chlorofluorocarbons (CFCs), which contain fluorine and chlorine: the hydrochlorofluorocarbons (HCFCs), which contain hydrogen in addition to fluorine and chlorine; and the halons, which contain bromine and other halogens. Perfluorocarbons (PFCs) are carbon compounds in which all hydrogen atoms are replaced by fluorine atoms, and hydrofluorocarbons (HFCs) halocarbons that contain hydrogen and fluorine but no Carbon tetrachloride (CCl₄) and methyl chloroform (CH₃CCl₃) are produced industrially, whereas methyl chloride (CH₃Cl) has natural sources. Although the mole fractions of the halocarbons are relatively low in the atmosphere, they have high global warming potentials. The halocarbons have been shown to account for about 12% of the total increase in radiative forcing due to long-lived greenhouse gases from 1750 to 2013 (WMO, 2014b).

The halocarbons are colorless, odorless and innocuous substances that can be readily gasified and liquefied and have low surface tension. Thus, they were commonly used as refrigerants, propellants and detergents for semiconductors, resulting in a rapid increase in their mole fractions in the atmosphere until the mid-1980s. Halocarbons containing chlorine and bromine led to the depletion of the ozone layer. Since the mid-1990s, the Montreal Protocol on Substances that Deplete the Ozone Layer and its subsequent Adjustments and Amendments have progressively tightened the regulations for the production, consumption and trade of ozone-depleting substances.

The CFCs are destroyed mainly by ultraviolet radiation in the stratosphere, and their lifetimes are generally long (e.g., about 50 years for CFC-11). However, the HCFCs and CH₃CCl₃, which contain hydrogen, react with hydroxyl radicals (OH) in the troposphere and have relatively short lifetimes (e.g., about 5 years for CH₃CCl₃). As the reaction with OH in the troposphere is a major sink for CH₃CCl₃, global measurements of CH₃CCl₃ provide an accurate estimate of the global mole fraction of OH (Prinn et al., 2001). However, due to a substantial decrease of CH₃CCl₃ mole fraction in the atmosphere, reconstruction of OH levels using this molecule is becoming increasingly difficult and other compounds are now used as reference tracers for OH mole fraction determination.

The Kyoto Protocol to the United Nations Framework Convention on Climate Change (UNFCCC), which came into force on 16 February 2005, specifies HFCs, PFCs and sulphur hexafluoride (SF₆) as targets for quantified emission limitation and reduction commitments.

SF₆, although not a halocarbon, behaves similarly to halocarbons and is a potent long-lived greenhouse gas. Its emissions are almost entirely anthropogenic, and it is used mainly as an electrical insulator in power distribution equipment. SF₆ current mole fraction is about twice the level observed in the mid-1990s (WMO, 2014b). It has a very long atmospheric lifetime, 3,200 years, so emissions accumulate in the atmosphere. These emissions can be determined utilizing atmospheric observations of SF₆ and the rate of mole fraction in inverse modelling (Levin *et al.*, 2010).

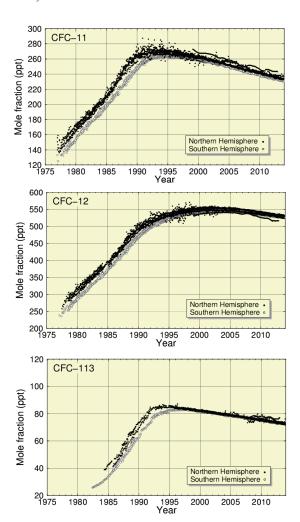


Fig. 6.1 Time series of the monthly mean mole fractions of CFC-11, CFC-12 and CFC-113 at individual stations. Solid circles show mole fractions measured in the Northern Hemisphere and open circles show mole fractions measured in the Southern Hemisphere.

Annual changes in the levels of halocarbons in the atmosphere

The cover map of this chapter shows observational sites that have submitted data on halocarbons and other halogenated species to the WDCGG. Although the number of stations measuring these species is rather limited, halocarbons are generally well mixed in the atmosphere and the data may be sufficient to reflect their global tendencies. Plates 6.1 and 6.2 show all the monthly mean mole fractions of these gases submitted to the WDCGG. The figures (6.1 - 6.7) in this chapter show the monthly mean data reported to the WDCGG without spatial averaging. discrepancies in the absolute mole fractions were observed between several stations, suggesting that these stations may have adopted different standard Observational data expressed on the same standard scales revealed that the differences in the mole fractions between the two hemispheres were large in the 1980s for CFCs, CCl₄ and CH₃CCl₃ but have since narrowed as the emissions have been suppressed and the existing constituents have been mixed between the hemispheres.

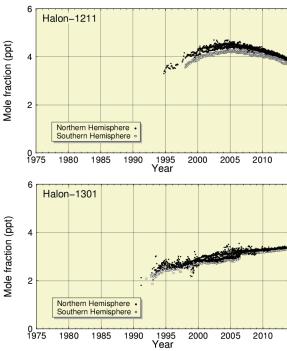


Fig. 6.2 Time series of the monthly mean mole fractions of Halon-1211 and Halon-1301 at individual stations. Solid circles show mole fractions measured in the Northern Hemisphere and open circles show those measured in the Southern Hemisphere.

Figure 6.1 shows monthly mean mole fractions of CFC-11 (CCl₃F), CFC-12 (CCl₂F₂) and CFC-113 (CCl₂FCClF₂) over time. The mole fractions of CFC-11 peaked around 1992 in the Northern Hemisphere, followed by a maximum about one year later in the Southern Hemisphere. The mole fractions

of CFC-113 were maximal around 1992 in the Northern Hemisphere and around 1997 in the Southern Hemisphere. The mole fractions of these gases have since been decreasing slowly in both hemispheres. The mole fraction of CFC-12 increased until around 2005 and then started decreasing gradually.

Figure 6.2 shows time series of the monthly mean mole fractions of Halon-1211 (CBrClF₂) and Halon-1301 (CBrF₃). The mole fraction of Halon-1211 has decreased since 2005, whereas the mole fraction of Halon-1301 has been increasing.

Figure 6.3 shows time series of the mole fractions of HCFC-22 (CHClF₂), HCFC-141b (CH₃CCl₂F) and HCFC-142b (CH₃CClF₂). The mole fractions of these gases increased significantly during the last decade as a result of their continued use as substitutes for CFCs. The growth of HCFC-141b decelerated around 2005, but has slightly accelerated again over the last few years.

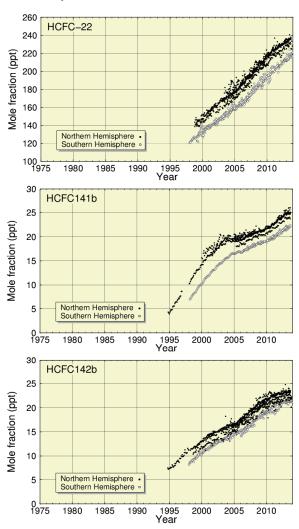


Fig. 6.3 Time series of the monthly mean mole fractions of HCFC-22, HCFC-141b and HCFC-142b at individual stations. Solid circles show mole fractions measured in the Northern Hemisphere and open circles show those measured in the Southern Hemisphere.

Figure 6.4 shows time series of the mole fractions of CCl₄ and CH₃CCl₃. The mole fractions of CCl₄ in both hemispheres peaked around 1991. The mole fractions of CH₃CCl₃ were at a maximum around 1992 in the Northern Hemisphere and around 1993 in the Southern Hemisphere. The mole fractions of these gases have since been decreasing.

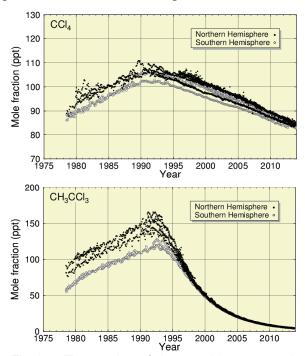


Fig. 6.4 Time series of the monthly mean mole fractions of CCl₄ and CH₃CCl₃ at individual stations. Solid circles show mole fractions measured in the Northern Hemisphere and open circles show those measured in the Southern Hemisphere.

Figure 6.5 shows time series of the monthly mean mole fractions of HFC-134a (CH₂FCF₃) and HFC-152a (CH₃CHF₂). The mole fractions of HFC-134a and HFC-152a have increased by 4 to 5-fold over the last 10 years. These increases have been larger in the Northern than in the Southern Hemisphere, suggesting that predominant sources of mentioned above compounds are located in the Northern Hemisphere.

Figure 6.6 shows time series of the monthly mean mole fractions of methyl chloride (CH₃Cl). The mole fraction of CH₃Cl does not show any particular long-term tendency although clear seasonal cycle can be seen in the dataset.

Figure 6.7 shows a time series of the monthly mean mole fractions of SF_6 . The mole fraction of SF_6 in 2013 was about twice that observed in 1995 increasing nearly linearly at a rate of 0.25 ppt/year (WMO, 2014b).

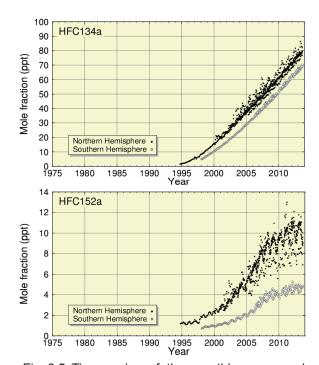


Fig. 6.5 Time series of the monthly mean mole fractions of HFC-134a and HFC-152a at individual stations. Solid circles show mole fractions measured in the Northern Hemisphere and open circles show those measured in the Southern Hemisphere.

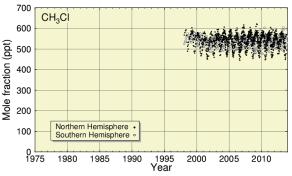
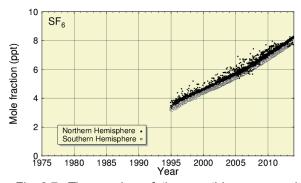
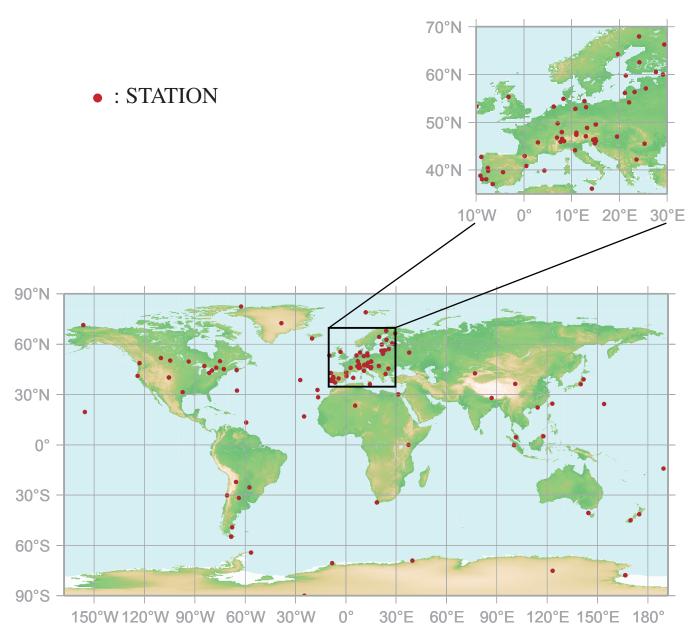
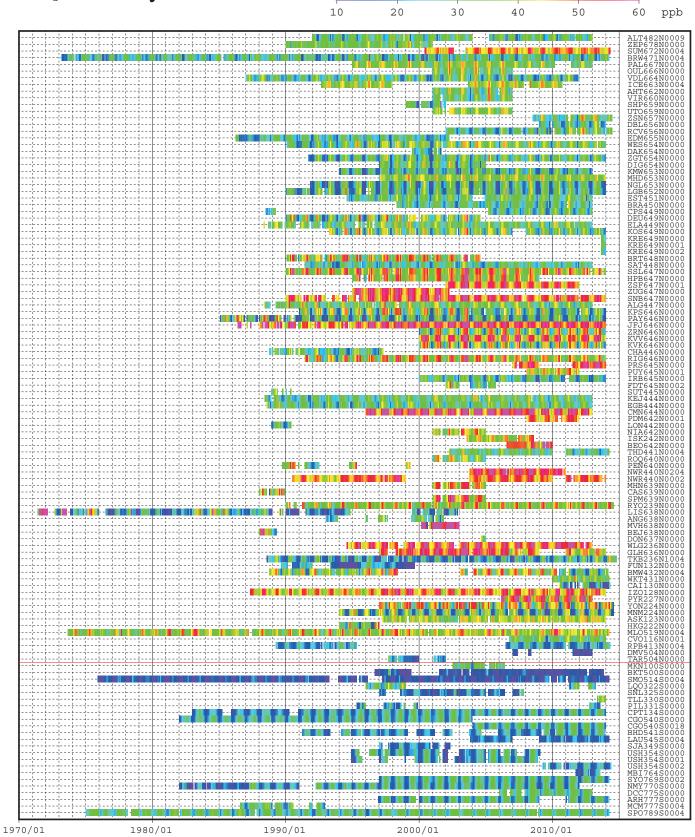


Fig. 6.6 Time series of the monthly mean mole fractions of CH₃Cl at individual stations. Solid circles show mole fractions measured in the Northern Hemisphere and open circles show those measured in the Southern Hemisphere.


Fig. 6.7 Time series of the monthly mean mole fractions of SF_6 at individual stations. Solid circles show mole fractions measured in the Northern Hemisphere and open circles show those measured in the Southern Hemisphere.

7.
SURFACE OZONE
(O₃)

This map shows locations of the stations that have submitted data for monthly mean mole fractions.

Plate 7.1 Monthly mean O_3 mole fractions that have been reported to the WDCGG. The mole fractions are illustrated in different colors. The sites are listed in order from north to south. The red line indicates the equator.

7. SURFACE OZONE (O₃)

Basic information on surface ozone (O₃) with regard to environmental issues

Ozone (O₃) in the atmosphere exists mostly in the stratosphere, with less than 10% in the troposphere. However, O₃ in the troposphere plays an important role through its impact on radiative forcing and its involvement in the chemical processes. O₃ absorbs UV radiation in the stratosphere, thus influencing vertical profile of temperature and circulation in the stratosphere. Moreover, as a greenhouse gas in the troposphere, O₃ absorbs IR radiation. The latter effect is more significant in the upper troposphere. Tropospheric O₃ in the northern extratropics was the greatest contributor to global warming during the 20th century, and increases in tropospheric O₃ resulting from industrialization in developing countries was found to contribute to accelerated warming in the tropics during the latter half of the century (Shindell et al., 2006). Furthermore, by reacting with water vapor in the presence of UV radiation, O₃ produces OH radicals, which control atmospheric life time of many greenhouse gases, such as CH₄.

The observational results at high altitudes around 1990, compared with those from the end of the 19th century to the first half of the 20th century, show increases in tropospheric O₃, especially in urban areas (Staehelin et al., 1994). However, ozonesonde measurements in the troposphere show stable or decreasing trends in northern mid-latitudes after 1980 (Oltmans et al., 2006). Recently substantial efforts has been made to systematically review the observed trends (Cooper et al., 2014). This analysis will be continued in the framework of the Tropospheric Assessment Report (TOAR) project (http://www.igacproject.org/TOAR). It was found that in most regions of the world — excluding East Asia — surface and free tropospheric ozone concentrations have not risen significantly since year 2000. Prior to the 1990s almost all records indicate a strong rise, while during the 1990s the picture is very diverse.

Tropospheric O₃ originates from flux/mixing from the stratosphere and in-situ photochemical production. O₃ is destroyed in various processes, including chemical reactions with NO, the hydroperoxyl radical (HO₂) and OH, and deposition at various surfaces. The lifetime of tropospheric ozone varies from one or a few days in the boundary layer to a few tens of days or even a few months in the free troposphere.

In the troposphere, the mole fractions of O₃ are high in high and mid-latitudes in both hemispheres, and low in the tropics over the Atlantic (Marenco and Said, 1989) and Pacific (Tsutsumi *et al.*, 2003) oceans. The localized sources of ozone precursors and the generally

short lifetime of surface O_3 make its distribution spatially non-uniform and time-variant.

Annual variation of surface O₃ mole fraction

The observational sites that have submitted data for surface O_3 to the WDCGG are shown on the map at the beginning of this chapter. The monthly mean wet mole fractions of O_3 that have been reported from these observational sites are shown in Plate 7.1, with different mole fraction levels illustrated in different colors. Data for the mole fractions of surface O_3 are reported in two different units, *i.e.*, mixing ratio (ppb) and concentration (μ g/m³) at 25°C, though Tropospheric Ozone Measurement Guidelines (GAW Report No. 209) recommends use of mixing ratios. Concentration is converted to mixing ratio using the formula:

$$X_p[ppb] = (R \times T / M / P_0) \times 10 \times X_g[\mu g/m^3]$$

where R is the molar gas constant (8.31451 [J/K/mol]),

T is the absolute temperature reported from each station,

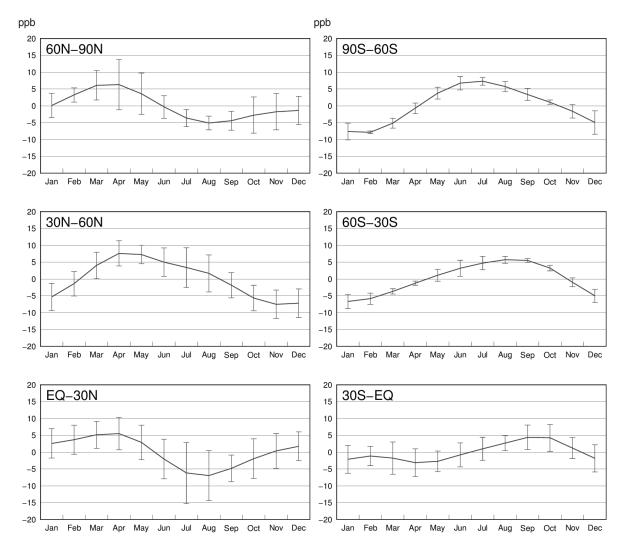
M is the molecular weight of O_3 (47.9982), and

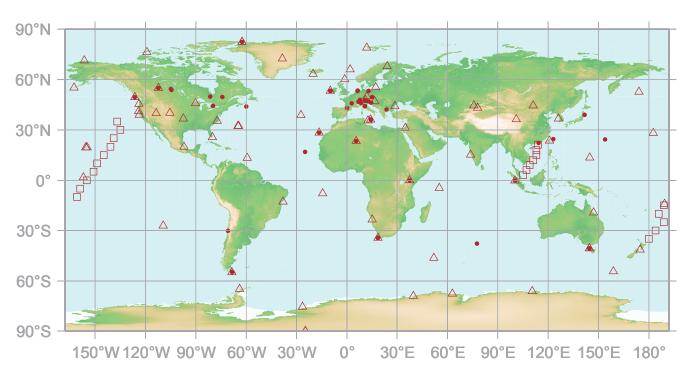
P₀ is the standard pressure (1013.25 [hPa]).

If temperature is not reported by a station, T is taken to be 298K (25 $^{\circ}$ C). This approach can introduce additional uncertainty to the reported data.

The mole fraction of surface O_3 was found to vary from station to station, though many of these stations are located in Europe. Moreover, the seasonal and interannual variations were found to be relatively large at most stations, making it difficult to identify a global long-term trend in the mole fraction of surface O_3 .

The seasonal cycles of monthly mean mole fraction of surface O₃ are shown in Figure 7.1. Those were the averages for each 30° latitudinal zone for all available periods substracted the long term trends. The latitudinal mean mole fractions were found to be elevated in spring in most latitudinal zones. However, several patterns of seasonal-diurnal cycles were observed at different locations, including a pronounced spring maximum, a spring maximum at night and a summer maximum during the day, a wide spring-summer maximum, and a pronounced winter maximum (Tarasova *et al.*, 2007).

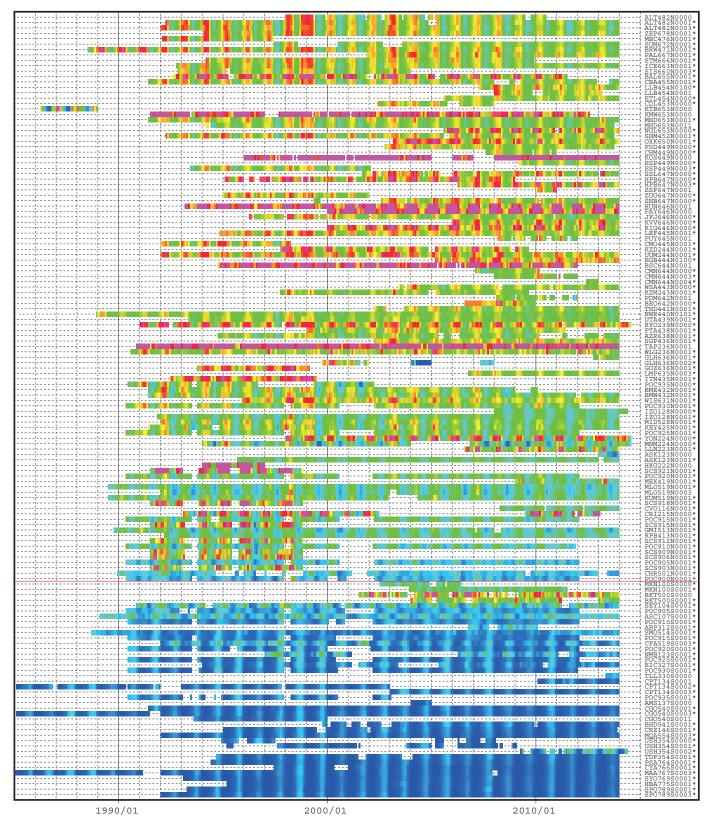



Fig. 7.1 Average seasonal cycles in the mole fractions of O_3 for each 30° latitudinal zone obtained from the seasonal cycles of each station for all available periods. Vertical error bars represent the range of $\pm 1\sigma$ calculated for each month.

8. CARBON MONOXIDE (CO)

• : CONTINUOUS STATION

△: FLASK STATION


□ : FLASK MOBILE (SHIP)

This map shows locations of the stations that have submitted data for monthly mean mole fractions.

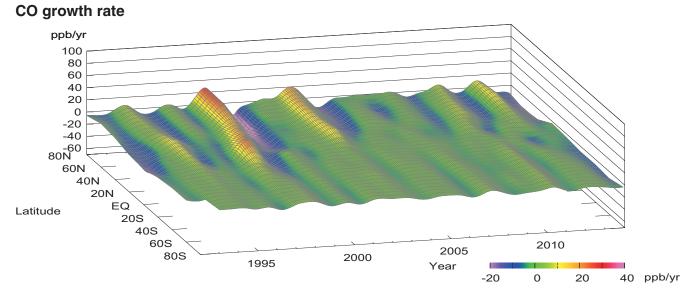
CO Monthly Data

Plate 8.1 Monthly mean CO mole fractions that have been reported to the WDCGG. The mole fractions are illustrated in different colors. The sites are listed in order from north to south. The red line indicates the equator. The data from the sites with an asterisk at the end of the station index were used for the analyses shown in Plate 8.2. (see Chapter 2)

CO mole fraction 180 140 100 60 80N 60N 40N 20N EQ Latitude 20S 40S 60S 2010 2005 80S 2000 1995 Year 100 140 180 ppb

CO deseasonalized mole fraction ppb 140 100 60 80N 60N 40N 20N EQ Latitude 40S 60S 2010 2005 2000 1995 Year

160


120

40

80

200

ppb

Plate 8.2 Variation of zonally averaged monthly mean CO mole fractions (top), deseasonalized long-term trends (middle), and growth rates (bottom). The zonally averaged mole fractions were calculated for each 20° zone. The deseasonalized trends and growth rates were derived as described in Chapter 2.

8. CARBON MONOXIDE (CO)

Basic information on CO with regard to environmental issues

Carbon monoxide (CO) is not a greenhouse gas; it absorbs hardly any infrared radiation from the Earth. However, CO influences the oxidation capacity of the atmosphere through its reaction with hydroxyl radicals (OH), which control the lifetimes of methane, halocarbons and tropospheric ozone. CO has been monitored due to its indirect influence on greenhouse gases through such reactions.

Sources of atmospheric CO include fossil fuel combustion and biomass burning, along with the oxidation of methane and non-methane hydrocarbons (NMHCs). Major sinks include reaction with OH and surface deposition; the reaction of CO with OH accounts for all of the chemical loss of CO in the troposphere (Seinfeld and Pandis, 1998). CO has a relatively short atmospheric lifetime, ranging from 10 days in summer in the tropics to more than a year over the polar regions in winter. Thus anthropogenic CO emissions do not lead to CO accumulation in the atmosphere. Furthermore, the uneven distribution of sources causes large spatial and temporal variations in CO mole fraction.

Measurements of trapped air in ice cores have shown that the pre-industrial CO mole fraction over central Antarctica during the last two millennia was about 50 ppb and the CO level increased to 110 ppb by 1950 in Greenland (Haan and Raynaud, 1998). Beginning in 1950, the global average CO mole fraction increased at a rate of 1% per year but started to decrease in the late 1980s (WMO, 1999). Between 1991 and 2001, the global average mole fraction of CO decreased at an annual rate of about 0.5 ppb, excluding temporal enhancements from large biomass burning events (Novelli et al., 2003). In last decade, a slightly negative trend of CO mole fraction has been dominant in Northern Hemisphere with significant interannual variability, which is well reproduced by earth system models (Yoon and Pozzer, 2014).

Annual variation of CO mole fraction in the atmosphere

The monthly mean mole fractions of CO that have been reported from fixed stations and some ships to the WDCGG are shown in Plate 8.1, in which different mole fraction levels are plotted in different colors. The observational sites that provide data for global analysis are shown on the map at the beginning of this chapter.

Latitudinally averaged mole fractions of CO in the atmosphere, together with their deseasonalized mole fractions and growth rates, are shown in Plate 8.2 as three-dimensional representations.

Data for the mole fractions of CO are reported in various units, *i.e.*, ppb, μg/m³-25°C, μg/m³-20°C and mg/m³-25°C. Units other than ppb were converted to ppb using the formulas:

$$\begin{array}{l} X_p \, [ppb] = (R \times T \, / \, M \, / \, P_0) \times 10 \times X_g \, [\mu g/m^3] \\ X_p \, [ppb] = (R \times T \, / \, M \, / \, P_0) \times 10^4 \times X_g \, [mg/m^3] \end{array}$$

where R is the molar gas constant (8.31451 [J/K/mol]),

T is the absolute temperature reported from each station,

M is the molecular weight of CO (28.0101) and

 P_0 is the standard pressure (1013.25 [hPa]).

If temperature is not reported by a station, T is taken to be 298K (25 °C).

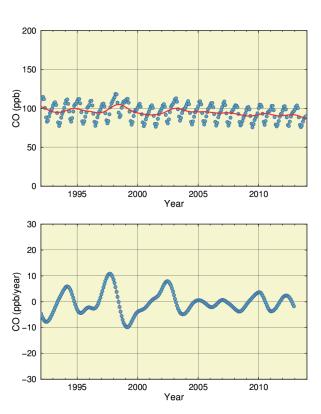


Fig. 8.1 Globally averaged monthly mean mole fraction of CO from 1992 to 2013, including deseasonalized long-term trend in red line (top) and annual growth rate (bottom).

Figure 8.1 shows globally averaged monthly mean CO mole fractions and their growth rates. Growth rates were high in 1993/1994, 1997/1998 and 2002, and low in 1992 and 1998/1999. The global annual

mean mole fraction was about 90±2 ppb in 2013, which was calculated irrespective of the difference in observation scales.

Plate 8.2 shows that the seasonal variations of CO were larger in the Northern Hemisphere and smaller in the Southern Hemisphere, and that the deseasonalized mole fractions were the highest in mid-latitudes of the Northern Hemisphere and the lowest in the Southern Hemisphere, with a large latitudinal gradient from northern mid- to southern low-latitudes. This is likely due to the presence of numerous anthropogenic sources of CO in the northern mid-latitudes, combined with the destruction of CO in the tropics, where OH radicals are abundant.

Figure 8.2 shows monthly mean mole fractions of CO for each 30° latitudinal zone. Seasonal variations were observed in both hemispheres, with mole fractions being higher in winter. Amplitudes of the seasonal cycle were larger in the Northern Hemisphere than in the Southern Hemisphere.

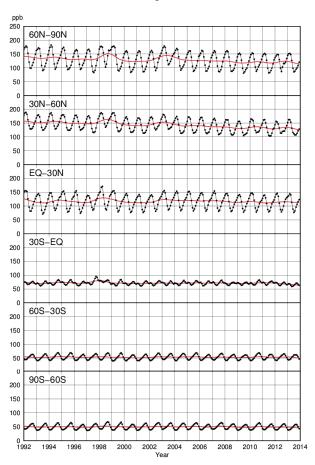



Fig. 8.2 Monthly mean mole fractions of CO from 1992 to 2013 for each 30° latitudinal zone (dots) and their deseasonalized long-term trends (red lines).

Figure 8.3 summarizes deseasonalized long-term trends for each 30° latitudinal zone and their growth rates. There was a decline in CO mole fractions around

1992, almost coinciding with the decrease in the growth rate of CH₄ mole fractions, most likely due to variations in their common sink (reaction with OH). The enhanced stratospheric ozone depletion due to increased volcanic aerosols following the eruption of Mt. Pinatubo in 1991 may have increased atmospheric OH radicals, which react with both CO and CH₄ (Dlugokencky *et al.*, 1996).

Increases in CO mole fractions were observed from 1997 to 1998 in the Northern Hemisphere and in the low latidutes of the Southern Hemisphere. These increases were attributed to large biomass burning events in Indonesia in late 1997 and in Siberia in the summer and autumn of 1998 (Novelli *et al.*, 1998).

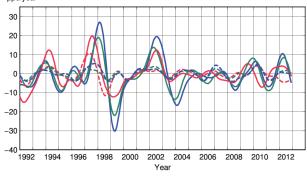
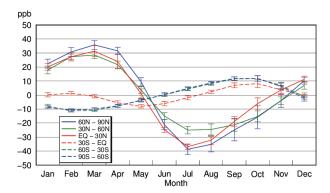
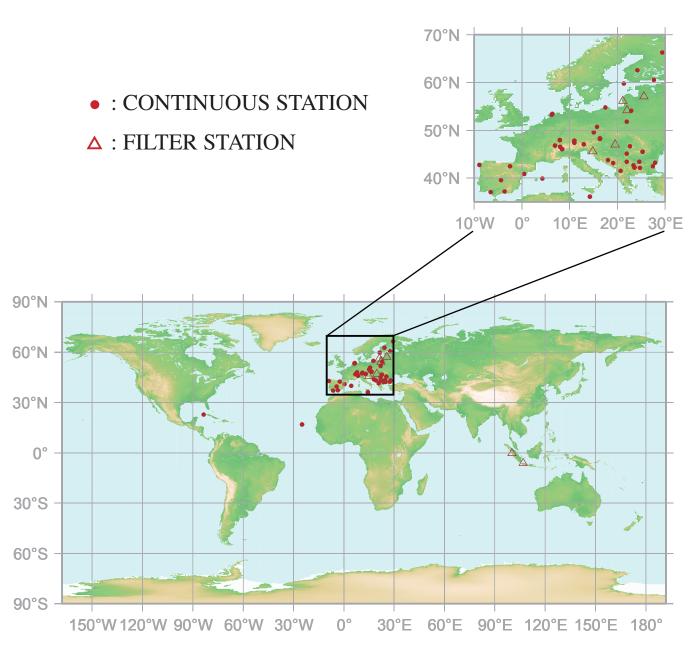


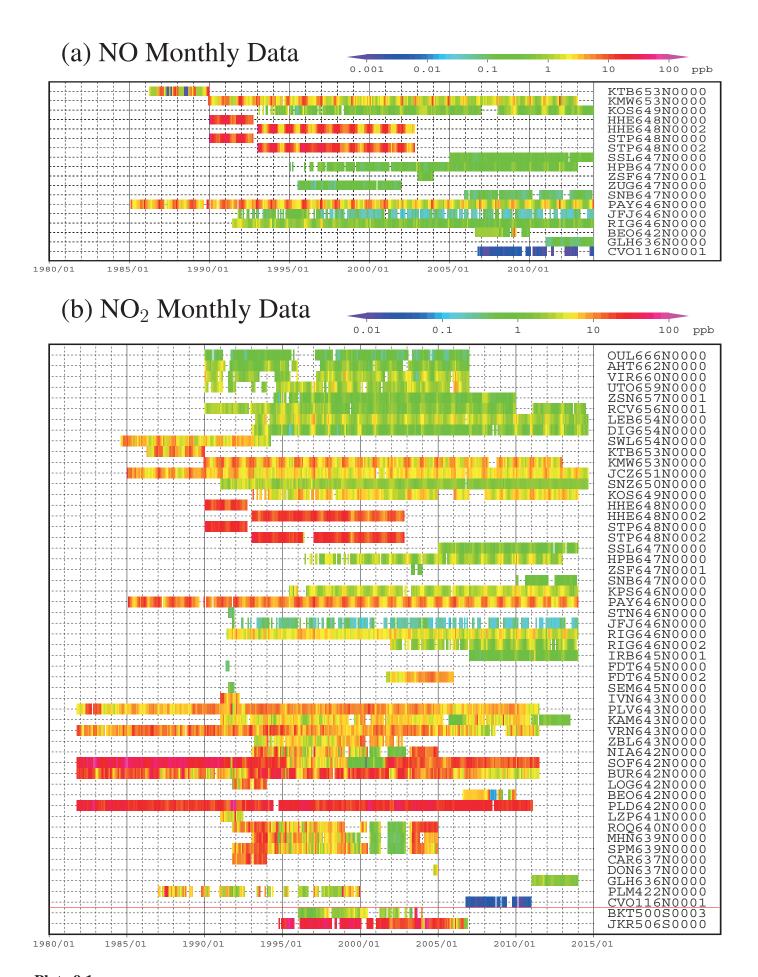
Fig. 8.3 Deseasonalized long-term trends of CO for each 30° latitudinal zone (top) and their growth rates (bottom).

The CO mole fractions returned to normal after 1999, but the growth rates in the Northern Hemisphere increased substantially again in 2002. The latter may have been due to large biomass burning events. Large-scale boreal forest fires occurred in Siberia and North America from 2002 to 2003. Large forest fires also occurred in Russia in summer 2010 which is reflected in the data in the bottom panel of Figure 8.3.

Seasonal cycle of CO mole fraction in the atmosphere

Figure 8.4 shows average seasonal cycles in the mole fraction of CO for each 30° latitudinal zone. The seasonal cycle is driven mainly by seasonal variations in OH abundance as a CO sink. This seasonality and a short lifetime of about a few months resulted in a sharp decrease in early summer followed by a relatively slow increase in autumn. The levelling-off in the beginning of the year observed in the southern low latitudes may be attributed to the transport of CO from the Northern Hemisphere.


Fig. 8.4 Average seasonal cycles of CO mole fractions for each 30° latitudinal zone obtained by subtracting long-term trends from the zonal mean time series. Error bars represent the range of $\pm 1\sigma$ calculated for each month. (Average from 1992 to 2013)

9.

NITROGEN MONOXIDE (NO) AND NITROGEN DIOXIDE (NO₂)

This map shows locations of the stations that have submitted data for monthly mean mole fractions.

Plate 9.1 Monthly mean (a) NO and (b) NO_2 mole fractions that have been reported to the WDCGG. The mole fractions are illustrated in different colors. The sites are listed in order from north to south. The red line indicates the equator.

9. NITROGEN MONOXIDE (NO) AND NITROGEN DIOXIDE (NO₂)

Basic information on NO and NO₂ with regard to environmental issues

Nitrogen oxides (NO_x , *i.e.*, NO and NO_2) are not greenhouse gases. Nevertheless, these compounds have a central regulatory role in the free radical and oxidising chemistry of the troposphere, regulating indirectly lifetime of methane and the production of tropospheric O_3 and secondary aerosols, all of which have important roles in the natural and anthropogenic greenhouse effect.

Sources of NO_x include energy production, transport, lightning, soils and biomass burning (Reis et al., 2009). They constitute major causes of acid rain and nitrogen The dominant sink of NO_x in the atmosphere is its conversion into nitric acid (HNO₃) and peroxyacetyl nitrate (PAN), which are eventually removed by dry or wet deposition. In some cases, NO_x is removed from the atmosphere directly by dry deposition. NO_x abundance varies in both space and time because of their short lifetimes and uneven source distribution. Some regional assessments are done based on satellite information to clarify such variations and trends. NO_x are one of the part of the global nitrogen cycle which recently has been addressed through a number of research initiatives.

Annual variation of NO and NO₂ mole fractions in the atmosphere

The observational stations that have submitted data for NO and NO_2 to the WDCGG are shown on the map at the beginning of this chapter. Most of these stations are located in Europe.

The monthly mean mole fractions of NO and NO₂ reported to the WDCGG are shown in Plate 9.1, in which different mole fraction levels are plotted in different colors. Data for NO_x are reported in various units, *i.e.*, ppb, $\mu g/m^3$ -25°C, $\mu g/m^3$ -20°C, $\mu g/m^3$ -25°C and mg/m^3 -25°C. Units other than ppb were converted to ppb using the formulas:

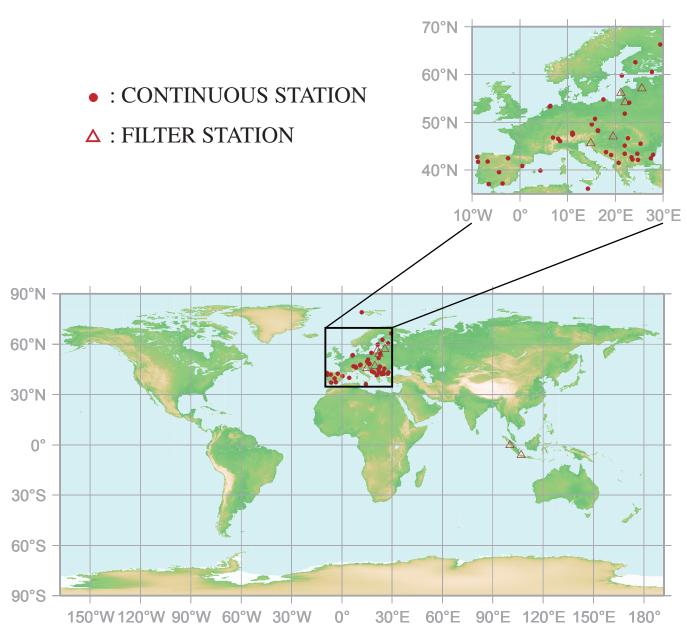
$$\begin{split} X_{p} \left[ppb \right] &= (R \times T \, / \, M \, / \, P_{0}) \times 10 \times X_{g} \left[\mu g / m^{3} \right] \\ X_{p} \left[ppb \right] &= (R \times T \, / \, M \, / \, P_{0}) \times 10^{4} \times X_{g} \left[mg / m^{3} \right] \\ X_{p} \left[ppb \right] &= (R \times T \, / \, M_{N} \, / \, P_{0}) \times 10 \times X_{g} \left[\mu g N / m^{3} \right] \end{split}$$

where R is the molar gas constant (8.31451 [J/K/mol]),

T is the absolute temperature reported from each station,

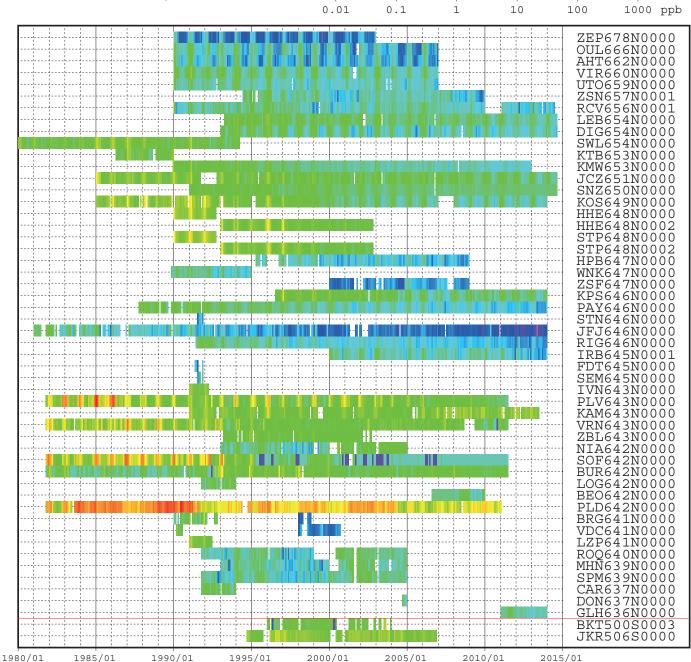
M is the molecular weight of NO (30.00614) or NO₂ (46.00554).

 M_N is the atomic weight of N (14.00674), and


P₀ is the standard pressure (1013.25 [hPa]).

If temperature is not reported by a station, T is taken to be 298 K (25°C).


The distributions of NO and NO₂ are spatially non-uniform and variable over time. Due to the high temporal variability in the mole fraction of NO₂ at each observational site, it was difficult to identify a long-term trend. A number of stations located in southern Europe showed relatively high mole fractions, and some stations reported increased NO₂ in winter.


As there are few observational sites for NO, it was difficult to identify whether the global average NO mole fraction increases or decreases.

10.
SULPHUR DIOXIDE
(SO₂)

This map shows locations of the stations that have submitted data for monthly mean mole fractions.

Plate 10.1 Monthly mean SO₂ mole fractions that have been reported to the WDCGG. The mole fractions are illustrated in different colors. The sites are listed in order from north to south. The red line indicates the equator.

10. SULPHUR DIOXIDE (SO₂)

Basic information on SO₂ with regard to environmental issues

Sulphur dioxide (SO₂) is not a greenhouse gas, but it is a precursor of atmospheric sulphuric acid (H₂SO₄) and sulphate aerosol. SO₂ is oxidized by hydroxyl radicals (OH) to form sulphuric acid, which then becomes aerosols through photochemical gas-to-particle conversion. While SO₂ reacts much more slowly with OH than does NO₂, SO₂ dissolves readily in suspended liquid droplets in the atmosphere. The global sulphur cycle affects atmospheric chemistry, including tropospheric ozone (Berglen *et al.*, 2004).

Sources of SO₂ include industrial fossil fuel combustion, biomass burning, volcanic release and the oxidation of dimethylsulphide (DMS) from the oceans. Major SO₂ sinks are oxidation by OH and deposition onto wet surfaces. Anthropogenic SO₂ has caused acid rain and deposition throughout the industrial era (Vet *et al.*, 2014). The mole fractions of SO₂ have shown large variations in both space and time because of the short lifetime and uneven anthropogenic source distribution of SO₂.

Annual variation of SO₂ mole fraction in the atmosphere

The observational sites that have submitted data for SO₂ to the WDCGG are shown on the map at the beginning of this chapter. Most of these stations are located in Europe.

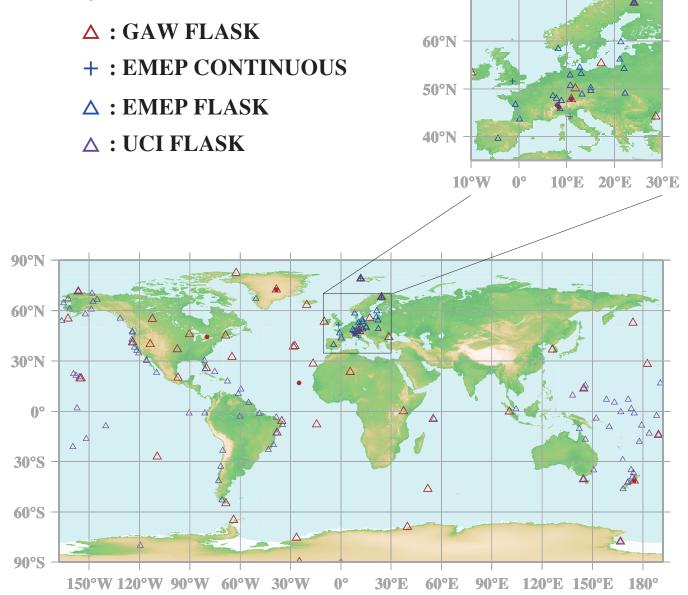
The monthly mean mole fractions of SO_2 that have been reported to the WDCGG are shown in Plate 10.1, with different mole fraction levels illustrated in different colors. Data for SO_2 are reported in various units, *i.e.*, ppb, $\mu g/m^3$, mg/m^3 and $\mu gS/m^3$. Units other than ppb were converted to ppb using the formulas:

$$\begin{split} X_p \, [ppb] &= (R \times T \, / \, M \, / \, P_0) \times 10 \times X_g \, [\mu g/m^3] \\ X_p \, [ppb] &= (R \times T \, / \, M \, / \, P_0) \times 10^4 \times X_g \, [mg/m^3] \\ X_p \, [ppb] &= (R \times T \, / \, M_S \, / \, P_0) \times 10 \times X_g \, [\mu gS/m^3] \end{split}$$

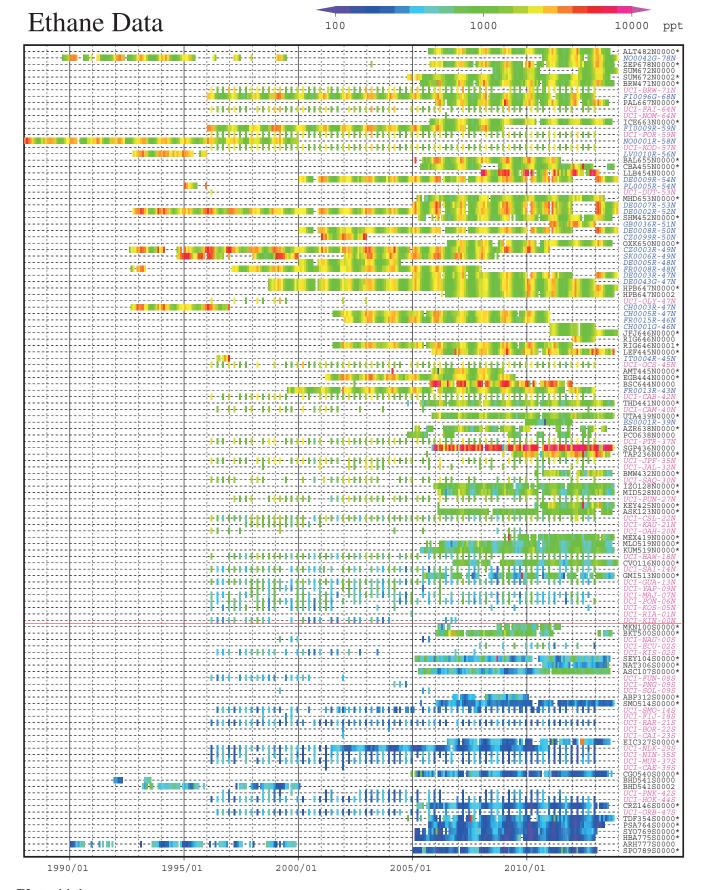
where R is the molar gas constant (8.31451 [J/K/mol]),

T is the absolute temperature reported from each station,

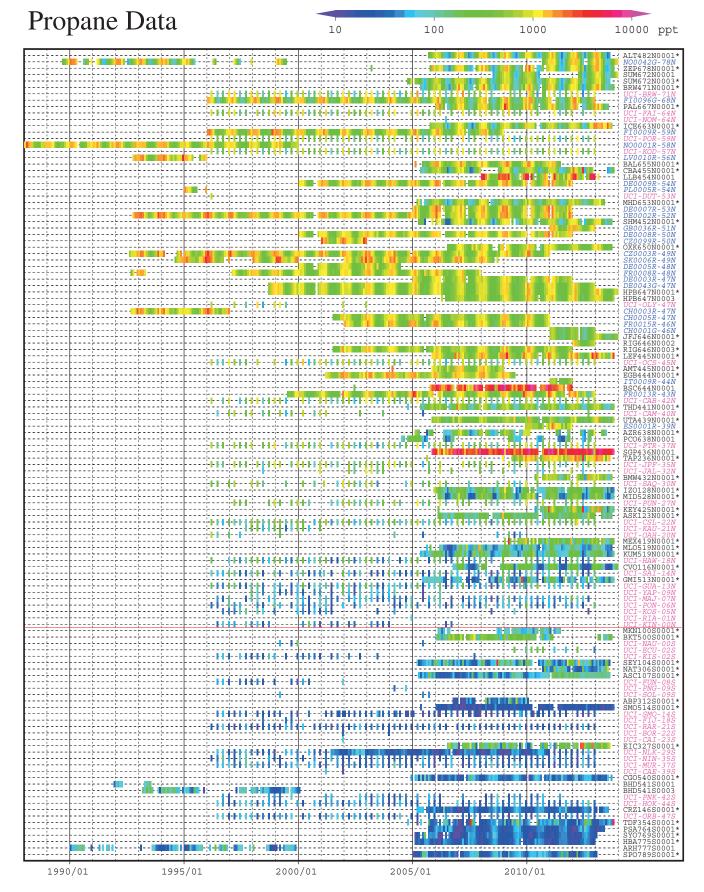
M is the molecular weight of SO_2 (64.0648), M_S is the atomic weight of S (32.066), and P_0 is the standard pressure (1013.25 [hPa]).


If temperature is not reported by a station, T is taken to be 298 K (25°C).

Although some stations in southern Europe have reported relatively high mole fractions, it has been difficult to identify the magnitude and direction of the trend for SO₂.


11. VOLATILE ORGANIC COMPOUNDS (VOCs)

70°N


• : GAW CONTINUOUS

This map shows locations of the stations that have submitted data for mole fractions of VOCs (ethane and propane) consistent with Plate.11.1 and 11.2. Most of the GAW stations are associated to the NOAA greenhouse and carbon monoxide flask sampling network, the UCI canister sampling network, and EMEP canister sampling stations, but EMEP network also includes a number of GAW stations.

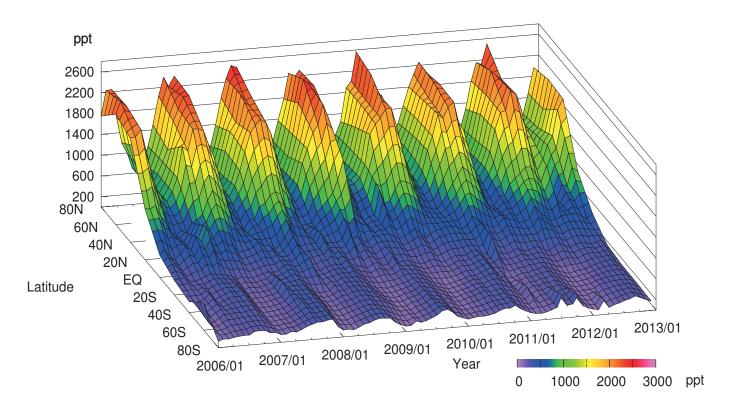


Plate 11.1 Monthly mean ethane mole fractions that have been reported to the WDCGG by GAW stations and from EMEP and UCI as regional/contributing networks. The mole fractions are illustrated in different colors. The sites are listed in order from north to south. The red line indicates the equator. Only WDCGG data from the sites with an asterisk at the end of the station index were used in Plate 11.3 after screening outliers manually. EMEP data were used with station indices (blue and italics), which consist of the EBAS code (7 characters) and the latitude. For the first time, the flask sampling network by the Department of Chemistry, University of California, Irvine (UCI) have provided data to the GAW VOC programme, which are indicated with the original site codes and latitudes in magenta and italics. See the text for details.

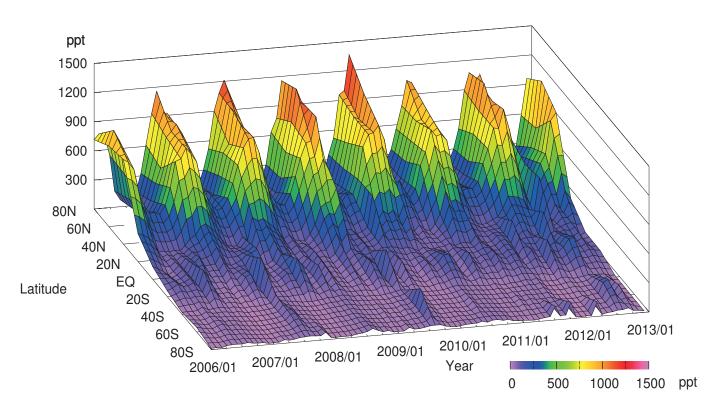


Plate 11.2 Monthly mean propane mole fractions that have been reported to the WDCGG by GAW stations and from EMEP and UCI as regional/contributing networks. The mole fractions are illustrated in different colors. The sites are listed in order from north to south. The red line indicates the equator. Only WDCGG data from the sites with an asterisk at the end of the station index were used in Plate 11.3 after screening outliers manually. EMEP data were used with station indices (blue and italics), which consist of the EBAS code (7 characters) and the latitude. UCI data are indicated with the original site codes and latitudes in magenta and italics. See the text for details.

Ethane mole fraction

Propane mole fraction

Plate 11.3 Variation of zonally averaged monthly mean ethane (upper) and propane (lower) mole fractions. The zonally averaged mole fractions were calculated for each 20° zone.

11. VOLATILE ORGANIC COMPOUNDS (VOCs)

Basic information on VOCs with regard to environmental issues

Volatile organic compounds (VOCs) have a variety of roles in atmospheric chemistry. They are major contributors to photochemical air pollution on both urban and regional scales and, together with NO_x, also impact ozone in the background troposphere. Some VOCs are injurious to human health at modest concentrations and are precursors to aerosols at quite low concentrations. VOCs also play an important indirect role for the climate change issue since they are precursors for tropospheric ozone and aerosols and since a large fraction of the VOCs eventually will be oxidized to CO₂ in the atmosphere. VOCs can serve as tracers of many atmospheric processes and emission sources. VOC molecules occur in many forms and have both natural and anthropogenic sources. The GAW Programme has sought to focus measurements on species which help to provide understanding of a wide range of atmospheric properties, and which can mostly be measured using currently approved techniques. Table 11.1 shows the molecules selected for measurements within GAW, with reasons for their selection (WMO, 2007c). The main reasons for measurements within GAW are associated with their use as tracers of the source types of greenhouse gases such as methane, to provide quantitative information on the extent of atmospheric processing by hydroxyl radicals (OH) and other oxidants, and as precursors to ozone, organic acids and aerosols, particularly organic aerosols and sulphate aerosols. In addition, VOC measurements provide valuable information for air mass characterization at some stations to identify local sources of pollution. All of this information is of value to atmospheric modellers both in terms of input parameters and as constraints to model results.

Some GAW stations have the analytical capability to produce high quality measurements of a wide range of Where appropriate calibration and quality assurance can be provided, these data should wherever possible be provided to WMO databases for wider scientific dissemination (WMO, 1996). The current global network of VOC measurements is shown on the front page of this chapter. Most of the stations are associated to the NOAA greenhouse and carbon monoxide flask sampling network, the UCI canister sampling network, and EMEP canister sampling stations, but it does include a number of sites where selected gases are measured at a higher frequency. These include three sites in Europe, one in Greenland (Summit) and one on the Island of Cape Verde. It is anticipated, however, that the number of sites with high frequency measurements will increase significantly in the next few years in the European region and the adjacent Arctic.

Table 11.1 Molecules selected for measurements within the GAW VOC Programme with reasons for their selection

Molecule	Lifetime (OH=10 ⁶ cm ⁻³)	Importance to GAW	Analysis Method	Network Type
Ethane	2-4 months	• Methane sources • Natural sources • Biomass burning • Fossil fuel	GC/FID	Global
Luiano	2 4 1110114110	•Ocean production(S.hemisphere) •Trend in size of seasonal cycle	40,115	
Propane	3 weeks	• Methan sources • Natural sources • Biomass burning • Fossil fuel	GC/FID	Global
riopano		Ocean production(S.hemisphere)	40,115	aloba.
Acetylene	3 weeks	• Motor vehicle tracer • Biomass burning tracer	GC/FID	Global
		Ratios to the other hydrocarbons • Trends		
Isoprene	1-2 hours	·Biosphere product	GC/FID	Mid latitudes
		Sensitive to temperature/land use/climate change	PTR-MS	and tropics
		•O ₃ precursor •Oxidizing capacity	1	
		Precursor to formaldehyde		
Formaldehyde	2 hours	Indicator of isoprene exidation	DOAS	Small number of
	- 2 days	-Biomass burning		sites in Tropics
		Comparison with satellites		for comparison
		•Trends		with satellites
Terpenes	1 hour	Precursors to organic aerosols	GC/MS	Selected sites
rorponeo	1	Treations to organic derection	PTR-MS	in forested area
Acetonitrile	0.4-1 year	Biomass burning indicator	GC/MS	Global
		Biofuel burning indicator	PTR-MS	
Methanol	2 weeks	Sources in the biosphere (methane oxidation)	GC/FID	Global
		- Abundant oxidation product	PTR-MS	
Ethanol	1 week	•Tracer of alternative fuel usage	GC/FID	Global
			PTR-MS	
Acetone	1 months	- Abundant oxidation product	GC/FID	Global
		• Free radical source in the upper troposphere	PTR-MS	
DMS	1 day	• Major natural sulphur source • Sulphate aerosol precursor	GC/FID	Global Marine
		Tracer of marine bioproductivity	PTR-MS	
Benzene	1 week	- Motor vehicle tracer	GC/FID	Global
		Biomass burning indicator	GC-MS	
Toluene	2 days	Ratio to benzene used for air mass age	GC/FID	Global
	1	Precursor to particulates	GC-MS	
Iso/normal Butane	2-3 days	- Chemical processing indicator	GC/FID	Global
		-Lifetime/ozone production	GC-MS	
		Indication of halogen chemistry		<u> </u>
so/normal Pentane	2−3 days	Ratio provides impact of NO ₃ chemistry	GC/FID	Global
		Indication of halogen chemistry	GC-MS	

GC/FID is Gas Chromatography - Flame Ionization Detection DOAS is Different Optical Absorption Spectrometry GC/MS is Gas Chromatography - Mass Spectrometry
PTR-MS is Proton Tranfer Reaction Mass Spectrometry

Seasonal variation and trends of VOCs

As with all other measurements within GAW that are designed to study atmospheric composition, an important use of the data is to evaluate trends over time. Sufficient data are available for many individual molecules, particularly the non-methane hydrocarbons (NMHCs). The current database also contains much information on the seasonal variation of both natural and anthropogenic hydrocarbons. The map on the front page of this chapter shows the network currently reporting VOC data, differentiating between sites where flask samples are collected for a limited set of NMHC measurements, and sites with measurements of a wider range of VOCs collected in a semi-continuous manner.

A review of the data recorded by the different sites reveals some interesting and important features, both concerning the characteristics of the measurement sites and the global and seasonal atmospheric behavior of VOCs. Focusing on ethane and propane, which have rather longer lifetimes among VOCs, Plates 11.1 and 11.2 show monthly mean mole fractions of ethane and propane, respectively, from 1988 to 2013 at each of the stations reporting to the database at WDCGG. The Department of Chemistry, University of California, Irvine (UCI) operates a flask sampling network in the Americas and Pacific region and for the first time have reported their huge VOC dataset to WDCGG as a contributing network (for details, see Simpson et al., 2012). These data are now available at WDCGG. Detailed site information for UCI data are provided on pages 90-91. In addition, the figures also include data from EMEP stations (for details, see Tørseth et al., 2012). The EMEP data were downloaded on **EBAS** 01/Dec./2014 from the database (http://ebas.nilu.no/) with courtesy of EMEP and its data providers. Based on recommendations from EMEP-CCC, some of these data sets were not used because of revision/update processes at EBAS.

A general feature of the data is a clear seasonal pattern with maximum concentrations in winter and minimum concentrations in summer. The sites in Plates 11.1 and 11.2 are listed by station latitude with the most northern at the top and the South Pole at the NMHCs tend to show a latitudinal concentration gradient, with concentrations decreasing from the poles to the equator, most notably during winter in the Northern Hemisphere. Some stations however, differ from these general patterns, e.g. higher VOC levels than other sites at similar latitudes, especially during winter. Within the GAW network, examples of the latter are the stations Lac La Biche (LLB), Constanta, Black Sea (BSC), and the Southern Great Plains (SGP), where the NMHC data indicate large local sources that elevate atmospheric NMHC mole fractions significantly above the North American continental background. Consequently, while these data are of value for assessing the burden and long-term change of VOCs in these areas, they are unsuitable for consideration in the reconstruction of the latitudinal background of these gases.

Plates 11.3 shows globally averaged latitudinal ethane and propane mole fraction distributions, respectively, mostly from the NOAA/INSTAAR flask network between 2006 and 2013.

The ethane mole fraction shows a large seasonal variation which is mostly associated with its removal from the atmosphere by hydroxyl radical chemistry, leading to lower values in the summer months, as well as the emission seasonal cycles to contribute winter maximum and summer minimum. The greater latitudinal gradients in winter in the Northern Hemisphere compared to those in summer are also associated with corresponding larger OH gradients in winter. Absolute mole fractions are much larger in the Northern Hemisphere reflecting the preponderance of sources, mostly from oil and gas extraction in this region; Southern Hemisphere sources are dominated by emissions from biomass burning with a much smaller contribution associated with fossil fuel usage. A consideration of the budget of ethane in the atmosphere and its relevance to understanding the sources of methane was published by Simpson et al. (2012). This study concluded that the slow-down in the growth of atmospheric methane observed since the mid-1980s was predominantly associated with improved containment of methane emissions from processes such as flaring during oil and gas extraction. This result is a good example of how VOCs can be used as tracers to understand the behavior of important greenhouse gases.

The mole fractions of propane are generally lower than those of ethane owing to the shorter lifetime of propane by about a factor of 5 and roughly 50% lower sources for propane (mole-base). The propane distribution shows similar general features as for ethane, albeit stronger seasonality and more pronounced latitudinal gradients in the Northern Hemisphere during winter. Due to its shorter atmospheric lifetime compared to ethane, the Northern Hemisphere seasonal cycle shows a maximum close to mid-winter, whereas the ethane maximum is shifted by about two months toward spring owing to ethane reacting slower to the changes in OH. The higher rate decay of propane in summertime during transport of the air masses to remote observation sites compared to ethane contributes to the relatively lower summer minima seen in the representation of the network data.

REFERENCES

References

- Angert, A., S. Biraud, C. Bonfils, W. Buermann, and I. Fung, CO₂ seasonality indicates origins of post-Pinatubo sink, *Geophys. Res. Lett.*, **31**, L11103, doi:10.1029/2004GL019760, 2004.
- Bekki, S., K. S. Law, and J. A. Pyle, Effects of ozone depletion on atmospheric CH₄ and CO concentrations, *Nature*, **371**, 595–597, 1994.
- Bergamaschi, P., et al., Atmospheric CH₄ in the first decade of the 21st century: Inverse modeling analysis using SCIAMACHY satellite retrievals and NOAA surface measurements, *J. Geophys. Res. Atmos.*, **118**, 7350–7369, 2013.
- Berglen, T. F., T. K. Berntsen, I. S. A. Isaksen, and J. K. Sundet, A global model of the coupled sulfur/oxidant chemistry in the troposphere: The sulfur cycle, *J. Geophys. Res.*, **109**, D19310, doi:10.1029/2003JD003948, 2004.
- Boden, T. A., G. Marland, and R. J. Andres, Global, Regional, and National Fossil-Fuel CO₂ Emissions. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., USA, doi: 10.3334/CDIAC/00001 V2013, 2013.
- Buizert C., K. M. Cuffey, J. P. Severinghaus, D. Baggenstos, T. J. Fudge, E. J. Steig, B. R. Markle, M. Winstrup, R. H. Rhodes, E. J. Brook, T. A. Sowers, G. D. Clow, H. Cheng, R. L. Edwards, M. Sigl, J. R. McConnell, and K. C. Taylor, The WAIS Divide deep ice core WD2014 chronology Part 1: Methane synchronization (68-31 ka BP) and the gas age-ice age difference, *Clim. Past.*, 11, 153-173, 2015.
- Cleveland, W. S., and S. J. Devlin, Locally weighted regression: an approach to regression analysis by local fitting, *J. Amer. Statist. Assn.*, **83**, 596–610, 1988
- Conway, T. J., P. P. Tans, L. S. Waterman, K. W. Thoning, D. R. Kitzis, K. A. Masarie, and N. Zhang, Evidence for interannual variability of the carbon cycle from the National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostics Laboratory global air sampling network, *J. Geophys. Res.*, **99**, 22831–22855, 1994.
- Cooper, O. R., D. D. Parrish, J. Ziemke, N. V. Balashov, M. Cupeiro, I. E. Galbally, S. Gilge, L. Horowitz, N. R. Jensen, J.-F. Lamarque, V. Naik, S. J. Oltmans, J. Schwab, D. T. Shindell, A. M. Thompson, V. Thouret, Y. Wang and R. M. Zbinden, Global distribution and trends of tropospheric ozone: An observation-based review, *Elem. Sci. Anth.*, 2, doi:10.12952/journal.elementa.000029., 2014.
- Dlugokencky, E. J., L. P. Steele, P. M. Lang, and K. A. Masarie, The growth rate and distribution of

- atmospheric methane, *J. Geophys. Res.*, **99**, 17021–17043, 1994.
- Dlugokencky, E. J., E. G. Dutton, P. C. Novelli, P. P. Tans, K. A. Masarie, K. O. Lantz, and S. Mardronich, Changes in CH₄ and CO growth rates after the eruption of Mt. Pinatubo and their link with changes in tropical tropospheric UV flux, *Geophys. Res. Lett.*, 23, 2761–2764, 1996.
- Dlugokencky, E. J., B. P. Walter, K. A. Masarie, P. M. Lang and E. S. Kasischke, Measurements of an anomalous global methane increase during 1998, *Geophys. Res. Lett.*, 28, 499–502, 2001.
- Dlugokencky, E. J., L. Bruhwiler, J. W. C. White, L. K. Emmons, P. C. Novelli, S. A. Montzka, K. A. Masarie, P. M. Lang, A. M. Crotwell, J. B. Miller, and L. V. Gatti, Observational constraints on recent increases in the atmospheric CH₄ burden, *Geophys. Res. Lett.*, 36, L18803, 2009.
- Duchon, C. E., Lanczos filtering in one and two dimensions, *J. Appl. Meteor.*, **18**, 1016-1022, 1979.
- Etheridge, D. M., L. P. Steele, R. J. Francey, and R. L. Langenfelds, Atmospheric methane between 1000 A.D. and present: Evidence of anthropogenic emissions and climatic variability, *J. Geophys. Res.*, **103**, 15979–15993, 1998.
- Francey, R. J., P. P. Tans, C. E. Allison, I. G. Enting, J. W. C. White, and M. Trolier, Changes in oceanic and terrestrial carbon uptake since 1982, *Nature*, **373**, 326–330, 1995.
- Gu, L., D. D. Baldocchi, S. C. Wofsy, J. W. Munger, J. J. Michalsky, S. P. Urbanski, and T. A. Bonden, Response of a deciduous forest to the Mount Pinatubo eruption enhanced photosynthesis, *Science*, **299**, 2035–2038, 2003.
- Haan, D. and D. Raynaud, Ice core record of CO variations during the last two millennia: atmospheric implications and chemical interactions within the Greenland ice, *Tellus*, **50B**, 253–262, 1998.
- Hansen, J., A. Lacis, R. Ruedy, and M. Sato, Potential Clim. Impact of Mount-Pinatubo Eruption, *Geophys. Res. Lett.*, **19(2)**, 215–218, 1992.
- Heimann, M. and M. Reichstein, Terrestrial ecosystem carbon dynamics and climate feedbacks, *Nature*, **451**, 289–292, 2008.
- IPCC, Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the IPCC Fifth Assessment Report [Thomas Stocker, Qin Dahe, and Gian-Kasper Plattner]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013.
- Keeling, C. D., R. B. Bacastow, A. F. Carter, S. C. Piper, T. P. Whorf, M. Heimann, W. G. Mook, and H. Roeloffzen, A three-dimensional model of

- atmospheric CO₂ transport based on observed winds: 1. Analysis of observational data, in aspects of climate variability in the Pacific and the Western Americas, edited by D. H. Peterson, *Geophysical Monograph* **55**, 165–236, American Geophysical Union, Washington, D.C., 1989.
- Keeling, C. D., T. P. Whorf, M. Wahlen, and J. van der Plicht, Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980, *Nature*, 375, 666–670, 1995.
- Lambert, G., P. Monfray, B. Ardouin, G. Bonsang, A.Gaudry, V. Kazan and G. Polian, Year-to-year changes in atmospheric CO₂, *Tellus*, **47B**, 35–55, 1995
- Levin, I., T. Naegler, R. Heinz, D. Osusko, E. Cuevas, A. Engel, J. Ilmberger, R.L. Langenfelds, B. Neininger, C. v. Rohden, L.P. Steele, R. Weller, D.E. Worthy, and S.A. Zimov, The global SF6 source inferred from long-term high precision atmospheric measurements and its comparison with emission inventories. *Atmos. Chem. Phys.*, 10(6), 2655–2662, 2010.
- Levin, I., Earth science: The balance of the carbon budget, *Nature*, **488**, 35–36, 2012.
- Manning, A. C., and R. F. Keeling, Global oceanic and land biotic carbon sinks from the Scripps atmospheric oxygen flask sampling network, *Tellus*, **58B**, 95–116, 2006.
- Marenco, A., and F. Said, Meridional and vertical ozone distribution in the background troposphere from Scientific aircraft measurements during the STRATOZ III experiment, *Atmos. Env.*, **23**, 201–214, 1989.
- Matsueda, H., S. Taguchi, H. Y. Inoue, and M. Ishii, A large impact of tropical biomass burning on CO and CO₂ in the upper troposphere, *Science in China (Series C)*, **45**, 116–125, 2002.
- Morimoto, S., S. Aoki, T. Nakazawa, and T. Yamanouchi, Temporal variations of the carbon isotopic ratio of atmospheric methane observed at Ny Alesund, Svalbard from 1996 to 2004, *Geophys. Res. Lett.*, **33**, L01807, doi:10.1029/2005GL024648, 2006.
- Nakazawa, T., K. Miyashita, S. Aoki, and M. Tanaka, Temporal and spatial variations of upper tropospheric and lower stratospheric carbon dioxide, *Tellus*, 43B, 106–117, 1991.
- Nakazawa, T., S. Morimoto, S. Aoki and M. Tanaka, Time and space variations of the carbon isotopic ratio of tropospheric carbon dioxide over Japan, *Tellus*, **45B**, 258–274, 1993.
- Nakazawa, T., S. Morimoto, S. Aoki and M. Tanaka, Temporal and spatial variations of the carbon isotopic ratio of atmospheric carbon dioxide in the western Pacific region, *J. Geophys. Res.*, **102**, 1271–1285, 1997.
- Nevison, C. D., N. M. Mahowald, S. C. Doney, I. D.

- Lima, G. R. van der Werf, J. T. Randerson, D. F. Baker, P. Kasibhatla, and G. A. McKinley, Contribution of ocean, fossil fuel, land biosphere, and biomass burning carbon fluxes to seasonal and interannual variability in atmospheric CO₂, *J. Geophys. Res.*, **113**, doi:10.1029/2007JG000408, 2008
- Nisbet, E. G., E. J. Dlugokencky, and P. Bousquet, Methane on the Rise-Again, *Science*, **343**, 493-495, doi:10.1126/science.1247828, 2014.
- Novelli, P. C., K. A. Masarie, and P. M. Lang, Distributions and recent changes of carbon monoxide in the lower troposphere, *J. Geophys. Res.*, **103**, 19015–19033, 1998.
- Novelli, P. C., K. A. Masarie, P. M. Lang, B. D. Hall, R. C. Myers, and J. W. Elkins, Reanalysis of tropospheric CO trends: Effects of the 1997–1998 wildfires, *J. Geophys. Res.*, 108(D15), 4464, doi:10.1029/2002JD003031, 2003.
- Oltmans *et al.*, Long-term changes in tropospheric ozone, *Atmos. Env.*, **40**, 3156–3173, 2006.
- Prinn, R. G., J. Huang, R. F. Weiss, D. M. Cunnold, P. J. Fraser, P. G. Simmonds, A. McCulloch, C. Harth, P. Salameh, S. O'Doherty, R. H. J. Wang, L. Porter and B. R. Miller, Evidence for substantial variations of atmospheric hydroxyl radicals in the past two decades, *Science*, 292, 1882–1888, 2001.
- Rayner, P. J., I. G. Enting, R. J. Francey and R. Langenfelds, Reconstructing the recent carbon cycle from atmospheric CO_2 , $\delta^{13}C$ and O_2/N_2 observations, *Tellus*, **51B**, 213–232, 1999.
- Ravishankara, A. R., J. S. Daniel, and R. W. Portmann, Nitrous Oxide (N₂O): the dominant ozone-depleting substance emitted in the 21st century, *Science*, **326**, 123-125, 2009.
- Reis, S., R. W. Pinder, M. Zhang, G. Lijie, and M. A. Sutton, Reactive nitrogen in atmospheric emission inventories, *Atmos. Chem. Phys.*, 9, 7657–7677, 2000
- Rigby, M., R. G. Prinn, P. J. Fraser, P. G. Simmonds, R.
 L. Langenfelds, J. Huang, D. M. Cunnold, L. P.
 Steele, P. B. Krummel, R. F. Weiss, S. O'Doherty, P.
 K. Salameh, H. J. Wang, C. M. Harth, J. Mühle,
 and L. W. Porter, Renewed growth of atmospheric methane, *Geophys. Res. Lett.*, 35, L22805, 2008.
- Seinfeld, J. H., and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, *John Wiley & Sons, Inc., New York*, 1326 pp., 1998.
- Shindell, D., G. Faluvegi, A. Lacis, J. Hansen, R. Ruedy, and E. Aguilar, Role of tropospheric ozone increases in 20th-century climate change, *J. Geophys. Res.*, **111**, D08302, doi:10.1029/2005JD006348, 2006.
- Simpson, I. J., M. P. S. Anderson, S. Meinardi, L. Bruhwiler, N. J. Blake, D. Helmig, F. S. Rowland, and D. R. Blake, Long-term decline of global

- atmospheric ethane concentrations and implications for methane, *Nature*, **488**, 490-494, 2012.
- Solomon, S., G-K. Plattner, R. Knutti and P. Friedlingstein, Irreversible climate change due to carbon dioxide emissions, *Proc. Natl. Acad. Sci. USA*, **106**, 1704-1709, 2009.
- Staehelin, J., J. Thudium, R. Buehler, A. Voltz-Thomas, and W. Graber, Trends in surface ozone concentrations at Arosa (Switzerland), *Atmos. Env.*, **28**, 75–87, 1994.
- Stenchikov, G., A. Robock, V. Ramaswamy, M. D. Schwarzkopf, K. Hamilton, and S. Ramachandran, Arctic Oscillation response to the 1991 Mount Pinatubo eruption: Effects of volcanic aerosols and ozone depletion, *J. Geophys. Res.*, **107(D24)**, 4803, doi:10.1029/2002JD002090., 2002.
- Tans, P., An accounting of the observed increase in oceanic and atmospheric CO₂ and an outlook for the fiture, *Oceanography*, **22(4)**, 26-35, http://dx.doi.org/10.5670/oceanog.2009.94, 2009.
- Tarasova, O. A., C. A. M. Brenninkmeijer, P. Jöckel, A. M. Zvyagintsev, and G.I. Kuznetsov: A climatology of surface ozone in the extra tropics: cluster analysis of observations and model resolts, *Atmos. Chem. Phys.*, 7, 6099-6117, 2007.
- Thompson, R. L., F. Chevallier, A. M. Crotwell, G. Dutton, R. L. Langenfelds, R. G. Prinn, R. F. Weiss, Y. Tohjima, T. Nakazawa, P. B. Krummel, L. P. Steele, P. Fraser, S. O'Doherty, K. Ishijima and S Aoki: Nitrous oxide emissions 1999 to 2009 from a global atmospheric inversion. *Atmos. Chem. Phys.*, 14, 1801-1817, 2014.
- Thoning, K. W., P. P. Tans, and W. D. Komhyr, Atmospheric carbon dioxide at Mauna Loa observatory, 2. Analysis of the NOAA GMCC data, 1974-1985, *J. Geophys. Res.*, **94**, 8549–8565, 1989.
- Tørseth, K., W. Aas, K. Breivik, A. M. Fjæraa, M. Fiebig, A. G. Hjellbrekke, C. Lund Myhre, S. Solberg, and K. E. Yttri, Introduction to the European Monitoring and Evaluation Programme (EMEP) and observed atmospheric composition change during 1972-2009. *Atmos. Chem. Phys.*, 12, 5447-5481, 2012.
- Tsutsumi, Y, Y. Makino, and J. B. Jensen, Vertical and latitudinal distributions of tropospheric ozone over the western Pacific: Case studies from the PACE aircraft missions, *J. Geophys. Res.*, **108(D8)**, 4251, doi:10.1029/2001JD001374, 2003.
- Vet, R., R. S. Artz, S. Carou, M. Shaw, C. U. Ro, W. Aas, A. Baker, V. C. Bowersox, F. Dentener, C. G. Lacaux, A. Hou, J. J. Pienaar, R. Gillett, M. C. Forti, S. Gromov, H. Hara, T. Khodzher, N. M. Mahowald, S. Nickovic, P.S.P. Rao, N. W. Reid, A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus, *Atmos. Env.*, 93, 1–116, 2014.

- WMO, WMO-BMBF Workshop on VOC Establishment of a "World Calibration/Instrument Intercomparison Facility for VOC" to Serve the WMO Global Atmosphere Watch (GAW) Programme, GAW Report No. 111, WMO TD No. 756, 1996.
- WMO, Scientific assessment of ozone depletion: 1998.
 WMO global ozone research and monitoring project—Report No. 44, 2-43, World Meteorological Organization, Geneva, 1999.
- WMO, World Data Centre for Greenhouse Gases (WDCGG) Data Summary, WDCGG No. 22, 84pp, 2000
- WMO, Global Atmospheric Watch (GAW) Strategic Plan: 2008–2015, GAW Report No. 172, WMO TD No. 1384, 2007a.
- WMO, World Data Centre for Greenhouse Gases Data Submission and Dissemination Guide, GAW Report No. 174, WMO TD No. 1416, 2007b.
- WMO, A WMO/GAW Expert Workshop on Global Long-Term Measurements of Volatile Organic Compounds (VOCs), GAW Report No. 171, WMO TD No. 1373, 2007c.
- WMO, Technical Report of Global Analysis Method for Major Greenhouse Gases by the World Data Center for Greenhouse Gases, GAW Report No. 184, WMO TD No. 1473, 2009a.
- WMO, Revision of the World Data Centre for Greenhouse Gases Data Submission and Dissemination Guide, GAW Report No. 188, WMO TD No. 1507, 2009b.

 (http://www.wmo.int/pages/prog/arep/gaw/docume nts/GAW_188_web_20100128.pdf, accessed on 16 Feb. 2015)
- WMO, Addendum for the Period 2012-2015 to the WMO Global Atmosphere Watch (GAW) Strategic Plan 2008-2015, GAW Report No. 197, 2011a.
- WMO, Second Tropospheric Ozone Workshop Tropospheric Ozone Changes: observations, state of understanding and model performances, GAW Report No.199, 2011b.
- WMO, WMO Greenhouse Gas Bulletin No.9, 2013. (http://www.wmo.int/pages/prog/arep/gaw/ghg/GH Gbulletin.html, accessed on 16 Feb. 2015)
- WMO, 17th WMO/IAEA Meeting on Carbon Dioxide, Other Greenhouse Gases and Related Measurement Techniques (GGMT-2013), ed. Peter Tans and Christoph Zellweger, WMO/GAW Report No.213, 2014a.
- WMO, WMO Greenhouse Gas Bulletin No.10, 2014b. (http://www.wmo.int/pages/prog/arep/gaw/ghg/GH Gbulletin.html, accessed on 16 Feb. 2015)
- Yoon, J., and A. Pozzer, Model-simulated trend of surface carbon monoxide for the 2001–2010 decade, *Atmos. Chem. Phys.*, **14**, 10465–10482, 2014.

APPENDICES

CALIBRATION AND STANDARD SCALES

1. Calibration System in the GAW Programme

Under the Global Atmosphere Watch (GAW) Programme, the Central Calibration Laboratories (CCLs) are assigned to host a Primary (Reference) Standard/scale, while the World Calibration Centres (WCCs) are responsible for the scale propagation to the stations via distribution of calibration standards for certain compounds, conducting instrument calibrations, comparison campaigns, station audits and providing

training to the station personnel. A Reference Standard/scale is designated for each variable to be used for all GAW measurements of that variable. Table 1 lists the organizations that serve as WCCs and CCLs for GAW (WMO, 2011). For CFCs and SO₂, no central facilities or quality control systems have so far been established within the GAW Programme.

Table 1. Overview of the GAW Central Calibration Laboratories (GAW-CCL, Reference Standard) and World Calibration Centres for greenhouse and other related gases. The World Calibration Centres have assumed global responsibilities, except where indicated (Am, Americas; E/A, Europe and Africa; A/O, Asia and the South-West Pacific)

Compounds	Central Calibration Laboratory (Host of Primary Standard)	World Calibration Centre
Carbon Dioxide (CO ₂)	NOAA/ESRL	NOAA/ESRL (Round Robin) Empa (audits)
carbon isotopes	MPI-BGC	
Methane (CH ₄)	NOAA/ESRL	Empa (Am, E/A)
Wethane (C114)	NOAA/ESKL	JMA (A/O)
Nitrous Oxide (N ₂ O)	NOAA/ESRL	IMK-IFU
Chlorofluorocarbons (CFCs)		
Sulphur Hexafluoride (SF ₆)	NOAA/ESRL	KMA
Molecular Hydrogen (H ₂)	MPI-BGC	
Surface Ozone (O ₃)	NIST	Empa
Carbon Monoxide (CO)	NOAA/ESRL	Empa
Volatile Organic Compounds (VOCs)	NPL (8 components)	KIT/IMK-IFU
Sulphur Dioxide (SO ₂)		
Nitrogen Oxides (NO _x)		FZ-Jurich

2. Carbon Dioxide (CO₂)

In 1995, the National Oceanic and Atmospheric Administration's Earth System Research Laboratory (NOAA/ESRL, formerly CMDL; Climate Monitoring and Diagnostics Laboratory) in Boulder, Colorado, USA, took over the role of the Central Calibration Laboratory (CCL) from the Scripps Institution of Oceanography (SIO) in San Diego, California, USA. Since then, NOAA/ESRL has served as the CCL responsible for the maintenance of the GAW Primary Standard for CO₂. As CCL for CO₂, NOAA/ESRL maintains a high-precision manometric system for absolute calibration of CO₂ as the reference for GAW measurements throughout the world (Zhao *et al.*, 1997), as well as carrying out Round Robin in the function of

WCC. It has been recommended that the standards of the GAW measurement laboratories be calibrated at least every three years at the CCL (WMO, 2012).

Under the WMO calibration system, there have been several calibration scales for CO₂, *e.g.*, SIO-based X74, X85, X87, X93 and X2002 scales and the NOAA/ESRL-based WMO Mole Fraction Scale partially based on previous SIO scales. The CCL adopted the WMO X2005 scale, reflecting historical manometric calibrations of the CCL's set of cylinders and the possible small differences between SIO and NOAA/ESRL calibrations. The most current WMO Mole Fraction Scale is the WMO-X2007 scale.

To assess the differences in standard scales among

measuring laboratories, NOAA/ESRL organizes intercomparisons or Round Robin experiments endorsed by WMO. It is recommended that round-robins are repeated at least once every three years. Many laboratories participated in the experiments organized in 1991–1992, 1995–1997, 1999–2000, 2002–2006, and 2009-2012. Table 2 shows the results of the experiments performed in 2009–2012, in which the mole fractions measured by various laboratories are compared

with the mole fractions measured by NOAA/ESRL (http://www.esrl.noaa.gov/gmd/ccgg/wmorr/wmorr_results.php). In addition, many laboratories compare their standards bilaterally or multilaterally. Table 3 lists laboratories and sites that contributed to the present issue of the *Data Summary* with standard scales of reported data and history of participation in

WMO intercomparison experiments.

Table 2. Round Robin results for the mole fraction of carbon dioxide. Differences between the mole fractions measured by various laboratories and the mole fractions measured by NOAA (Laboratory minus NOAA, ppm).

Laboratory	Measurement Date	Mole Fraction Difference (ppm)		
		Low Medium High		
		365-375 ppm	380-390 ppm	395-405 ppm
JMA	Jun-09	-0.001	-0.056	-0.035
MRI	Jul-09	-0.133	-0.045	-0.046
AIST	Sep-09	0.077	0.125	0.164
NIES	Oct-09	-0.033	-0.005	0.034
TU	Jan-10	0.147	0.205	0.284
CMA	Apr-10	-0.213	-0.135	-0.036
KMA/KGAWO	Jul-10	-0.543	0.005	0.054
KRISS	Jul-10	0.137	0.195	0.244
SNU	Nov-10	0.007	0.025	0.144
IPEN	Jul/Aug-11	-0.087	-0.025	-0.024
AEMET	Sep-12	0.027	-0.025	0.024
EC	Apr-09	-0.023	-0.022	-0.028
SIO	May-09	-0.197	-0.136	-0.112
AMERIFLUX	May-09	-0.017	0.034	0.018
SAWS	Aug-09	0.036	0.064	-0.042
NIWA	Nov-09	0.016	-0.023	-0.065
CSIRO	Jan-10	0.003	0.004	-0.102
PSU	Sep-10	0.063	0.084	-0.012
HU	Nov-10	-0.037	-0.069	-0.093
NCAR	Apr-11	-0.015	0.011	-0.021
OSU	Aug-11	0.020	0.084	0.001
ITM	May-09	-0.861	-0.732	-0.197
FMI	Jun-09	0.019	0.028	0.033
UBA/SCH	Aug-09	-0.001	0.014	0.043
UHEI-IUP	Aug-09	-0.035	-0.043	-0.075
MRI-BGC	Sep/Oct-09	-0.017	0.004	-0.001
UBA/ZUG	Dec-09	-0.071	-0.242	-0.477
HMS	Mar-10	0.069	-0.022	-0.027
CESI/RICERCA	Apr-10	-0.011	0.058	0.083
ENEA	Jun-10	-0.181	-0.302	-0.367
JRC	Oct-10	-0.041	0.018	0.003
WCC-Empa	Nov-10	0.069	0.108	0.133
Empa	Dec-10	-0.017	0.044	0.063
UEA	Dec-10	-0.264	-0.172	-0.119
KUP	Jan-11	-0.154	-0.108	-0.041

ECN	Mar-11	0.005	0.030	0.038
LSCE	Apr-11	0.062	0.010	0.121
RHUL	Jun-11	-0.079	-0.066	-0.107

Table 3. Status of standard scales and calibration/intercomparison for CO₂ at laboratories.

Laboratory	WDCGG Filename Code	Calibration Scale	WMO Inter comparison
AEMET	IZO128N0000	WMO	91/92, 96/97, 99/00, 09/12
Aichi	MKW234N0000	WMO	
AIST	TKY236N0000	AIST	96/97, 99/00, 02/06, 09/12
BMKG & Empa	BKT500S0000	WMO	
BoM & CSIRO	CGO540S0000, CGO540S0010	WMO	
CMA	WLG236N0000	WMO	96/97, 99/00, 02/06, 09/12
CNR-ICES & DNA-IAA	JBN762S0000	WMO	
CSIRO	ALT482N0003, CFA519S0003, CGO540S0003, CRI215N0000, CYA766S0001, ESP449N0003, MAA767S0003, MLO519N0003, MQA554S0003, SIS660N0003, SPO789S0003	WMO	91/92, 96/97, 99/00, 02/06, 09/12
EC	ALT482N0000, ALT482N0005, CDL453N0000, CHM449N0000, CSJ451N0000, EGB444N0100, ESP449N0000, ETL454N0000, FSD449N0000, LLB454N0100, WSA443N0000, WSA443N0001	WMO	91/92, 96/97, 99/00, 02/06, 09/12
EMA	CAI130N0000		
Empa	JFJ646N0000	WMO	09/12
ENEA	LMP635N0001	WMO	91/92, 96/97, 99/00, 02/06, 09/12
FMI	PAL667N0000	WMO	02/06, 09/12
	HKG222N0001	WMO	
НКО	HKO222N0000, HKO222N0001	NIST WMO	
HMS	HUN646N0000, KPS646N0000	WMO	91/92, 96/97, 99/00, 02/06, 09/12
IAFMS	CMN644N0001, CMN644N0002	WMO	91/92, 96/97, 02/06
IGP	HUA312S0000	WMO	
IMK-IFU	WNK647N0000, ZUG647N0014	WMO	99/00
INRNE	BEO642N0000	WMO	
IOEP	DIG654N0000	IOEP	
ITM	ZEP678N0000	WMO	96/97, 99/00, 09/12
JMA	MNM224N0000, RYO239N0000, YON224N0000	WMO	91/92, 96/97, 99/00, 02/06, 09/12

		WMO	<u> </u>
KMA	AMY236N0000	KRISS	02/06, 09/12
IXIVIA	KSG762S0000	KRISS	02/00, 09/12
KSNU	ISK242N0000		
KUP	JFJ646N0003	WMO	
LSCE	AMS137S0000, BGU641N0000, LPO648N0000, MHD653N0002, PDM642N0000, PUY645N0000		91/92, 96/97, 99/00, 02/06, 09/12
	FIK635N0000		
MGO	BER255N0001, KOT276N0001, KYZ240N0001, STC652N0001, TER669N0001, TIK271N0000	WMO	
MMD	DMV504N0000	WMO	
MRI	TKB236N0002		91/92, 96/97, 99/00, 02/06, 09/12
NIER	GSN233N0103	WMO	
NIES	COI243N0000, HAT224N0000	NIES 95**	96/97, 99/00, 02/06, 09/12
NIMR	GSN233N0001	WMO	96/97
NIPR & Tohoku Univ.	SYO769S0000		Tohoku Univ.: 91/92, 96/97, 99/00, 02/06, 09/12
NIWA	BHD541S0000	WMO	91/92, 96/97, 99/00, 02/06, 09/12
NMA	FDT645N0002		
NOAA/ESRL	BRW471N0000, MLO519N0000, SMO514S0000, SPO789S0000, NOAA/ESRL flask network*	WMO	91/92, 96/97, 99/00, 02/06, 09/12
Osaka Univ.	SUI234N0000		
RIVM	KMW653N0000	NIST	
RSE	PRS645N0000	WMO	99/00, 02/06
Saitama	DDR236N0000, KIS236N0000, URW235N0000	WMO	
SAWS	CPT134S0000	WMO	99/00, 02/06, 09/12
Shizuoka Univ.	HMM234N0000		
UBA	BRT648N0000, DEU649N0000, LGB652N0000, NGL653N0000, SNB647N0000, SSL647N0000, SSL647N0002, WES654N0000, ZGT654N0000, ZSF647N0001, ZUG647N0000	WMO	91/92, 96/97, 99/00, 02/06, 09/12
Univ. Malta	GLH636N0000		
*NOAA/ECDI 4			-

^{*} NOAA/ESRL flask network:

ABP312S0001, ALT482N0001, AMS137S0001, ASC107S0001, ASK123N0001, AV1417N0001, AZR638N0001, BAL655N0001, BHD541S0001, BKT500S0001, BME432N0001, BMW432N0001, BRW471N0001, BSC644N0001, CBA455N0001, CGO540S0001, CHR501N0001, CMO445N0001, CPT134S0001, CRZ146S0001, EIC327S0001, GMI513N0001, GOZ636N0001, HBA775S0001, HPB647N0003, HUN646N0001, ICE663N0001, ITN435N0001, IZO128N0001, KCO204N0001, KEY425N0001, KUM519N0001, KZD244N0001, KZM243N0001, LEF445N0001, LLB454N0001, LLN223N0001, LMP635N0003, MBC476N0001, MEX419N0001, MHD653N0001, MID528N0001, MKN100S0001, MLO519N0001, NWB123S0001, NWR440N0101, OPW448N0001, PAL667N0001, POC900N0001, POC905N0001, POC905S0001, POC910N0001, POC910S0001, POC915S0001, POC920N0001, POC920S0001, POC925N0001, POC930S0001, POC930S0001, POC935S0001, POC935S0001, POC930S0001, POC935S0001, POC935S0001, POC930S0001, POC935S0001, POC930S0001, POC

3. Methane (CH₄)

The GAW Programme has established two WCCs for CH₄, the Swiss Federal Laboratory for Materials Testing and Research (Empa), Dübendorf, Switzerland; and the Japan Meteorological Agency (JMA), Tokyo, Japan (WMO, 2007). In addition, the Central Calibration Laboratory for CH₄ has been established at NOAA/ESRL (Dlugokencky *et al.*, 2005; WMO, 2007).

The WMO X2004 (NOAA04) scale has been designated as the Primary scale of the GAW Programme. This scale results in CH₄ mole fractions that are a factor of 1.0124 higher than the previous scale (NOAA/CMDL83) used by NOAA/ESRL (Dlugokencky *et al.*, 2005).

Table 4 summarizes the CH₄ standard scales used by laboratories contributing to the WDCGG and lists tentative multiplying conversion factors applied for

analysis in this issue of the *Data Summary*. The standard is the WMO X2004 scale, and conversion factors were calculated from the results of comparisons with other laboratories performed bilaterally or multilaterally before the establishment of the GAW Standard.

The NOAA/CMDL83 scale is lower than an absolute gravimetric scale (Aoki *et al.*, 1992) by ~1.5% (Dlugokencky *et al.*, 1994) and lower than the AES (Atmospheric Environment Service, currently EC) scale by a factor of 1.0151 (Worthy *et al.*, 1998). The CMDL83 scale can be converted to the Tohoku University standard by multiplying by 1.0121 (Dlugokencky *et al.*, 2005). The conversion factors 1.0124 / 1.0151 = 0.9973 and 1.0124 / 1.0121 = 1.0003 have been adopted for comparisons with the NOAA04 scale.

Table 4. Status of the standard scales of CH₄ at laboratories with conversion factors.

Laboratory	WDCGG Filename Code	Calibration Scale	Conversion Factor
AEMET	IZO128N0000	WMO X2004	1
AGAGE	CGO540S0011, CGO540S0013, CMO445N0011, MHD653N0011, MHD653N0013, RPB413N0000, RPB413N00011, SMO514S0014, SMO514S0016, THD441N0000	Tohoku Univ.	1.0003
BMKG & Empa	BKT500S0000	WMO X2004	1
CHMI	KOS649N0000	CHMI	
CMA	WLG236N0000	WMO X2004	1
CSIRO	CSIRO ALT482N0003, CFA519S0003, CGO540S0003, CRI215N0000, CYA766S0001, ESP449N0003, MAA767S0003, MLO519N0003, MQA554S0003, SIS660N0003, SPO789S0003		1
EC	ALT482N0000, CDL453N0000, CHM449N0000,		1
Empa	JFJ646N0000	WMO X2004	1
ENEA	LMP635N0001	WMO X2004	1
FMI	PAL667N0000	WMO X2004	1
ISAC	CMN644N0000	WMO X2004	1
JMA	MNM224N0000, RYO239N0000, YON224N0000	WMO X2004	1
KMA	AMY236N0000	KRISS	
KSNU	ISK242N0000		
LSCE	AMS137S0002, BGU641N0000, LPO648N0000, PDM642N0000, PUY645N0002	NOAA /CMDL83	1.0124
	FIK635N0000, MHD653N0007		
MGO	TER669N0001, TIK271N0000	WMO X2004	1
MRI	TKB236N0000		0.9973
NIER	GSN233N0103	WMO X2004	1
NIES	COI243N0000, HAT224N0000	NIES	0.9973

NIMR	GSN233N0001	SIO X97	
	BRW471N0000, MLO519N0000, NOAA/ESRL flask network*	WMO X2004	1
NOAA/ESRL	KPA431N0001, LEF445N0001, MCM777S0001, NZL543S0001, POC935S0001, SGI354S0001, SIO432N0001	NOAA /CMDL83	1.0124
RIVM	KMW653N0000	NIST	0.9973
RSE	PRS645N0000	WMO X2004	1
SAWS	CPT134S0000	WMO X2004	1
UBA	DEU649N0000, NGL653N0000, SSL647N0000, ZGT654N0000, ZSF647N0010, ZUG647N0000	WMO X2004	1
	SNB647N0000		
Univ. Malta	GLH636N0000		

* NOAA/ESRL flask network:

ABP312S0001, ALT482N0001, AMS137S0001, ASC107S0001, ASK123N0001, AVI417N0001, AZR638N0001, BAL655N0001, BKT500S0001, BME432N0001, BRW432N0001, BRW471N0001, BSC644N0001, CBA455N0001, CGO540S0001, CHR501N0001, CMO445N0001, CPT134S0001, CRZ146S0001, EIC327S0001, GMI513N0001, GOZ636N0001, HBA775S0001, HPB647N0003, HUN646N0001, ICE663N0001, ITN435N0001, IZO128N0001, KEY425N0001, KUM519N0001, KZD244N0001, KZM243N0001, LLB454N0001, LLN23N0001, LMP635N0003, MBC476N0001, MEX419N0001, MHD653N0001, MID528N0001, MKN100S0001, MLD519N0001, NMB123S0001, NWR440N0101, OPW448N0001, OXK650N0001, PAL667N0001, POC900N0001, POC905N0001, POC905S0001, POC910N0001, POC915N0001, POC915N0001, POC915N0001, POC925N0001, POC925N0001, POC930S0001, POC910N0001, POC915N0001, POC915N0001, POC925N0001, POC930S0001, POC9

4. Nitrous Oxide (N₂O)

The Halocarbons and other Atmospheric Trace Species (HATS) Group of NOAA/ESRL maintains a set of standards for N₂O (Hall et al., 2001) and serves as a CCL for N₂O. The WMO X2006 (NOAA-2006) scale (Hall et al., 2007), revised and updated to WMO X2006A (NOAA-2006A) in 2011 to deal with drifting in secondary standards, has been designated as the Primary scale for the GAW Programme. **CCL** compares its standards with the ones of other laboratories, including those of Environment Canada (EC) and the Australian Commonwealth Scientific and Industrial Research Organisation (CSIRO). Karlsruhe Institute of Technology, Institute

Meteorology and Climate Research, Germany, serves as the GAW WCC for N_2O .

The SIO-98 scale is essentially equivalent to the WMO X2006 scale, with an average difference of 0.01% over the range of 299–319 ppb; the WMO X2000 (NOAA-2000) scale can be converted to the X2006 scale by using the factor 0.999402 (Hall *et al.*, 2007). A constant ratio of 1.0017 between CSIRO and AGAGE data was used by Huang *et al.* (2008), and a factor of 1/1.0017 = 0.9983 has been used in this report to convert CSIRO scale to the WMO X2006 scale.

Table 5. Status of the standard scales of N₂O at laboratories.

Laboratory	WDCGG Filename Code	Calibration Scale	Conversion Factor
AEMET	IZO128N0000	WMO X2006	1
AGAGE	ADR651N0010, CGO540S0011, CGO540S0012, CGO540S0013, CMO445N0010, CMO445N0011, MHD653N0011, MHD653N0011, MHD653N0013, RPB413N0000, RPB413N0010, RPB413N0011, SMO514S0014, SMO514S0015, SMO514S0016, THD441N0000	SIO 1998	1
CSIRO	ALT482N0003, CFA519S0003, CGO540S0003, CRI215N0000, CYA766S0001, ESP449N0003, MAA767S0003, MLO519N0003, MQA554S0003, SIS660N0003, SPO789S0003	WMO X2006A	1
Empa	JFJ646N0000	SIO 1998	1
ENEA	LMP635N0001	WMO X2006	1

ISAC	CMN644N0000	WMO X2006	1
JMA	RYO239N0000	WMO X2006A	1
KMA	AMY236N0000	KRISS	
MRI	MMB243N0000		
Nagoya Univ.	NGY235N0000		
NIER	GSN233N0103	WMO X2006	1
NIES	COI243N0000, HAT224N0000	NIES 96*	1
NILU	ZEP678N0000		
NIMR	GSN233N0001	WMO X1997	
	ALT482N0001, BRW471N0001, CGO540S0001, KUM519N0001, MLO519N0001, NWR440N0001, SMO514S0001, SPO789S0001	WMO X2000	0.999402
NOAA/ESRL	ALT482N0004, ALT482N0006, BRW471N0003, BRW471N0005, BRW471N0011, CGO540S0009, CGO540S0014, HFM442N0000, ITN435N0000, KUM519N0002, LEF445N0000, MHD653N0008, MLO519N0005, MLO519N0006, MLO519N0011, NWR440N0003,NWR440N0004, NWR440N0011, PSA764S0000, SMO514S0008, SMO514S0009, SMO514S0011, SPO789S0005, SPO789S0006, SPO789S0011, SUM672N0002, TDF354S0000, THD441N0002	WMO X2006	1
	BRW471N0010, MLO519N0010,NWR440N0010, SMO514S0010, SPO789S0010, SUM672N0000	WMO X2006A	1
SAWS	CPT134S0000	WMO X2000	0.999402
UBA	SSL647N0000, ZSF647N0001	SIO 1998	1

*NIES 96 N₂O scale is approximately 0.6 ppb lower than WMO X2006 in the range 317 to 321 ppb. (http://www.esrl.noaa.gov/gmd/ccgg/wmorr/results.php?rr=rr5¶m=n2o)

5. Surface Ozone (O₃)

The National Institute of Standards and Technology (NIST) has developed and deployed Standard Reference Photometers (SRPs) in the USA and other countries. The GAW has designated SRP #2 maintained by NIST as the Primary Standard for the GAW Programme, making NIST the CCL for O₃. The Swiss Federal Laboratory for Materials Testing

and Research (Empa) maintains NIST SRP #15 as the reference and is the GAW WCC for surface ozone (Hofer et~al., 1998). The traceability and uncertainty of O_3 within the GAW network were reported by Klausen et~al., (2003). Regional Calibration Centre has been established at Observatorio Central Buenos Aires, Argentina (WMO, 2007).

Table 6. Status of surface ozone standard scales at laboratories

Laboratory	WDCGG Filename Code	Calibration Scale	Audit Empa-WCC
AEMET	IZO128N0000	WMO (NIST & Empa)	96, 98, 00, 04, 09, 13
AEMET	DON637N0000, MHN639N0000, NIA642N0000, ROQ640N0000, SPM639N0000	NPL (U. K.)	
AQRB	ALG447N0000, ALT482N0009, BRA450N0000, CHA446N0000, CPS449N0000, EGB444N0000, ELA449N0000, EST451N0000, KEJ444N0000, LON442N0000, SAT448N0000, SUT445N0000		Alert: 04
ARSO	IRB645N0000, KVK646N0000, KVV646N0000, ZRN646N0000	WMO (NIST & Empa)	

AWI	NMY770S0000		
	1411177050000	WMO	
BMKG & Empa	BKT500S0000	WMO (NIST & Empa)	99, 01, 04, 07, 08, 11
D.M.O	CGO540S0000		
BoM & CSIRO	CGO540S0018	WMO (NIST & Empa)	02, 10
СНМІ	KOS649N0000	WMO (NIST & Empa)	
CMA	WLG236N0000	WMO (NIST & Empa)	
CVGZ	KRE649N0000, KRE649N0001, KRE6490002		
DEFRA	EDM655N0000		
DMC & Empa	TLL330S00000	WMO (NIST & Empa)	
DWD	HPB647N0000	WMO (NIST & Empa)	97, 06, 11
EMA	CAI130N0000		
Empa	JFJ646N0000, PAY646N0000, RIG646N0000	WMO (NIST & Empa)	Jungfraujoch: 99, 06
Empa & KMD	MKN100S0000	WMO (NIST & Empa)	00, 02, 05, 06, 08, 10
FMI	AHT662N0000, OUL666N0000, PAL667N0000, UTO659N0000, VIR660N0000		Pallas-Sammaltunturi: 97, 03, 07, 12
HMS	KPS646N0000	WMO (NIST & Empa)	
IM	ANG638N0000, BEJ638N0000, CAS639N0000, FUN132N0000, LIS638N0000, MVH638N0000, PEN640N0000		
INRNE	BEO642N0000	WMO (NIST & Empa)	
IOEP	DIG654N0000	WMO (NIST & Empa)	
ISAC	CMN644N0000, DCC775S0000, PYR227N0000	WMO (NIST & Empa)	Monte Cimone: 12
IVL	VDL664N0000	WMO (NIST & Empa)	
JMA	MNM224N0000, RYO239N0000, SYO769S0002, TKB236N1004, YON224N0000	WMO (NIST & Empa)	JMA GAW Facilites: 05 Ryori: 05
KSNU	ISK242N0000		, , , , , , , , , , , , , , , , , , ,
LA	PDM642N0001	EMD (France)	
LAMP	PUY645N0001	EMD (France)	
LVGMC	DBL656N0000, RCV656N0000, ZSN657N0000	WMO (NIST & Empa)	
MMD	DMV504N0000, TAR504N0000	WMO (NIST & Empa)	Danum Valley: 08, 13

NILU	ZEP678N0000	WMO (NIST & Empa)	97, 01, 05, 12
NIWA	BHD541S0000	WMO (NIST & Empa)	
NMA	FDT645N0002		
NOAA/ESRL	ARH777S0000, BMW432N0004, BRW471N0004, ICE663N0004, LAU545S0004, MLO519N0004, NWR440N0002, NWR440N0204, RPB413N0004, SMO514S0004, SPO789S0004, SUM672N0004, THD441N0004, WKT431N000	WMO (NIST & Empa)	Mauna Loa: 03 Barrow: 08 Lauder: 10
	MCM777S0004		
NUI	MHD653N0000	WMO (NIST & Empa)	96, 98, 02, 05, 09, 13
ONM	ASK123N0000	WMO (NIST & Empa)	03, 07
PolyU	HKG222N0000		
RIVM	KMW653N0000	NMI	
Roshydromet	DAK654N0000, SHP659N0000		
RSE	PRS645N0000	INRIM (Italy)	
SAWS	CPT134S0000	WMO (NIST & Empa)	97, 98, 02, 06, 11
SMN	USH354S0000, USH354S0001	WMO (NIST & Empa)	98, 03, 08
SMNA	LQO322S0000, MBI764S0000, PIL331S0000, SJA349S0000, USH354S0002	WMO (NIST & Empa)	
UBA	BRT648N0000, DEU649N0000, LGB652N0000, NGL653N0000, SNB647N0000, SSL647N0000, WES654N0000, ZGT654N0000, ZSF647N0010, ZUG647N0000	WMO (NIST & Empa)	Zugspitze: 96, 97, 01 Zugspitze/Schneefern erhaus: 01, 06, 11 Sonnblick: 98
UNA	SNL325S0000		
Univ. Malta	GLH636N0000	Tohoku Univ.	
Univ. York	CVO116N0001	WMO (NIST & Empa)	12

6. Carbon Monoxide (CO)

NOAA ESRL is the WMO/GAW CCL for carbon monoxide. The CCL has produced three CO scales during the past 24 years using a similar gravimetric method. The CCL produced two earlier scales (WMO/NOAA 1988 and WMO X2000) of which only WMO X2000 is sometimes still used for comparison purposes. WMO X2000 is based upon a larger set of the primary standards made in 1999/2000 using the

GC-HgO reduction technique.

The Swiss Federal Laboratory for Materials Testing and Research (Empa) serves as the WCC under GAW based on its secondary standards calibrated against the standard at NOAA/ESRL designated as the Primary Standard for GAW. Empa, as WCC for CO, has developed an audit system for CO measurements at GAW stations.

Table 7. Status of CO standard scales at laboratories

Laboratory	WDCGG Filename Code	Calibration Scale	Audit Empa-WCC
AEMET	IZO128N0000	WMO X2004 (NOAA/ESRL & Empa)	00, 04, 09, 13
AGAGE	CGO540S0011, MHD653N0011	CSIRO94	

ARSO	KVV646N0000	CHMI		
BMKG &	K V V 0401V0000	WMO X2000		
Empa	BKT500S0000	(NOAA/ESRL & Empa)	04, 07, 08, 11	
СНМІ	KOS649N0000	CHMI		
CSIRO	ALT482N0003, CFA519S0003, CGO540S0003, CRI215N0000, CYA766S0001, ESP449N0003, MAA767S0003, MLO519N0003, MQA554S0003, SIS660N0003, SPO789S0003	CSIRO	Cape Grim: 02,	
DMC & Empa	TTL330S0000	WMO X2004 (NOAA/ESRL & Empa)		
DWD	HPB647N0000	WMO X2004 (NOAA/ESRL & Empa)	97, 06, 11	
EC	ALT482N0000, CDL453N0000, CHM449N0000, EGB444N0100, ESP449N0000, ETL454N0000, FSD449N0000, LLB454N0100, WSA443N0000	WMO (NOAA/ESRL & Empa)	Alert: 04	
Empa	JFJ646N0000, PAY646N0000, RIG646N0000	WMO (NOAA/ESRL & Empa)	Jungfraujoch: 99,06	
Empa &KMD	MKN100S0000	WMO X2000 (NOAA/ESRL & Empa)	05, 06, 08, 10	
INRNE	BEO642N0000	WMO (NOAA/ESRL & Empa)		
ISAC	CMN644N0000, CMN644N0003, CMN644N0004	WMO X2004 (NOAA/ESRL & Empa)	12	
JMA	MNM224N0000, RYO239N0000, YON224N0000	WMO X2000 (NOAA/ESRL)	JMA GAW Facilites: 05 Ryori: 05	
LA	PDM642N0001	EMD (France)		
LAMP	PUY645N0001	EMD (France)		
LSCE	AMS137S0000	WMO X2004 (NOAA/ESRL & Empa)	08	
NOAA/ESRL	NOAA/ESRL flask network*	WMO (NOAA/ESRL & Empa)	Mauna Loa: 03 Barrow: 08 Mt. Waliguan: 00, 04, 09	
ONM	ASK123N0000	WMO X2000 (NOAA/ESRL & Empa)	07	
PolyU	HKG222N0000			
RIVM	KMW653N0000, KTB653N0000	NMI		
G	CPT134S0002		98, 02	
SAWS	CPT134S0003	WMO (NOAA/CMDL)	06, 11	
SMN	USH354S0000, USH354S0001	WMO (NOAA/ESRL & Empa)	98, 03, 08	
SMNA	USH354S0002	WMO X2000 (NOAA/ESRL & Empa)		
UBA	NGL653N0000, SSL647N0000, ZSF647N0001, ZUG647N0000	WMO (NOAA/CMDL)	Zugspitze: 97, 01 Zugspitze/Schne efernerhaus:	
	SNB647N0000		01, 06, 11 Sonnblick: 98	
Univ. Malta	GLH636N0001, GLH636N0002			

Univ. York	CVO116N0001	WMO X2004	12
		(NOAA/ESRL & Empa)	I

*NOAA/ESRL flask network:

ABP312S0001, ALT482N0001, ASC107S0001, ASC123N0001, AZR638N0001, BAL655N0001, BHD541S0001, BKT500S0001, BME432N0001, BMW432N0001, BRW471N0001, BSC644N0001, CBA455N0001, CGO540S0001, CHR501N0001, CMO445N0001, CPT134S0001, CRZ146S0001, EIC327S0001, GMI513N0001, GZ02636N0001, HBA775S0001, HPB647N0003, HUN646N0001, LCG663N0001, ITN435N0001, 3ME0476N0001, KEY425N0001, KUM519N0001, KZD244N0001, KZM243N0001, LEF445N0001, LLB454N0001, LLR223N0001, LMP635N0003, MBC476N0001, MEX419N0001, MHD653N0001, MID528N0001, MKN100S0001, MLD519N0001, NMB123S0001, NWR440N0101, OXK650N0001, PAL667N0001, POC900N0001, POC905N0001, POC905S0001, POC910N0001, POC910S0001, POC915N0001, POC915S0001, POC920N0001, POC920N0001, POC925N0001, POC925N0001, POC930N0001, POC930N001, POC930N001, POC

References

- Aoki, S., T. Nakazawa, S. Murayama and S. Kawaguchi, Measurements of atmospheric methane at the Japanese Antarctic station, Syowa, *Tellus, Ser. B*, **44**, 273–281, 1992.
- Dlugokencky, E. J., L. P. Steele, P. M. Lang, and K. A. Masarie, The growth rate and distribution of atmospheric methane, *J. Geophys. Res.*, **99**, 17021-17043, 1994.
- Dlugokencky, E. J., R. C. Myers, P. M. Lang, K. A. Masarie, A. M. Crotwell, K. W. Thoning, B. D. Hall, J. W. Elkins, and L. P. Steele, Conversion of NOAA atmospheric dry air CH₄ mole fractions to a gravimetrically prepared standard scale, *J. Geophys. Res.*, **110**, D18306, doi: 10.1029/2005JD006035, 2005.
- Hall, B. D. (ed.), J. W. Elkins, J. H. Butler, S. A. Montzka, T. M. Thompson, L. Del Negro, G. S. Dutton, D. F. Hurst, D. B. King, E. S. Kline, L. Lock, D. Mactaggart, D. Mondeel, F. L. Moore, J. D. Nance, E. A. Ray, and P. A. Romashkin, Halocarbons and Other Atmospheric Gases, Section 5 in Climate Monitoring and Diagnostics Laboratory, Summary Report N. 25, 1998–1999, R. S. Schnell, D. B. King, R. M. Rosson (eds.), NOAA-CMDL, Boulder, CO., USA, 2001.
- Hall, B. D., G. S. Dutton, and J. W. Elkins, The NOAA nitrous oxide standard scale for atmospheric observations, *J. Geophys. Res.*, **112**, D09305, doi:10.1029/2006JD007954, 2007.
- Hofer, P., B. Buchmann and A. Herzog, Traceability, Uncertainty and Assessment Criteria of Surface Ozone Measurements, *Empa-WCC Report 98/5*, 20 pp, 1998.
- Huang, J., A. Golombek, R. Prinn, R. Weiss, P. Fraser,

- P. Simmonds, E J. Dlugokencky, B. Hall, J. Elkins, P. Steele, R. Langenfelds, P. Krummel, G. Dutton, and L. Porter, Estimation of regional emissions of nitrous oxide from 1997 to 2005 using multinetwork measurements, a chemical transport model, and an inverse method, *J. Geophys. Res.*, 113, D17313, doi:10.1029/2007JD009381, 2008.
- Klausen, J., C. Zellweger, B. Buchmann, and P. Hofer, Uncertainty and bias of surface ozone measurements at selected Global Atmosphere Watch sites, *J. Geophys. Res.*, **108(D19)**, 4622, doi:10.1029/2003JD003710, 2003.
- WMO, WMO Global Atmosphere Watch (GAW) Strategic Plan: 2008–2015, WMO/GAW Report No. 172, 108pp, 2007.
- WMO, Addendum for the Period 2012 2015 to the WMO Global Atmosphere Watch (GAW) Strategic Plan 2008 2015, WMO/GAW Report No. 197, 57pp, 2011.
- WMO, 16th WMO/IAEA Meeting on Carbon Dioxide, Other Greenhouse Gases and Related Measurement Techniques (GGMT-2011), ed. Gordon Brailsford, WMO/GAW Report No.206, 67pp, 2012.
- Worthy, D. E. J., I. Levin, N. B. A. Trivett, A. J. Kuhlmann, J. F. Hopper and M. K. Ernst, Seven years of continuous methane observations at a remote boreal site in Ontario, Canada, *J. Geophys. Res.*, **103**, 15995–16007, 1998.
- Zhao, C. L., P. P. Tans, and K. W. Thoning, A high precision manometric system for absolute calibrations of CO₂ in dry air, *J. Geophys. Res.*, **102**, 5885–5894, 1997.

LIST OF ABBREVIATIONS IN THE CALIBRATION AND STANDARD SCALES

AEMET Agencia Estatal de Meteorología (Spain)

AGAGE Advanced Global Atmospheric Gases Experiment

Aichi Aichi Prefecture (Japan)

AIST National Institute of Advanced Industrial Science and Technology (Japan)
AQRB Air Quality Research Branch, Meteorological Service of Canada (Canada)

ARSO Agencija Republike Slovenije za Okolje (Slovenia)

AWI Alfred Wegener Institute for Polar and Marine Research (Germany)

BMKG Agency for Meteorology, Climatology and Geophysics (Indonesia)

BoM Commonwealth Bureau of Meteorology (Australia) **CHMI** Czech Hydrometeorological Institute (Czech Republic)

CMA China Meteorological Administration (China)

CNR-ICES International Centre for Earth Sciences, Consiglio Nazionale delle Ricerche

(Italy)

CSIRO Commonwealth Scientific and Industrial Research Organisation (Australia)

CVGZ Centrum Vyzkumu Globalni Zmeny AV CR

DEFRA Department for Environment, Food and Rural Affairs (United Kingdom)

DMC Dirección Meteorológica de Chile

DNA-IAA Direccion Nacional del Antartico-Instituto Antartico Argentino (Argentina)

DWD Deutscher Wetterdienst (German Meteorological Service, Germany)

EARS Environmental Agency of the Republic of Slovenia

EC Environment Canada (Canada)

EMA Egyptian Meteorological Authority (Egypt)

EMD Ecole des Mines de Douai (France)

Empa Swiss Federal Laboratories for Material Testing and Research (Switzerland)
ENEA Italian National Agency for New Technology, Energy and the Environment

(Italy)

FMI Finnish Meteorological Institute
GAGE Global Atmospheric Gases Experiment
GAW Global Atmosphere Watch (WMO)

HATS Halocarbons and other Atmospheric Trace Species Group, NOAA/ESRL

HKO Hong Kong Observatory (Hong Kong, China)
 HMS Hungarian Meteorological Service (Hungary)
 IAFMS Italian Air Force Meteorological Service (Italy)

IEK-8 Institute for Energy and Climate Research: Troposphere (IEK-8), Research

Center Juelich GmbH (Germany)

IGP Instituto Geofisico del Perú (Peru)IM Instituto de Meteorologia (Portugal)

IMK-IFU Institut für Meteorologie und Klimatologie, Atmosphärische

Umweltforschung, Forschungszentrum Karlsruhe (Germany)

INRIM Istituto Nazionale di Ricerca Metrologica (Italy)

INRNE Institute for Nuclear Research and Nuclear Energy (Bulgaria)

IOEP Institute of Environmental Protection (Poland)

ISAC Istituto di Scienze dell'Atmosfera e del Clima, Consiglio Nazionale delle

Ricerche (Italy)

ITM Department of Applied Environmental Science, Stockholm University,

(Sweden)

IVL Swedish Environmental Research Institute, Göteborg (Sweden)

JMA Japan Meteorological Agency (Japan)

KMA Korea Meteorological Administration (Republic of Korea)

KMD Kenya Meteorological Department (Kenya)

KRISS Korea Research Institute of Standards and Science (Republic of Korea)

KSNU Kyrgyz State National University (Kyrgyzstan)

KUP Physics Institute, Climate and Environmental Physics, University of Bern

(Switzerland)

LA Laboratoire d'Aérologie (France)

LAMP Laboratoire de Météorologie Physique (France)

LEGMA Latvian Environment, Geology and Meteorology Agency (Latvia)
LSCE Laboratoire des Sciences du Climat et de l'Environnement (France)
LVGMC Latvian Environment, Geology and Meteorology Centre (Latvia)
MGO Main Geophysical Observatory, Roshydromet (Russian Federation)
MPI-BGC Max-Planck Institute (MPI) for Biogeochemistry in Jena (Germany)

MMD Malaysian Meteorological Department

MRI Meteorological Research Institute, JMA (Japan)

Nagoya Univ. Nagoya University (Japan)

NIER National Institute of Environmental Research (Republic of Korea)

NIES National Institute for Environmental Studies (Japan)
NILU Norwegian Institute for Air Research (Norway)

NIMR National Institute of Meteorological Reserch, KMA (Republic of Korea)

NIPR National Institute of Polar Research (Japan)

NIST National Institute of Standards and Technology (USA)

NIWA National Institute of Water & Atmospheric Research (New Zealand)

NMA National Meteorological Administration (Romania)

NMI Nederlands Meetinstituut

NOAA/ESRL Earth System Research Laboratory, NOAA (USA)
NPL National Physical Laboratory (United Kingdom)
NUI National University of Ireland, Galway (Ireland)
ONM Office National de la Météorologie (Algeria)

Osaka Univ. Osaka University (Japan)

PolyUHong Kong Polytechnic University (Hong Kong, China)RIVMNational Institute for Health and Environment (Netherlands)

Roshydromet Federal Service for Hydrometeorology and Environmental Monitoring

(Russian Federation)

RSE Ricerca sul Sistema Elettrico (Italy)

Saitama Prefecture (Japan)

SAWS South African Weather Service (South Africa)

Shizuoka Univ. Shizuoka University (Japan)

SMN(SMNA) Servicio Meteorológico Nacional (Argentina)

Tohoku Univ. Tohoku University (Japan) **UBA** Umweltbundesamt (Germany)

UNA Universidad Nacional de Asuncion (Paraguay)

Univ. Malta University of Malta (Malta)

Univ. YorkWDCGGUniversity of York (United Kingdom of Great Britain and Northern Ireland)World Data Centre for Greenhouse Gases, operated by JMA, Japan (WMO)

WMO World Meteorological Organization

LIST OF OBSERVATIONAL STATIONS

Station	Country/Territory	Index Number	Latitude (° ')	Location Longitude (°')	Altitude (m)	Parameter
REGION I (Africa)						
Amsterdam Island	France	AMS137S00	37 48 S	77 32 E		CH ₄ , CO ₂
Amsterdam Island	France	AMS137S00	37 48 S	77 32 E		CH ₄ , CO, CO ₂ , O ₃ , VOCs
Ascension Island	United Kingdom of Great Britain and Northern Ireland	ASC107S00	7 55 S	14 25 W		¹³ CH ₄ , ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂ , VOCs
Assekrem	Algeria	ASK123N00	23 16 N	5 38 E	2710	CO, O_3
Assekrem	Algeria	ASK123N00	23 16 N	5 38 E	2710	¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂ , VOCs
Cairo	Egypt	CAI130N00	30 05 N	31 17 E	35	CO_2 , O_3 , SO_2
Cape Point	South Africa	CPT134S00	34 21 S	18 29 E	230	CH ₄ , CO, CO ₂ , N ₂ O, O ₃
Cape Point	South Africa	CPT134S00	34 21 S	18 29 E	230	CH ₄ , CO, CO ₂
Cape Point	South Africa	CPT134S00	34 21 S	18 29 E	230	²²² Rn
Cape Verde Observatory	Cape Verde	CVO116N00	16 51 N	24 52 W		CO, NO, NO ₂ , NOx, NOy, O ₃ , VOCs
Crozet	France	CRZ146S00	46 27 S	51 51 E		¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂ , VOCs
Funchal	Portugal	FUN132N00	32 39 N	16 53 W	58	O_3
Gobabeb	Namibia	NMB123S00	23 34 S	15 01 E	461	¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂
Izaña (Tenerife)	Spain	IZO128N00	28 18 N	16 30 W	2367	CH ₄ , CO, CO ₂ , N ₂ O, O ₃ , SF ₆
Izaña (Tenerife)	Spain	IZO128N00	28 18 N	16 30 W		¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂ , VOCs
Mahe Island	Seychelles	SEY104S00	4 40 S	55 10 E		¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂ , VOCs
Mt. Kenya	Kenya	MKN100S00	0 04 S	37 18 E	3678	CO, O_3
Mt. Kenya	Kenya	MKN100S00	0 04 S	37 18 E		¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , VOCs
REGION II (Asia)						
Anmyeon-do	Republic of Korea	AMY236N00	36 32 N	126 19 E	47	CFCs, CH ₄ , CO ₂ , N ₂ O, SF ₆
Bering Island	Russian Federation	BER255N00	55 12 N	165 59 E	13	CO_2
Cape Ochi-ishi	Japan	COI243N00	43 10 N	145 30 E		CFCs, CH ₄ , CO ₂ , HCFCs, HFCs, N ₂ O, SF ₆
Cape Rama	India	CRI215N00	15 05 N	73 50 E	60	¹³ CO ₂ , CH ₄ , CO, CO ₂ , H ₂ , N ₂ O
Everest - Pyramid	Nepal	PYR227N00	27 57 N	86 49 E	5079	O_3
Everest - Pyramid	Nepal	PYR227N00	27 57 N	86 49 E		C ₂ Cl ₄ , C ₂ HCl ₃ , CBrClF ₂ , CBrF ₃ , CCl ₄ , CFC ₈ , CH ₂ Br ₂ , CH ₂ Cl ₂ , CH ₃ Br, CH ₃ CCl ₃ , CH ₃ Cl, CHBr ₃ , CHCl ₃ , HCFC ₈ , HFC ₈
Gosan	Republic of Korea	GSN233N00	33 17 N	126 10 E	72	CFCs, CH ₄ , CO ₂ , N ₂ O
Gosan	Republic of Korea	GSN233N01	33 10 N	126 06 E		CFCs, CH ₄ , CO ₂ , N ₂ O
Hamamatsu	Japan	HMM234N00	34 43 N	137 43 E	35	CO_2
Hateruma	Japan	HAT224N00	24 04 N	123 49 E		CFCs, CH ₄ , CO ₂ , HCFCs, HFCs, N ₂ O, SF ₆
Hok Tsui	Hong Kong, China	HKG222N00	22 13 N	114 15 E	60	CO_2
Hok Tsui	Hong Kong, China	HKG222N00	22 13 N	114 15 E	60	CO, O ₃
Issyk-Kul	Kyrgyzstan	ISK242N00	42 37 N	76 59 E	1640	CH ₄ , CO ₂ , O ₃
Kaashidhoo	Maldives	KCO204N00	4 58 N	73 28 E		¹³ CO ₂ , CH ₄ , CO ₂
King's Park	Hong Kong, China	HKO222N00	22 19 N	114 10 E	65	CO_2
Kisai	Japan	KIS236N00	36 05 N	139 33 E	13	CO_2
Kotelny Island	Russian Federation	KOT276N00	76 00 N	137 52 E	5	CO_2
1xotoniy isiana						

Station	Country/Territory	Index Number	Latitude (° ')	Location Longitude (°')	Altitud	e Parameter
Lulin	China	LLN223N00	23 28 N	120 52 E	2867	¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂
Memanbetsu	Japan	MMB243N00	43 55 N	144 12 E	32.9	N_2O
Mikawa-Ichinomiya	Japan	MKW234N00	34 51 N	137 26 E	50	CO_2
Minamitorishima	Japan	MNM224N00	24 17 N	153 59 E	8	CH ₄ , CO, CO ₂ , O ₃
Mt. Dodaira	Japan	DDR236N00	36 00 N	139 11 E	840	CO_2
Mt. Waliguan	China	WLG236N00	36 17 N	100 54 E	3810	CH_4 , CO_2 , O_3
Mt. Waliguan	China	WLG236N00	36 17 N	100 54 E	3810	¹³ CH ₄ , ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
Nagoya	Japan	NGY235N00	35 09 N	136 58 E	35	N_2O
Plateau Assy	Kazakhstan	KZM243N00	43 15 N	77 52 E	2519	¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
Ryori	Japan	RYO239N00	39 02 N	141 49 E	260	CCl ₄ , CFCs, CH ₃ CCl ₃ , CH ₄ , CO, CO ₂ , N ₂ O, O ₃
Sary Taukum	Kazakhstan	KZD244N00	44 27 N	75 34 E	412	¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
Shangdianzi	China	SDZ240N00	40 39 N	117 07 E		CH ₄ , CO ₂
Ship between Ishigaki Island and Hateruma Island	Japan	SIH224N00	24 07 N	123 50 E	5	CO ₂
South China Sea (03N)	N/A	SCS903N00	3 00 N	105 00 E	15	¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
South China Sea (06N)	N/A	SCS906N00	6 00 N	107 00 E	15	¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
South China Sea (09N)	N/A	SCS909N00	9 00 N	109 00 E	15	¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
South China Sea (12N)	N/A	SCS912N00	12 00 N	111 00 E	15	¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
South China Sea (15N)	N/A	SCS915N00	15 00 N	113 00 E		¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
South China Sea (18N)	N/A	SCS918N00	18 00 N	113 00 E		¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
South China Sea (21N)	N/A	SCS921N00	21 00 N			¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
Suita	Japan	SUI234N00	34 49 N	135 31 E		CO_2
Tae-ahn Peninsula	Republic of Korea	TAP236N00	36 43 N	126 07 E		¹³ CH ₄ , ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂ , VOCs
Takayama	Japan	TKY236N00	36 09 N	137 25 E	1420	CO_2
Tiksi	Russian Federation	TIK271N00	71 35 N	128 55 E	8	CH ₄ , CO ₂
Tsukuba	Japan	TKB236N00	36 03 N	140 08 E	26	CH ₄ , CO ₂
Tsukuba	Japan	TKB236N10	36 03 N	140 08 E	25	O_3
Ulaan Uul	Mongolia	UUM244N00	44 27 N	111 05 E	914	¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
Urawa	Japan	URW235N00	35 52 N	139 36 E	10	CO_2
Yonagunijima	Japan	YON224N00	24 28 N	123 01 E	30	CH ₄ , CO, CO ₂ , O ₃
REGION III (South An	nerica)					
Arembepe	Brazil	ABP312S00	12 46 S	38 10 W	0	CH ₄ , CO, CO ₂ , N ₂ O
Arembepe	Brazil	ABP312S00	12 46 S			¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , VOCs
Bird Island	United Kingdom of Great Britain and Northern Ireland	SGI354S00	54 00 S	38 03 W	30	CH ₄ , CO ₂
Easter Island	Chile	EIC327S00	27 08 S	109 27 W	50	¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂ , VOCs
El Tololo	Chile	TLL330S00	30 10 S	70 48 W	2220	CH ₄ , CO, CO ₂ , O ₃
Huancayo	Peru	HUA312S00	12 04 S			CO_2
La Quiaca Observatorio	Argentina	LQO322S00	22 06 S		3459	
Natal	Brazil	NAT306S00	6 00 S			VOCs
Pilar Observatorio	Argentina	PIL331S00	31 40 S		338	
San Julian Aero	Argentina	SJA349S00	49 18 S			O ₃
San Lorenzo	Paraguay	SNL325S00	25 22 S		133	

Station	Country/Territory	Index Number	Latitude (° ')	Location Longitude (° ')	Altitude Parameter (m)
Tierra del Fuego	Argentina	TDF354S00	54 52 S	68 29 W	20 ¹³ CO ₂ , C ¹⁸ O ₂ , C ₂ Cl ₄ , CBrClF ₂ CCl ₄ , CFCs, CH ₂ Cl ₂ , CH ₃ Br, CH ₃ CCl ₃ , CH ₃ Cl, CH ₄ , CO, C H ₂ , HCFCs, HFCs, N ₂ O, SF ₆ , VOCs
Ushuaia	Argentina	USH354S00	54 51 S	68 19 W	18 CO, O ₃
Ushuaia	Argentina	USH354S00	54 51 S		18 CO, O ₃
REGION IV (North a	nd Central America)				
Alert	Canada	ALT482N00	82 27 N	62 31 W	210 O ₃
Alert	Canada	ALT482N00	82 27 N		210 ¹³ CO ₂ , CH ₄ , CO, CO ₂ , H ₂ , N ₂ O
Alert	Canada	ALT482N00	82 27 N		210 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , N ₂ O, SF ₆
Alert	Canada	ALT482N00	82 27 N		210 ¹³ CH ₄ , ¹³ CO ₂ , C ¹⁸ O ₂ , C ₂ Cl ₄ , CBrClF ₂ , CBrF ₃ , CCl ₄ , CFCs, CH ₂ Cl ₂ , CH ₃ Br, CH ₃ CCl ₃ , CH ₃ Cl, CH ₄ , CO, CO ₂ , H ₂ , HCFCs, HFCs, N ₂ O, SF ₆ , VO
Algoma	Canada	ALG447N00	47 02 N		411 O ₃
Argyle	United States of America	AMT445N00	45 02 N	68 41 W	50 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , VOCs
Barrow	United States of America	BRW471N00	71 19 N	156 36 W	11 ¹³ CH ₄ , ¹³ CO ₂ , C ¹⁸ O ₂ , C ₂ Cl ₄ , CBrClF ₂ , CBrF ₃ , CCl ₄ , CFCs, CH ₂ Cl ₂ , CH ₃ Br, CH ₃ CCl ₃ , CH ₃ Cl, CH ₄ , CO, CO ₂ , H ₂ , HCFCs, HFCs, N ₂ O, O ₃ , SF ₆ , VOCs
Bratt's Lake	Canada	BRA450N00	50 12 N	104 43 W	595 O ₃
Candle Lake	Canada	CDL453N00	53 52 N	104 39 W	489 CH ₄ , CO, CO ₂
Cape Meares	United States of America	CMO445N00	45 28 N	123 58 W	30 CCl ₄ , CFCs, CH ₃ CCl ₃ , CH ₄ , N
Cape Meares	United States of America	CMO445N00	45 28 N	123 58 W	30 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ ,
Cape St. James	Canada	CSJ451N00	51 56 N	131 01 W	89 CO ₂
Chalk River	Canada	CHA446N00	46 04 N	77 24 W	184 O ₃
Chapais	Canada	CPS449N00	49 49 N	74 59 W	381 O ₃
Chibougamau	Canada	CHM449N00	49 41 N	74 21 W	393 CH ₄ , CO, CO ₂
Churchill	Canada	CHL458N00	58 45 N	94 04 W	35 13CO ₂ , C18O ₂ , CH ₄ , CO ₂ , N ₂ O
Cold Bay	United States of America	CBA455N00	55 12 N	162 43 W	25 ¹³ CH ₄ , ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO CO ₂ , H ₂ , VOCs
East Trout Lake	Canada	ETL454N00	54 21 N	104 59 W	492 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂
Egbert	Canada	EGB444N00	44 14 N		253 O ₃
Egbert	Canada	EGB444N01		79 47 W	253 CH ₄ , CO, CO ₂ , VOCs
Estevan Point	Canada	ESP449N00		126 33 W	39 ¹³ CO ₂ , CH ₄ , CO, CO ₂ , H ₂ , N ₂ O
Estevan Point	Canada	ESP449N00		126 33 W	39 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , N ₂ O, SF ₆
Esther	Canada	EST451N00	51 40 N	110 12 W	707 O ₃
Experimental Lakes Area	Canada	ELA449N00		93 43 W	369 O ₃
Fraserdale	Canada	FSD449N00	49 53 N	81 34 W	210 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂
Grifton	United States of America	ITN435N00	35 21 N		505 13CO ₂ , C18O ₂ , CCl ₄ , CFCs, CH ₃ CCl ₃ , CH ₄ , CO, CO ₂ , H ₂ , N ₂ O, SF ₆

Station	Country/Territory	Index Number	Latitude (° ')	Location Longitude (° ')	Altitude (m)	Parameter
Harvard Forest	United States of	HFM442N00	42 54 N	72 18 W	340 (C ₂ Cl ₄ , CBrClF ₂ , CCl ₄ , CFCs,
	America				(CH ₂ Cl ₂ , CH ₃ Br, CH ₃ CCl ₃ , CH ₃ Cl, HCFCs, HFCs, N ₂ O, SF ₆
Kejimkujik	Canada	KEJ444N00	44 26 N	65 12 W	127 (
Key Biscayne	United States of	KEY425N00	25 40 N	80 12 W		¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂ ,
, ,	America				7	VOCs
Kitt Peak	United States of America	KPA431N00	31 58 N	111 36 W	2083 (CH ₄
La Jolla	United States of America	SIO432N00	32 50 N	117 16 W	14 (CH4
La Palma	Cuba	PLM422N00	22 45 N	83 32 W	47 1	NO ₂
Lac La Biche	Canada	LLB454N00		112 27 W		CH ₄ , CO, CO ₂ , VOCs
Lac La Biche (Alberta)	Canada	LLB454N01		112 27 W		CH ₄ , CO, CO ₂
Longwoods	Canada	LON442N00	42 53 N		239 (
Mex High Altitude	Mexico	MEX419N00		97 10 W	4560 (CH ₄ , CO, CO ₂ , VOCs
Global Climate						
Observation Center,						
Mexico						
Moody	United States of America	WKT431N00	31 19 N	97 19 W	708 1	¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , O ₃
Mould Bay	Canada	MBC476N00	76 15 N	119 20 W		¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
Niwot Ridge (C-1)	United States of	NWR440N00	40 02 N	105 32 W		C ₂ Cl ₄ , CBrClF ₂ , CBrF ₃ , CCl ₄ ,
	America				(CFCs, CH ₂ Cl ₂ , CH ₃ Br, CH ₃ CCl ₃ , CH ₃ Cl, HCFCs, HFCs, N ₂ O, O ₃ ,
Nivert Didge (Saddle)	United States of	NWR440N02	40 02 N	105 35 W	3528 (SF ₆
Niwot Ridge (Saddle)	America	IN W K440INU2	40 03 N	103 33 W	3328 (\mathcal{J}_3
Niwot Ridge (T-van)	United States of America	NWR440N01	40 03 N	105 35 W		¹³ CH ₄ , ¹³ CO ₂ , ¹⁴ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂ , N ₂ O
Olympic Peninsula	United States of America	OPW448N00	48 15 N	124 25 W		CH ₄ , CO ₂ , H ₂
Pacific Ocean (15N)	N/A	POC915N00	15 00 N	145 00 W	10 1	¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
Pacific Ocean (20N)	N/A	POC920N00	20 00 N	141 00 W		¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
Pacific Ocean (25N)	N/A	POC925N00	25 00 N	139 00 W		¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
Pacific Ocean (30N)	N/A	POC930N00	30 00 N	135 00 W		¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
Pacific Ocean (35N)	N/A	POC935N00	35 00 N	137 00 W	10 1	¹³ CO ₂ , C ¹⁸ O ₂ , CO, H ₂
Pacific Ocean (40N)	N/A	POC940N00	40 00 N	136 00 W	10 1	¹³ CO ₂ , H ₂
Pacific Ocean (45N)	N/A	POC945N00	45 00 N	131 00 W		$^{3}CO_{2}, H_{2}$
Park Falls	United States of America	LEF445N00	45 55 N	90 16 W	((I	I ³ CO ₂ , C ¹⁸ O ₂ , C ₂ Cl ₄ , CBrClF ₂ , CCl ₄ , CFCs, CH ₂ Cl ₂ , CH ₃ Br, CH ₃ CCl ₃ , CH ₃ Cl, CH ₄ , CO, CO ₂ , H ₂ , HCFCs, HFCs, N ₂ O, SF ₆ , VOCs
Point Arena	United States of America	PTA438N00	38 57 N	123 43 W		¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂
Ragged Point	Barbados	RPB413N00	13 10 N	59 26 W	((I	C ₂ Cl ₄ , C ₂ HCl ₃ , CBrClF ₂ , CBrF ₃ , CCl ₄ , CFCs, CH ₂ Cl ₂ , CH ₃ Br, CH ₃ CCl ₃ , CH ₃ Cl, CH ₄ , CHCl ₃ , HCFCs, HFCs, N ₂ O, PFCs, SF ₆ , SO ₂ F ₂
Ragged Point	Barbados	RPB413N00	13 10 N	59 26 W	45 1	¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂ , O ₃
Sable Island	Canada	WSA443N00	43 56 N	60 01 W	5 1	N ₂ O, SF ₆

Station	Country/Territory	Index Number	Latitude	Location Longitude (° ')	Altitude (m)	e Parameter
Saturna	Canada	SAT448N00	48 47 N	123 08 W	178	O_3
Shemya Island	United States of America	SHM452N00	52 43 N	174 05 E	40	¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂ , VOCs
Southern Great Plains	United States of America	SGP436N00	36 47 N	97 30 W	314	¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂ , N ₂ O, SF ₆ , VOCs
St. Croix	United States of America	AVI417N00	17 45 N	64 45 W	3	CH ₄ , CO ₂
St. David's Head	United Kingdom of Great Britain and Northern Ireland	BME432N00	32 22 N	64 39 W	30	¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
Sutton	Canada	SUT445N00	45 05 N	72 41 W	243	O_3
Trinidad Head	United States of America	THD441N00	41 03 N	124 09 W	120	C ₂ Cl ₄ , C ₂ HCl ₃ , CBrClF ₂ , CBrF ₃ , CCl ₄ , CFCs, CH ₂ Cl ₂ , CH ₃ Br, CH ₃ CCl ₃ , CH ₃ Cl, CH ₄ , CHCl ₃ , HCFCs, HFCs, N ₂ O, PFCs, SF ₆ , SO ₂ F ₂
Trinidad Head	United States of America	THD441N00	41 03 N	124 09 W	120	¹³ CO ₂ , C ¹⁸ O ₂ , C ₂ Cl ₄ , CBrClF ₂ , CCl ₄ , CFCs, CH ₂ Cl ₂ , CH ₃ Br, CH ₃ CCl ₃ , CH ₃ Cl, CH ₄ , CO, CO ₂ , HCFCs, HFCs, N ₂ O, O ₃ , SF ₆ , VOCs
Tudor Hill	United Kingdom of Great Britain and Northern Ireland	BMW432N00	32 16 N	64 52 W	30	¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂ , O ₃ , VOCs
Wendover	United States of America	UTA439N00	39 53 N	113 43 W	1320	$^{13}CO_{2},C^{18}O_{2},CH_{4},CO,CO_{2},H_{2},\\VOCs$
West Branch	United States of America	WBI441N00	41 44 N	91 21 W	241.7	¹³ CO ₂ , C ¹⁸ O ₂
REGION V (South-We	est Pacific)					
Baring Head	New Zealand	BHD541S00	41 25 S	174 52 E	85	¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂
Baring Head	New Zealand	BHD541S00	41 25 S	174 52 E		¹³ CH ₄ , ¹⁴ CO ₂ , CH ₄ , CO, CO ₂ , N ₂ O, O ₃ , VOCs
Bukit Koto Tabang	Indonesia	BKT500S00	0 12 S	100 19 E	864.5	NO_2 , SO_2
Bukit Koto Tabang	Indonesia	BKT500S00	0 12 S	100 19 E	864.5	CH ₄ , CO, CO ₂ , O ₃
Bukit Koto Tabang	Indonesia	BKT500S00	0 12 S			¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂ , N ₂ O, SF ₆ , VOCs
Cape Ferguson	Australia	CFA519S00	19 17 S	147 03 E	2	¹³ CO ₂ , CH ₄ , CO, CO ₂ , H ₂ , N ₂ O
Cape Grim	Australia	CGO540S00	40 41 S	144 41 E	94	CO_2, O_3
Cape Grim	Australia	CGO540S00	40 41 S	144 41 E	94	C ₂ Cl ₄ , C ₂ HCl ₃ , CBrClF ₂ , CBrF ₃ , CCl ₄ , CFCs, CH ₂ Cl ₂ , CH ₃ Br, CH ₃ CCl ₃ , CH ₃ Cl, CH ₄ , CHCl ₃ , CO, H ₂ , HCFCs, HFCs, N ₂ O, PFCs, SF ₆ , SO ₂ F ₂
Cape Grim Cape Grim	Australia Australia	CGO540S00 CGO540S00	40 41 S 40 41 S			¹³ CO ₂ , CH ₄ , CO, CO ₂ , H ₂ , N ₂ O ¹³ CH ₄ , ¹³ CO ₂ , C ¹⁸ O ₂ , C ₂ Cl ₄ , CBrClF ₂ , CBrF ₃ , CCl ₄ , CFCs, CH ₂ Cl ₂ , CH ₃ Br, CH ₃ CCl ₃ , CH ₃ Cl, CH ₄ , CO, CO ₂ , H ₂ , HCFCs, HFCs, N ₂ O, SF ₆ , VOCs

Station	Country/Territory	Index Number	Latitude (° ')	Location Longitude (°')	Altitude Parameter (m)
Cape Kumukahi	United States of America	KUM519N00	19 31 N	154 49 W	3 ¹³ CH ₄ , ¹³ CO ₂ , C ¹⁸ O ₂ , C ₂ Cl ₄ , CBrClF ₂ , CBrF ₃ , CCl ₄ , CFCs, CH ₂ Cl ₂ , CH ₃ Br, CH ₃ CCl ₃ , CH ₃ Cl, CH ₄ , CO, CO ₂ , H ₂ ,
Christmas Island	Vinibati	CHD501N00	1 42 N	157 10 W	HCFCs, HFCs, N2O, SF6, VO
Christmas Island Danum Valley GAW	Kiribati Malaysia	CHR501N00 DMV504N00		157 10 W 117 50 E	3 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , 426 CO ₂ , O ₃
Baseline Station					
Guam	United States of America	GMI513N00	13 26 N	144 47 E	2 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , VOCs
Gunn Point	Australia	GPA512S00	12 15 S	131 03 E	25 13CO ₂ , CH ₄ , CO, CO ₂ , H ₂ , N ₂
Jakarta	Indonesia	JKR506S00	6 11 S	106 50 E	7 NO ₂ , SO ₂
Kaitorete Spit	New Zealand	NZL543S00	43 50 S	172 38 E	3 CH ₄
Lauder	New Zealand	LAU545S00	45 02 S	169 40 E	370 O_3
Lauder	New Zealand	LAU545S00	45 02 S	169 40 E	370 CH ₄
Macquarie Island	Australia	MQA554S00	54 29 S	158 58 E	12 ¹³ CO ₂ , CH ₄ , CO, CO ₂ , H ₂ , N ₂
Mauna Loa	United States of America	MLO519N00	19 32 N	155 35 W	3397 ¹³ CO ₂ , CH ₄ , CO, CO ₂ , H ₂ , N ₂
Mauna Loa	United States of America	MLO519N00	19 32 N	155 35 W	3397 ¹³ CH ₄ , ¹³ CO ₂ , C ¹⁸ O ₂ , C ₂ Cl ₄ , CBrClF ₂ , CBrF ₃ , CCl ₄ , CFCs, CH ₂ Cl ₂ , CH ₃ Br, CH ₃ CCl ₃ , CH ₃ Cl, CH ₄ , CO, CO ₂ , H ₂ , HCFCs, HFCs, N ₂ O, O ₃ , SF ₆ , VOCs
Pacific Ocean (00N)	N/A	POC900N00	0 00 N	155 00 W	10 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ ,
Pacific Ocean (05N)	N/A	POC905N00	5 00 N	151 00 W	10 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ ,
Pacific Ocean (05S)	N/A	POC905S00	5 00 S	159 00 W	10 13CO ₂ , C18O ₂ , CH ₄ , CO, CO ₂ ,
Pacific Ocean (10N)	N/A	POC910N00	10 00 N	149 00 W	10 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ ,
Pacific Ocean (10S)	N/A	POC910S00	10 00 S	161 00 W	10 13CO ₂ , C18O ₂ , CH ₄ , CO, CO ₂ ,
Pacific Ocean (15S)	N/A	POC915S00	15 00 S	171 00 W	10 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ ,
Pacific Ocean (20S)	N/A	POC920S00	20 00 S	174 00 W	10 13CO ₂ , C18O ₂ , CH ₄ , CO, CO ₂ ,
Pacific Ocean (25S)	N/A	POC925S00	25 00 S	171 00 W	10 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ ,
Pacific Ocean (30S)	N/A	POC930S00	30 00 S	176 00 W	10 13CO ₂ , C18O ₂ , CH ₄ , CO, CO ₂ ,
Pacific Ocean (35S)	N/A	POC935S00	35 00 S	180 00 E	10 13CO ₂ , C18O ₂ , CH ₄ , CO, CO ₂ ,
Sand Island	United States of America	MID528N00	28 12 N	177 22 W	7.7 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , VOCs
Tanah Rata	Malaysia	TAR504N00	4 28 N	101 23 E	1545 O ₃
Tutuila (Cape Matatula)	United States of America	SMO514S00	14 14 S	170 34 W	42 C ₂ Cl ₄ , C ₂ HCl ₃ , CBrClF ₂ , CBr CCl ₄ , CFCs, CH ₂ Cl ₂ , CH ₃ Br, CH ₃ CCl ₃ , CH ₃ Cl, CH ₄ , CHCl HCFCs, HFCs, N ₂ O, PFCs, SI SO ₂ F ₂
Tutuila (Cape Matatula)	United States of America	SMO514S00	14 14 S	170 34 W	42 ¹³ CH ₄ , ¹³ CO ₂ , C ¹⁸ O ₂ , C ₂ Cl ₄ , CBrClF ₂ , CBrF ₃ , CCl ₄ , CFCs, CH ₂ Cl ₂ , CH ₃ Br, CH ₃ CCl ₃ , CH ₃ Cl, CH ₄ , CO, CO ₂ , H ₂ , HCFCs, HFCs, N ₂ O, O ₃ , SF ₆ , VOCs
REGION VI (Europe)					
Adrigole Angra do Heroismo	Ireland Portugal	ADR651N00 ANG638N00	51 41 N 38 40 N	9 44 W 27 13 W	50 CCl ₄ , CFCs, CH ₃ CCl ₃ , N ₂ O 74 O ₃

Station	Country/Territory	Index Number	Latitude (° ')	Location Longitude (°')	Altitude (m)	e Parameter
Atmospheric Station Kresin u Pacova	Czech Republic	KRE649N00	49 35 N	15 05 E	534	O ₃
BEO Moussala	Bulgaria	BEO642N00	42 11 N	23 35 E	2925	CO, CO ₂ , NO, NO ₂ , NO _x , O ₃ , SO ₂
Baltic Sea	Poland	BAL655N00	55 21 N	17 13 E	28	¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂ , VOCs
Begur	Spain	BGU641N00	41 58 N	3 14 E	13	CH ₄ , CO ₂
Beja	Portugal	BEJ638N00	38 01 N	7 52 W	246	O_3
Black Sea	Romania	BSC644N00	44 10 N	28 40 E	3	$^{13}CO_{2},C^{18}O_{2},CH_{4},CO,CO_{2},H_{2},\\VOCs$
Bragança	Portugal	BRG641N00	41 48 N	6 44 W	690	SO_2
Brotjacklriegel	Germany	BRT648N00	48 49 N	13 13 E	1016	CO_2, O_3
Burgas	Bulgaria	BUR642N00	42 29 N	27 29 E	16	NO_2 , SO_2
Castelo Branco	Portugal	CAS639N00	39 50 N	7 28 W	386	O_3
Danki	Russian Federation	DAK654N00	54 54 N	37 48 E	140	O_3
Deuselbach	Germany	DEU649N00	49 46 N	7 03 E	480	CH ₄ , CO ₂ , O ₃
Dobele	Latvia	DBL656N00	56 22 N	23 11 E	42	O_3
Doñana	Spain	DON637N00	37 03 N	6 33 W	5	NO_2 , O_3 , SO_2
Dwejra Point	Malta	GOZ636N00	36 03 N	14 11 E	30	¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
Eskdalemuir	United Kingdom of Great Britain and	EDM655N00	55 19 N	3 12 W	242	O ₃
	Northern Ireland					
Finokalia	Greece	FIK635N00	35 20 N	25 40 E		CH ₄ , CO ₂
Fundata	Romania	FDT645N00	45 28 N			NO ₂ , SO ₂
Fundata	Romania	FDT645N00	45 28 N			CO_2 , NO_2 , O_3
Giordan Lighthouse	Malta	GLH636N00	36 04 N	14 13 E		²²² Rn, CH ₄ , CO, CO ₂ , NO, NO ₂ , NOx, O ₃ , SO ₂
Hegyhatsal	Hungary	HUN646N00	46 57 N	16 39 E	248	CO_2
Hegyhatsal	Hungary	HUN646N00	46 57 N	16 39 E		¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂ , N ₂ O, SF ₆
Heimaey	Iceland	ICE663N00	63 24 N	20 17 W	100	¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂ , O ₃ , VOCs
Hohe Warte	Austria	HHE648N00	48 15 N	16 22 E	202	NO, NO ₂ , SO ₂
Hohe Warte	Austria	HHE648N00	48 15 N	16 22 E	202	NO, NO ₂ , SO ₂
Hohenpeissenberg	Germany	HPB647N00	47 48 N	11 01 E	985	²²² Rn, CO, H ₂ O ₂ , NO, NO ₂ , NOx, NOy, O ₃ , PAN, ROOH, SO ₂ , VOCs
Hohenpeissenberg	Germany	HPB647N00	47 48 N	11 01 E	985	¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , VOCs
Ile Grande	France	LPO648N00	48 48 N	3 35 W	10	CH ₄ , CO ₂
Iskrba	Slovenia	IRB645N00	45 34 N	14 52 E		NO_2 , O_3 , SO_2
Ivan Sedlo	Bosnia and Herzegovina	IVN643N00	43 46 N	18 02 E		NO_2 , SO_2
Jarczew	Poland	JCZ651N00	51 49 N	21 59 E		NO_2 , SO_2
Jungfraujoch	Switzerland	JFJ646N00	46 33 N	7 59 E	3580	CO_2
Jungfraujoch	Switzerland	JFJ646N00	46 33 N	7 59 E		CH ₄ , CO, CO ₂ , H ₂ , N ₂ O, NO, NO ₂ , NO ₃ , NO ₃ , PAN, SF ₆ ,
Jungfraujoch	Switzerland	JFJ646N00	46 33 N	7 59 E	3580	SO ₂ , VOCs C ₂ Cl ₄ , C ₂ HCl ₃ , CBrClF ₂ , CBrF ₃ , CCl ₄ , CFCs, CH ₂ Cl ₂ , CH ₃ Br, CH ₃ CCl ₃ , CH ₃ Cl, CHCl ₃ , HCFCs, HFCs, PFCs, SF ₆ , SO ₂ F ₂
K-puszta	Hungary	KPS646N00	46 58 N	19 33 E	125	CO ₂ , NO ₂ , O ₃ , SO ₂
Kamenicki Vis	Serbia	KAM643N00	43 24 N	21 57 E		NO ₂ , SO ₂

Station	Country/Territory	Index Number	Latitude (° ')	Location Longitude (° ')	Altitude Parameter (m)
Kollumerwaard	Netherlands (the)	KMW653N00	53 20 N	6 17 E	0 CH ₄ , CO, CO ₂ , NO, NO ₂ , NO O ₃ , SO ₂
Kosetice	Czech Republic	KOS649N00	49 35 N	15 05 E	534 CH ₄ , CO, NO, NO ₂ , O ₃ , SO ₂
Kovk	Slovenia	KVK646N00	46 07 N	15 06 E	600 O ₃
Krvavec	Slovenia	KVV646N00	46 18 N	14 32 E	1720 CO, O ₃
La Cartuja	Spain	CAR637N00	37 12 N	3 36 W	720 NO ₂ , SO ₂
Lampedusa	Italy	LMP635N00	35 31 N	12 38 E	45 CBrClF2, CBrF3, CCl4, CFCs, CH2Br2, CH2Cl2, CH3Br, CH3CCl3, CH3Cl, CH3I, CH4, CHCl3, CO2, HCFCs, HFCs, ISF6
Lampedusa	Italy	LMP635N00	35 31 N	12 38 E	45 13CO ₂ , C18O ₂ , CH ₄ , CO, CO ₂
Lazaropole	The former Yugoslav Republic of Macedonia	LZP641N00	41 32 N	20 42 E	1320 NO ₂ , SO ₂
Leba	Poland	LEB654N00	54 45 N	17 32 E	2 NO ₂ , SO ₂
Lisboa / Gago Coutinho	Portugal	LIS638N00	38 46 N	9 08 W	105 O ₃
Logroño	Spain	LOG642N00	42 27 N	2 30 W	370 NO ₂ , SO ₂
Mace Head	Ireland	MHD653N00	53 20 N	9 54 W	8 O ₃
Mace Head	Ireland	MHD653N00	53 20 N	9 54 W	8 CH ₄ , CO ₂
Mace Head	Ireland	MHD653N00	53 20 N	9 54 W	8 C ₂ Cl ₄ , C ₂ HCl ₃ , CBrClF ₂ , CBr CCl ₄ , CFCs, CH ₂ Cl ₂ , CH ₃ Br, CH ₃ CCl ₃ , CH ₃ Cl, CH ₄ , CHCl CO, H ₂ , HCFCs, HFCs, N ₂ O, NF ₃ , PFCs, SF ₆ , SO ₂ F ₂
Mace Head	Ireland	MHD653N00	53 20 N	9 54 W	8 ¹³ CH ₄ , ¹³ CO ₂ , C ¹⁸ O ₂ , C ₂ Cl ₄ , CBrClF ₂ , CBrF ₃ , CCl ₄ , CFCs, CH ₂ Cl ₂ , CH ₃ Br, CH ₃ CCl ₃ , CH ₃ Cl, CH ₄ , CO, CO ₂ , H ₂ , HCFCs, HFCs, N ₂ O, SF ₆ , VO
Mahón	Spain	MHN639N00	39 52 N	4 19 E	78 NO ₂ , O ₃ , SO ₂
Monte Cimone	Italy	CMN644N00	44 11 N	10 42 E	2165 CO ₂
Monte Cimone	Italy	CMN644N00	44 11 N	10 42 E	2165 CH ₄ , CO, H ₂ , N ₂ O, O ₃ , SF ₆
Monte Cimone	Italy	CMN644N00	44 11 N	10 42 E	2165 C ₂ Cl ₄ , C ₂ HCl ₃ , CBrClF ₂ , CBr CCl ₄ , CFCs, CH ₂ Cl ₂ , CH ₃ Br, CH ₃ CCl ₃ , CH ₃ Cl, CHCl ₃ , HC HFCs, PFCs, SO ₂ F ₂
Monte Velho	Portugal	MVH638N00	38 05 N	8 48 W	43 O ₃
Neuglobsow	Germany	NGL653N00	53 10 N	13 02 E	65 CH ₄ , CO, CO ₂ , O ₃
Noia	Spain	NIA642N00	42 44 N	8 55 W	685 NO ₂ , O ₃ , SO ₂
Ocean Station "M"	Norway	STM666N00	66 00 N	2 00 E	5 13CO ₂ , C18O ₂ , CH ₄ , CO, CO ₂ ,
Ocean Station Charlie	Russian Federation	STC652N00	52 45 N	35 30 W	5 CO ₂
Ocean Station Charlie	United States of America	STC654N00	54 00 N	35 00 W	6 CO ₂
Ochsenkopf	Germany	OXK650N00	50 02 N	11 48 E	1185 13CO ₂ , C18O ₂ , CH ₄ , CO, CO ₂ , VOCs
Oulanka	Finland	OUL666N00	66 19 N	29 24 E	310 NO ₂ , O ₃ , SO ₂
Pallas-Sammaltunturi	Finland	PAL667N00	67 58 N	24 07 E	560 CH ₄ , CO ₂ , O ₃
Pallas-Sammaltunturi	Finland	PAL667N00	67 58 N	24 07 E	560 ¹³ CO ₂ , C ¹⁸ O ₂ , CBrF ₃ , CH ₄ , CO ₂ , VOCs
Payerne	Switzerland	PAY646N00	46 49 N	6 57 E	490 CO, NO, NO ₂ , NO _x , O ₃ , SO ₂ , VOCs
Penhas Douradas	Portugal	PEN640N00	40 25 N	7 33 W	1380 O ₃
Pic du Midi	France	PDM642N00	42 56 N	$0.08~\mathrm{E}$	2877 CO, O ₃
		PDM642N00	42 56 N	0 08 E	2877 CH ₄ , CO ₂

Station	Country/Territory	Index Number	Latitude (° ')	Location Longitude (° ')	Altitude (m)	e Parameter
Pico, Azores	Portugal	PCO638N00	38 28 N	28 24 W	2225.0	VOCs
Plateau Rosa	Italy	PRS645N00	45 56 N	7 42 E	3480	CH ₄ , CO ₂ , O ₃
Pleven	Bulgaria	PLV643N00	43 25 N	24 36 E	64	NO_2 , SO_2
Plovdiv	Bulgaria	PLD642N00	42 08 N	24 45 E		NO_2 , SO_2
Puszcza Borecka/Diabla Gora	Poland	DIG654N00	54 09 N	22 04 E	157	CO ₂ , NO ₂ , O ₃ , SO ₂
Puy de Dome	France	PUY645N00	45 46 N	2 58 E		CO, O_3
Puy de Dome	France	PUY645N00	45 46 N	2 58 E		CH ₄ , CO ₂
Ridge Hill	United Kingdom of Great Britain and Northern Ireland	RGL651N00	52 00 N	2 32 W	204	CH ₄ , CO ₂ , N ₂ O, SF ₆
Rigi	Switzerland	RIG646N00	46 04 N	8 27 E		CO, NO, NO ₂ , NO _x , O ₃ , SO ₂ , VOCs
Roquetes	Spain	ROQ640N00	40 49 N	0 29 E	50	NO_2 , O_3 , SO_2
Rucava	Latvia	RCV656N00	56 10 N	21 10 E		NO_2 , O_3 , SO_2
San Pablo de los Montes	Spain	SPM639N00	39 33 N	4 21 W		NO_2 , O_3 , SO_2
Schauinsland	Germany	SSL647N00	47 55 N	7 55 E		CH ₄ , CO, CO ₂ , N ₂ O, NO, NO ₂ , O ₃ , PAN, SF ₆
Sede Boker	Israel	WIS631N00	31 07 N	34 52 E		¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
Semenic	Romania	SEM645N00	45 07 N	21 58 E		NO_2 , SO_2
Shepelevo	Russian Federation	SHP659N00	59 58 N	29 07 E		O ₃
Shetland	United Kingdom of Great Britain and Northern Ireland	SIS660N00	60 05 N	1 15 W	30	¹³ CO ₂ , CH ₄ , CO, CO ₂ , H ₂ , N ₂ O
Site J	Denmark	GRL666N00	66 30 N	46 12 W	2030	CH ₄
Sniezka	Poland	SNZ650N00	50 44 N	15 44 E		NO_2 , SO_2
Sofia	Bulgaria	SOF642N00	42 39 N	23 23 E		NO_2 , SO_2
Sonnblick	Austria	SNB647N00	47 03 N	12 57 E	3106	CH ₄ , CO, CO ₂ , NO, NO ₂ , NOy, O ₃
Stephansplatz	Austria	STP648N00	48 13 N	16 23 E		NO, NO ₂ , SO ₂
Stephansplatz	Austria	STP648N00	48 13 N	16 23 E		NO, NO_2, SO_2
Stîna de Vale	Romania	STN646N00	46 41 N	22 37 E		NO_2 , SO_2
Summit	Denmark	SUM672N00	72 35 N	38 29 W		CH ₄ , VOCs
Summit	Denmark	SUM672N00		38 29 W		13CO ₂ , C18O ₂ , C ₂ Cl ₄ , CBrClF ₂ , CCl ₄ , CFC ₈ , CH ₂ Cl ₂ , CH ₃ Br, CH ₃ CCl ₃ , CH ₃ Cl, CH ₄ , CO, CO ₂ , HCFC ₈ , HFC ₈ , N ₂ O, O ₃ , SF ₆ , VOC ₈
Suwalki	Poland	SWL654N00	54 08 N	22 57 E		NO_2 , SO_2
Tacolneston Tall Tower	United Kingdom of Great Britain and Northern Ireland	TAC652N00	52 31 N	1 08 E	56	C ₂ Cl ₄ , C ₂ HCl ₃ , CBrClF ₂ , CBrF ₃ , CFCs, CH ₂ Cl ₂ , CH ₃ Br, CH ₃ CCl ₃ , CH ₃ Cl, CH ₄ , CHCl ₃ , CO, CO ₂ , H ₂ , HCFCs, HFCs, N ₂ O, PFCs, SF ₆ , SO ₂ F ₂
Terceira Island	Portugal	AZR638N00	38 46 N	27 22 W	40	¹³ CH ₄ , ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂ , VOCs
Teriberka	Russian Federation	TER669N00	69 12 N	35 06 E		CH ₄ , CO ₂
Utö	Finland	UTO659N00	59 47 N	21 23 E		NO ₂ , O ₃ , SO ₂
Varna	Bulgaria	VRN643N00	43 12 N	27 55 E		NO ₂ , SO ₂
Viana do Castelo	Portugal	VDC641N00	41 42 N	8 48 W		SO_2
Vindeln	Sweden	VDL664N00	64 15 N	19 46 E	271	
Virolahti	Finland	VIR660N00	60 32 N	27 40 E		NO_2 , O_3 , SO_2
Waldhof	Germany	LGB652N00	52 48 N	10 46 E		CO_2 , O_3
Wank Peak	Germany	WNK647N00	47 31 N	11 09 E	1/80	CO ₂ , NOx, SO ₂

Station	Country/Territory	Index Number	Latitude (° ')	Location Longitude (° ')	Altitude (m)	e Parameter
Westerland	Germany	WES654N00	54 56 N	8 19 E	12	CO ₂ , O ₃
Zabljak	Montenegro	ZBL643N00	43 09 N	19 08 E	1450	NO_2 , SO_2
Zavodnje	Slovenia	ZRN646N00	46 26 N	15 00 E	770	O_3
Zeppelinfjellet (Ny-Alesund)	Norway	ZEP678N00	78 54 N	11 53 E	475	CO ₂
Zeppelinfjellet (Ny-Alesund)	Norway	ZEP678N00	78 54 N	11 53 E	475	CCl ₄ , CFCs, CH ₃ CCl ₃ , N ₂ O, O ₃ , SO ₂
Zeppelinfjellet (Ny-Alesund)	Norway	ZEP678N00	78 54 N	11 53 E	475	C ₂ Cl ₄ , C ₂ HCl ₃ , CBrClF ₂ , CBrF ₃ , CFCs, CH ₂ Cl ₂ , CH ₃ Br, CH ₃ CCl ₃ , CH ₃ Cl, CHCl ₃ , HCFCs, HFCs, PFCs, SF ₆ , SO ₂ F ₂
Zeppelinfjellet (Ny-Alesund)	Norway	ZEP678N00	78 54 N	11 53 E	475	¹³ CH ₄ , ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂ , VOCs
Zingst	Germany	ZGT654N00	54 26 N	12 44 E	1	CH_4 , CO_2 , O_3
Zoseni	Latvia	ZSN657N00	57 05 N	25 32 E	182	NO_2 , O_3 , SO_2
Zugspitze	Germany	ZUG647N00	47 25 N	10 59 E	2960	CO_2
Zugspitze	Germany	ZUG647N00	47 25 N	10 59 E	2960	CH ₄ , CO, CO ₂ , NO, NOx, NOy, O ₃
Zugspitze / Schneefernerhaus	Germany	ZSF647N00	47 25 N	10 59 E	2656	SO_2
Zugspitze / Schneefernerhaus	Germany	ZSF647N00	47 25 N	10 59 E	2656	CH ₄ , CO, CO ₂ , N ₂ O, NO, NO ₂ , NOy, O ₃ , PAN, SF ₆
Ähtäri	Finland	AHT662N00	62 35 N	24 12 E	180	NO_2 , O_3 , SO_2

Station	Country/Territory	Index Number	Latitude (° ')	Location Longitude (° ')	Altitude (m)	e Parameter
ANTARCTICA						
Arrival Heights	New Zealand	ARH777S00	77 48 S	166 40 E	184	O_3
Arrival Heights	New Zealand	ARH777S00	77 48 S	166 40 E		¹³ CH ₄ , CH ₄ , CO, N ₂ O, VOCs
Casey Station	Australia	CYA766S00	66 17 S	110 32 E		¹³ CO ₂ , CH ₄ , CO, CO ₂ , H ₂ , N ₂ O
Concordia, Dôme C	France	DCC775S00	75 06 S	123 20 E	3233	
Halley Bay	United Kingdom of Great Britain and Northern Ireland	HBA775S00	75 34 S	26 30 W	33	¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂ , VOCs
Jubany	Argentina	JBN762S00	62 14 S	58 40 W	15	CO_2
King Sejong	Republic of Korea	KSG762S00	62 13 S	58 47 W		CO_2
Marambio	Argentina	MBI764S00	64 14 S		198	
Mawson	Australia	MAA767S00	67 37 S	62 52 E	32	¹³ CO ₂ , CH ₄ , CO, CO ₂ , H ₂ , N ₂ O
McMurdo Station	United States of America	MCM777S00	77 49 S	166 35 E	11	CH ₄ , O ₃
Mizuho	Japan	MZH770S00	70 42 S	44 18 E	2230	
Neumayer	Germany	NMY770S00	70 39 S	8 15 W		O_3
Palmer Station	United States of America	PSA764S00	64 55 S	64 00 W	10	 ¹³CO₂, C¹8O₂, C₂Cl₄, CBrClF₂, CCl₄, CFCs, CH₂Cl₂, CH₃Br, CH₃CCl₃, CH₃Cl, CH₄, CO, CO₂, H₂, HCFCs, HFCs, N₂O, SF₆, VOCs
South Pole	United States of America	SPO789S00	89 59 S	24 48 W	2810	¹³ CO ₂ , CH ₄ , CO, CO ₂ , H ₂ , N ₂ O
South Pole	United States of America	SPO789S00	89 59 S	24 48 W	2810	¹³ CH ₄ , ¹³ CO ₂ , C ¹⁸ O ₂ , C ₂ Cl ₄ , CBrClF ₂ , CBrF ₃ , CCl ₄ , CFCs, CH ₂ Cl ₂ , CH ₃ Br, CH ₃ CCl ₃ , CH ₃ Cl, CH ₄ , CO, CO ₂ , H ₂ , HCFCs, HFCs, N ₂ O, O ₃ , SF ₆ , VOCs
Syowa Station	Japan	SYO769S00	69 00 S	39 35 E	16	O_3
Syowa Station	Japan	SYO769S00	69 00 S	39 35 E	16	CO_2
Syowa Station	Japan	SYO769S00	69 00 S	39 35 E	16	¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂ , VOCs
MOBILE STATION						
Aircraft (over Bass Strait and Cape Grim)	Australia	AIA999900				¹³ CO ₂ , CH ₄ , CO, CO ₂ , H ₂ , N ₂ O
Aircraft Observation of Atmospheric trace gases by JMA	Japan	AOA999900				CH ₄ , CO, CO ₂ , N ₂ O
Aircraft: Orleans	France	ORL999900			150	CH ₄ , CO ₂
Akademik Korolev, R/V	United States of America	AKD999900				CH ₄
Alligator liberty, M/V	Japan	ALG999900				CO_2
Atlantic Ocean	United States of America	AOC9XXX00			10	CH ₄ , CO ₂
Comprehensive Observation Network for TRace gases by AIrLiner (CONTRAIL)	Japan	EOM999900				CH ₄ , CO ₂

Station	Country/Territory	Index Number	Latitude (° ')	Location Longitude (°')	Altitude (m)	e Parameter
Comprehensive	Japan	EOM999900				¹³ CH ₄ , CH ₃ D
Observation Network for TRace gases by AIrLiner (CONTRAIL)						
Discoverer 1983 & 1984, R/V	United States of America	DIS999900				CH ₄
Discoverer 1985, R/V	United States of America	DSC999900				CH ₄
Drake Passage	United States of America	DRP999900				¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂
HATS Ocean Projects	United States of America	HOP999900				HFCs
INSTAC-I (International Strato/Tropospheric Air Chemistry Project)	Japan	INS999900				¹³ CO ₂ , CH ₄ , CO ₂
John Biscoe, R/V	United States of America	JBS999900				CH ₄
Keifu Maru, R/V	Japan	KEF999900				CO ₂ , TIC
Kofu Maru, R/V	Japan	KOF999900				CO_2
Korolev, R/V	United States of America	KOR999900				CH ₄
Long Lines Expedition, R/V	United States of America	LLE999900				CH ₄
MRI Research, 1978-1986, R/V	Japan	MRI999900				CH ₄
MRI Research, Hakuho Maru, R/V	Japan	НКН999900				CO_2
MRI Research, Kaiyo Maru, R/V	Japan	KIY999900				CO ₂
MRI Research, Mirai, R/V	Japan	MMR999900				CO ₂
MRI Research, Natushima, R/V	Japan	NTU999900				CO ₂
MRI Research, Ryofu Maru, R/V MRI Research,	Japan	RFM999900 WLT999900				CO_2 CO_2
Wellington Maru, R/V Mexico Naval H-02, R/V	Japan United States of	MXN999900				CH ₄
NOPACCS - Hakurei	America Japan	HAK999900				TIC
Maru -	1					
Observation of Atmospheric Chemistry Over Japan	Japan	OAJ999900				CFCs, N ₂ O
Oceanographer, R/V	United States of America	OCE999900				CH ₄
Pacific Ocean	New Zealand	BSL999900				¹³ CH ₄ , CH ₄ , VOCs
Pacific Ocean	United States of America	POC9XXX00			10	¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
Pacific-Atlantic Ocean	United States of America	PAO999900				CH ₄ , CO ₂
Polar Star, R/V	United States of America	PLS999900				CH ₄
Ryofu Maru, R/V	Japan	RYF999900				CFCs, CH ₄ , CO ₂ , N ₂ O, TIC

Station	Country/Territory	Index Number	Latitude (° ')	Location Longitude (° ')	Altitude (m)	Parameter
Santarem	Brazil	SAN999900				CH ₄ , CO, CO ₂ , N ₂ O, SF ₆
South China Sea	United States of America	SCS9XXX00			15	¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
Soyo Maru, R/V	Japan	SOY999900				CO_2
Surveyor, R/V	United States of America	SUR999900				CH ₄
The Observation of Atmospheric Methane Over Japan	Japan	OAM999900				CH ₄
The Observation of Atmospheric Sulfur Hexafluoride Over Japan	Japan	OAS999900				SF ₆
WEST COSMIC - Hakurei Maru No.2 -	Japan	HAK999901				TIC
Wakataka-Maru	Japan	WAK999900				CO_2
Western Pacific	United States of America	WPC9XXX00			10	¹³ CH ₄ , ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO ₂
northern and western Pacific	Japan	NWP999900				N_2O
over Japan between Sendai and Fukuoka	Japan	TDA999900				CH ₄
over the Pacific Ocean 20-50 km off the coast of the Sendai plain	Japan	PIP999900				CH ₄

LIST OF UCI*1 SAMPLING SITES

CODE	Primary site	Region	Type*2	Ss*3	Lat (°)	Long (°)	n*4
UCI ANT	Antofagasta	Chile	Point	1	-23.50	-70.43	6
UCI BAH	Bahamas	Carribean	Islands	2	23.59	-75.26	7
UCI BAR	Barbados	Carribean	Islands	3	13.05	-59.53	8
UCI BEL	Belem	Brazil	Point	1	-1.45	-48.48	5
UCI BET	Bethel	Alaska	Point	1	60.80	-161.75	4
UCI BOR	Bora Bora	French Poly.	Islands	3	-16.50	-151.75	42
UCI BRW	Barrow	Alaska	Point	1	71.32	-156.61	313
UCI BYR	Bryd Station	Antarctica	Point	1	-80.02	-119.53	2
UCI CAB	Cape Blanco	Oregon	Range	27	42.84	-124.56	179
UCI CAE	Cape Egmont	New Zealand	Range	20	-39.27	173.75	47
UCI CAI	Cairns	Australia	Range	7	-16.92	145.77	25
UCI CAM	Cape Mendocino	California	Range	19	40.42	-124.40	66
UCI CGO	Cape Grim	Australia	Point	1	-40.68	144.69	1
UCI CHR	Christmas Island	Central Pacific	Island	1	1.87	-157.33	2
UCI_CSL	Cabo San Lucas	Mexico	Range	12	22.88	-109.90	299
UCI DUT	Dutch Harbor	Alaska	Point	1	53.88	-166.53	14
UCI ECU	Isla de la Plata	Ecuador	Point	5	-1.27	-81.06	44
UCI ENP	Everglades NP	Florida	Point	3	25.13	-80.95	13
UCI FAI	Fairbanks	Alaska	Point	4	65.15	-147.86	181
UCI FIJ	Fiji	South Pacific	Island	1	-18.26	178.00	20
UCI FOR	Fortaleza	Brazil	Point	1	-3.72	-38.50	6
UCI FTY	Fort Yukon	Alaska	Point	4	66.57	-145.27	43
UCI FUN	Funafuti, Tuvalu	Central Pacific	Island	1	-8.52	179.20	44
UCI GAL	Galapagos Islands	Ecuador	Islands	3	-1.27	-90.49	3
UCI GUA	Guam	Central Pacific	Island	4	13.66	144.86	229
UCI HAW	Hawaii	Hawaii	Island	15	20.27	-155.85	273
UCI HOK	Hokitika	New Zealand	Range	24	-42.72	170.96	245
UCI JAC	Jacksonville Beach	Florida	Point	2	30.28	-81.39	4
UCI JAL	Jalama Beach CP	California	Range	14	34.51	-120.50	50
UCI JCR	Jacaraipe	Brazil	Point	3	-20.15	-40.18	5
UCI JER	Jervis Bay	Australia	Range	2	-35.13	150.70	2
UCI JON	Johnston Atoll	Central Pacific	Island	1	16.74	-169.53	1
UCI JPF	Juia Pfeiffer SB	California	Range	29	36.15	-121.66	204
UCI KAN	Kanton Island	Kiritibati	Island	1	-2.83	-171.68	2
UCI KAU	Kauai	Hawaii	Island	3	22.23	-159.40	66
UCI_KET	Ketchican	Alaska	Point	2	55.35	-131.65	17
UCI KIN	Kiritibati, North	Central Pacific	Islands	5	1.42	173.10	88
UCI KIS	Kiritibati, South	Central Pacific	Islands	9	-1.29	174.83	116
UCI KOD	Kodiak Island	Alaska	Point	5	57.84	-152.35	325
UCI KOS	Kosrae	FS Micronesia	Islands	2	5.32	163.01	47
UCI KOT	Kotzebue	Alaska	Point	1	66.90	-162.58	4
UCI MAJ	Majuro	Marshall Is.	Islands	5	7.05	171.23	226
UCI MAN	Manaus	Brazil	Inland	1	-3.10	-60.10	2
UCI_MCM	McMurdo	Antarctica	Point	4	-77.86	166.70	10
UCI MUR	Muriwai Beach	New Zealand	Range	16	-36.83	174.43	222
UCI NAU	Nauru	Micronesia	Island	2	-0.53	166.91	45
UCI NIN	Ninety Mile Beach	New Zealand	Range	8	-34.90	173.09	195
UCI NLK	Norfolk Island	South Pacific	Island	1	-29.04	167.99	595
UCI NOM	Nome	Alaska	Point	1	64.50	-165.40	8
UCI NUK	Nuku Hiva	Marquesas	Island	1	-8.90	-140.22	2
UCI OAH	Oahu/Maui	Hawaii	Islands	14	21.28	-157.83	55
UCI OCS	Ocean Shores	Washington	Range	31	46.98	-124.17	182
UCI OLY	Olympic Peninsula	Washington	Range	8	47.56	-124.36	26
UCI ORB	Oreti Beach	New Zealand	Range	17	-46.44	168.23	178
UCI PNG	Papua New Guinea		Islands	10	-4.20	152.20	87
UCI PNK	Punakaiki	New Zealand	Range	18	-42.11	171.33	65

CODE	Primary site	Region	Type*2	Ss*3	Lat (°)	Long (°)	n*4
UCI PON	Pohnpei/Chuuk	FS Micronesia	Islands	2	6.97	158.27	207
UCI POR	Portage Glacier	Alaska	Point	9	60.75	-148.78	202
UCI PRU	Prudhoe Bay	Alaska	Point	1	70.25	-148.37	7
UCI PTA	Punta Arenas	Chile	Point	1	-53.10	-70.87	5
UCI PTR	Point Reyes	California	Range	17	38.00	-123.02	171
UCI PUM	Puerto Montt	Chile	Point	1	-41.48	-72.95	5
UCI PUN	Punta Baja	Mexico	Range	4	29.95	-115.83	147
UCI_RAR	Rarotonga	Cook Islands	Islands	2	-21.24	-159.82	314
UCI_RCF	Recife	Brazil	Point	1	-8.05	-34.90	6
UCI_RIA	Riau Island	Central Pacific	Island	1	1.17	104.40	4
UCI_RIO	Rio de Janeiro	Brazil	Point	2	-22.90	-43.23	4
UCI_SAI	Saipan	Central Pacific	Islands	2	15.29	145.82	242
UCI_SAL	Salvador	Brazil	Point	1	-12.98	-38.52	6
UCI_SAQ	San Quintin	Mexico	Range	11	30.40	-115.93	129
UCI_SEY	Seychelles	Central Pacific	Islands	2	-4.59	55.43	2
UCI_SMO	Tula	Samoa	Island	1	-14.25	-170.56	257
UCI_SOL	Solomon Islands	Central Pacific	Islands	4	-9.43	159.95	47
UCI_SOS	Sondre Stromfjord	Greenland	Point	1	67.00	-50.71	2
UCI_SPO	South Pole	Antarctica	Point	1	-90.00	0.00	3
UCI_SUR	Affobakka	Suriname	Point	4	5.08	-55.03	10
UCI_THU	Thursday Island	Central Pacific	Island	1	-10.58	142.22	2
UCI_TRI	Trinidad	Carribean	Islands	4	10.43	-61.13	14
UCI_VIN	Vina del Mar	Chile	Point	1	-33.03	-71.57	4
UCI_VIR	Virgin Islands	Carribean	Islands	5	17.75	-67.70	12
UCI_WAL	Wallis Island	Central Pacific	Island	1	-13.30	-176.17	5
UCI_YAP	Yap	FS Micronesia	Island	1	9.52	138.08	79

*1 UCI: University of California, Irvine

*2 Type: Point: Point sampling, where UCI staff fly into an airport and then sample nearby (typically

within a 100 km radius); a code based on the most frequent sampling site at that location is

assigned

Range: Range sampling, where UCI staff drive down a coast and sample along; 2.5 degree

latitudinal bins are adopted and the most frequent sampling site within the range is

assigned.

Island: Island sampling, which is point sampling except on a small island (or islands); about 5

degree sampling bins are adopted.

*3 Ss: Number of sub sites included in the single site code

*4 n: Number of samples

LIST OF CONTRIBUTORS

Station	Name	Address
Country/Territory		
REGION I (Africa)		
Cairo (Egypt)	AbdElhamid Gouda Elawadi	Egyptian Meteorological Authority Department of Air Pollution Study Egyptian Meteorological Authority P.O.Box:11784 - Cairo, Egypt
Cape Point (South Africa)	Alastair Williams	Australian Nuclear Science and Technology Organisation, Institute for Environmental Research, Atmospheric Mixing and Pollution Transport Group Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
Izaña (Tenerife) (Spain)	Angel J. Gomez-Pelaez	Izana Atmospheric Research Center, Meteorological State Agency of Spain (AEMET) C/ La Marina, 20, Planta 6. 38001 Santa Cruz de Tenerife, Spain
	Carlos Marrero	Izana Atmospheric Research Center, Meteorological State Agency of Spain (AEMET) C/ La Marina, 20 - Planta 6. Apartado 880. 38071 Santa Cruz de Tenerife, Spain
Funchal (Portugal)	Diamantino Henriques	Instituto de Meteorologia, I.P. Observatorio Afonso Chaves, Rua Mae de Deus - Relvao, 9500-321 Ponta Delgada, S. Miguel, Portugal
Cape Point (South Africa)	Ernst Günther Brunke	South African Weather Service (Climate Division) SAWS, c/o CSIR (Environmentek), P.O. Box 320,Stellenbosch 7599, South Africa
Amsterdam Island (France)	Jean Sciare	LSCE (Laboratoire des Sciences du Climat et de l'Environnement) UMR CEA-CNRS LSCE - CEA Saclay - Orme des Merisiers - Bat.701 91191 Gif-sur-Yvette, France
	Michel Ramonet	LSCE (Laboratoire des Sciences du Climat et de l'Environnement) UMR CEA-CNRS LSCE - CEA Saclay - Orme des Merisiers - Bat.701 91191 Gif-sur-Yvette, France
Mt. Kenya (Kenya)	Josiah Kariuki Murageh	KMD, Kenyan Meteorological Department Kenya Meteorological Department Dagoretti Corner P.O. Box 30259 00100 Nairobi, Kenya
	Jörg Klausen	Federal Office of Meteorology and Climatology MeteoSwiss Krähbühlstrasse 58 P.O. Box 514 CH-8044 Zürich, Switzerland

Station Country/Territory	Name	Address
	Stephan Henne	Empa, Swiss Federal Laboratories for Materials Testing and Research Ueberlandstrasse 129 8600 Duebendorf, Switzerland
Cape Verde Observatory (Cape Verde)	Katie Read	Department of Chemistry, University of York Department of Chemistry, University of York, Heslington, York, Y010 5DD, United Kingdom
	Zoë Fleming	National Centre for Atmospheric Science (NCAS) Department of Chemistry University of Leicester National Centre for Atmospheric Science (NCAS) Department of Chemistry University of Leicester Leicester LEI 7RH, UK
Assekrem (Algeria)	Mimouni Mohamed	Office National de la Meteorologie POBox 31 Tamanrasset 11000, Algeria
REGION II (Asia)		
Nagoya (Japan)	A. Matsunami	Research Center for Advanced Energy Conversion, Nagoya University Furo-cho, Chikusaku, Nagoya 464-8603, Japan
Anmyeon-do (Republic of Korea)	Haeyoung Lee	Korea Global Atmosphere Watch Center, Korea Meteorology Administration 1764-6, Seungen-Ri, Anmyeon-Eup, Taean-Kun, ChungNam, 357-961, Republic of Korea
	Hee-Jung Yoo	Korea Global Atmosphere Watch Center, Korea Meteorology Administration 1764-6, Seungen-Ri, Anmyeon-Eup, Taean-Kun, ChungNam, 357-961, Republic of Korea
Cape Ochi-ishi Hateruma (Japan)	Hitoshi MUKAI	Center for Global Environmental Research, National Institute for Environmental Studies 16-2, Onogawa, Tsukuba-shi, Ibaraki 305-8506, Japan
	Takuya Saito	Center for Environmental Measurement and Analysis, National Institute for Environmental Studies
	Yasunori TOHJIMA	Center for Global Environmental Research, National Institute for Environmental Studies 16-2, Onogawa, Tsukuba-shi, Ibaraki 305-8506, Japan

Station	Name	Address
Country/Territory		
Gosan (Republic of Korea)	Jeong-Ah Yu	National Institute of Environmental Research Environmental Research Complex, Gyeongseo-dong, Seo-gu, Incheon, 404-708, Republic of Korea
	Seung-Yeon Kim	National Institute of Environmental Research Environmental Research Complex, Gyeongseo-dong, Seo-gu, Incheon, 404-708, Republic of Korea
Everest - Pyramid (Nepal)	Jgor Arduini	Università degli Studi di Urbino Istituto di Scienze Chimiche, piazza Rinascimento 6, 61029 Urbino - Italy
Hok Tsui (Hong Kong, China)	Ka Se Lam	Department of Civil and Structural Engineering, Hong Kong Polytechnic University Hung Hom, Kowloon, Hong Kong, China
Mikawa-Ichinomiya (Japan)	Koji Ohno	Aichi Air Environment Division 1-2 Sannomaru-3chome, Naka-ku, Nagoya, Aichi 460-8501, Japan
Mt. Waliguan (China)	Lingxi ZHOU	Professor, PI for Greenhouse Gases & Related Tracers Chinese Academy of Meteorological Sciences (CAMS) China Meteorological Administration (CMA) 46 Zhongguancun Nandajie Beijing 100081, China
	Xiaobin Xu	Key Laboratory for Atmospheric Chemistry, Institute of Atmospheric Composition, Chinese Academy of Meteorological Sciences, China Meteorological Administration Zhongguancun Nandajie 46 Beijing 100081, China
Memanbetsu (Japan)	Michio Hirota	Geochemical Research Department, Meteorological Research Institute 1-1, Nagamine, Tsukuba, Ibaraki 305-0052, Japan
Tsukuba (Japan)	Michio Hirota	Geochemical Research Department, Meteorological Research Institute 1-1, Nagamine, Tsukuba, Ibaraki 305-0052, Japan
	Yousuke Sawa	Geochemical Research Department, Meteorological Research Institute 1-1, Nagamine, Tsukuba, Ibaraki 305-0052, Japan
Hamamatsu (Japan)	Mitsuo TODA	Shizuoka University 3-5-1 Jyohoku, Hamamatsu 432-8561, Japan

Station Country/Territory	Name	Address
Bering Island Kotelny Island Tiksi (Russian Federation)	Nina Paramonova	Main Geophysical Observatory (MGO) Karbyshev Street 7, St. Petersburg, 194021, Russian Federation
Kyzylcha (Uzbekistan)		
Hok Tsui King's Park (Hong Kong, China)	Olivia S.M. Lee	Hong Kong Observatory 134A, Nathan Road, Kowloon, Hong Kong
	David H.Y. Lam	Hong Kong Observatory 134A, Nathan Road, Kowloon, Hong Kong
Everest - Pyramid (Nepal)	Paolo Cristofanelli	ISAC-CNR ISAC-CNR, VIa Gobetti 101 - 40129 Bologna -Italy
	Paolo Bonasoni	ISAC-CNR ISAC-CNR, VIa Gobetti 101 - 40129 Bologna -Italy
Tsukuba (Japan)	Ryodo Shigebayashi	Lower Aerological Observations Division, Aerological Observatory, Japan Meteorological Agency (JMA) Lower Aerological Observations Division, Aerological Observatory1-2 Nagamine, Tsukuba, Ibaraki, 305-0052, Japan
Takayama (Japan)	Shohei Murayama	Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST) AIST Tsukuba West, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
Gosan (Republic of Korea)	So-young Bang	Applied Meteorology Research Laboratory, Meteorological Research Institute (METRI), Korea Meteorological Administration (KMA) 460-18, Shindaebang-dong, Dongjak-gu, Seoul 156-720, Rep. of Korea
Ship between Ishigaki Island and Hateruma Island (Japan)	Takakiyo Nakazawa	Center for Atmospheric and Oceanic Studies, Graduate School of Science, Tohoku University Aoba, Sendai 980-8578, Japan
	Shuji Aoki	Center for Atmospheric and Oceanic Studies, Graduate School of Science, Tohoku University Aoba, Sendai 980-8578, Japan

Station Country/Territory	Name	Address
Country/ Territory		
Suita (Japan)	Tomohiro Oda	Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka Universiy, Japan Green Engieering Lab Division of Sustainable Energy and Environmental Engineering 2-1 Yamadaoka, Suita, Osaka 565-0871 Japan
Incode West	V. Cinnelson	
Issyk-Kul (Kyrgyzstan)	V. Sinyakov	Laboratory of Geophysics, Institute of Fundamental sciences at the Kyrgyz National University Manas Street 101, Bishkek, 720033, Kyrgyz Republic
Mt. Dodaira Kisai Urawa (Japan)	Yosuke MUTO	Center for Environmental Science in Saitama 914 Kamitanadare, Kisai-machi, Kita-Saitama-gun, Saitama 347-0115, Japan
Minamitorishima Ryori Yonagunijima (Japan)	Yukio Fukuyama	Atmospheric Environment Division, Global Environment and Marine Department, Japan Meteorological Agency (JMA) 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan
REGION III (South	America)	
Arembepe (Brazil)	LuanaăS. Basso	IPEN Atmospheric Chemistry Laboratory Av. Prof. Lineu Prestes, 2242, Cidade Universitaria, Sao Paulo, SP- BRAZIL CEP 05508-900
	Luciana Vanni Gatti	IPEN Atmospheric Chemistry Laboratory Av. Prof. Lineu Prestes, 2242, Cidade Universitaria, Sao Paulo, SP- BRAZIL CEP 05508-900
Ushuaia (Argentina)	Maria Elena Barlasina	National Weather Service Observatorio Central Villa Ortuzar División Radiación Av. de Los Constituyentes 3454 Cp 1427, Argentina
	Manuel Cupeiro	National Weather Service 245 Viviendas Tira 8A, Dpto 10. Ushuaia, Tierra del Fuego, Argentina
	Ricardo Sanchez	National Weather Service Observatorio Central Villa Ortuzar División Radiación Av. de Los Constituyentes 3454 Cp 1427, Argentina

Station Country/Territory	Name	Address
La Quiaca Observatorio Pilar Observatorio San Julian Aero (Argentina)	Maria Elena Barlasina	National Weather Service Observatorio Central Villa Ortuzar División Radiación Av. de Los Constituyentes 3454 Cp 1427, Argentina
	Ricardo Sanchez	National Weather Service Observatorio Central Villa Ortuzar División Radiación Av. de Los Constituyentes 3454 Cp 1427, Argentina
El Tololo (Chile)	Martin Steinbacher	Empa - Swiss Federal Laboratories for Materials Science and Technology Ueberlandstrasse 129 CH-8600 Duebendorf Switzerland
	Gaston Torres	
Huancayo (Peru)	Mutsumi Ishitsuka	Observatorio de Huancayo, Instituto Geofisico del Peru Apartado 46, Huancayo, Peru
Ushuaia (Argentina)	Sergio Luppo	Servicio Meteorológico Nacional - Gobierno de Tierra del Fuego Estación VAG Ushuaia Subsecretaria de Ciencia y Tecnología, Ministerio de Educación, Cultura, Ciencia y Tecnología Gobierno de Tierra del Fuego 9410 Ushuaia, Tierra del Fuego, Argentina
San Lorenzo (Paraguay)	Victor Ayala	Universidad Nacional de Asuncion, Facultad de Ciencias Exactas y Naturales, Laboratorio de Investigacion Atmosferica y Problemas Ambientales
	Carlos Quevedo	
REGION IV (North	and Central America)	
Candle Lake Chibougamau Cape St. James Lac La Biche (Alberta) (Canada)	Doug Worthy	Environment Canada (EC) 4905 Dufferin Street, Toronto, Ontario, Canada, M3H 5T4
Alert Churchill Estevan Point East Trout Lake Fraserdale Sable Island (Canada)	Doug Worthy	Environment Canada (EC) 4905 Dufferin Street, Toronto, Ontario, Canada, M3H 5T4

Station Country/Territory	Name	Address
Country/ Territory		
	Lin Huang	Environment Canada 4905 Dufferin Street, Toronto, Ontario, Canada, M3H 5T4
Egbert (Canada)	Doug Worthy	Environment Canada (EC) 4905 Dufferin Street, Toronto, Ontario, Canada, M3H 5T4
	Peter C. Brickell	Environment Canada (EC) 4905 Dufferin Street, Toronto, Ontario, Canada, M5T 1V7
Algoma Alert Bratt's Lake Chalk River Chapais Egbert Experimental Lakes Area Esther Kejimkujik Longwoods Saturna Sutton (Canada)	Mike Shaw	Environment Canada Science and Technology Branch Air Quality Research Division 4905 Dufferin Street Toronto, Ontario CANADA M3H 5T4
La Palma (Cuba)	Osvaldo Cuesta Santos	Institute of Meteorology, Atmospheric Environment Research Center Aptdo. 17032, Postal Code 11700, Havana 17, Cuba
REGION V (South-W	est Pacific)	
Cape Grim (Australia)	Bruce Forgan	Commonwealth Bureau of Meteorology 700 Collins St, Docklands GPO Box 1289K, Melbourne, Victoria 3001, Australia
	Ian Galbally	CSIRO Marine and Atmospheric Research CSIRO Marine and Atmospheric Research Private Bag 1, Aspendale Victoria 3195 Australia
Lauder (New Zealand)	Dan Smale	National Institute of Water & Atmospheric Research Ltd. NIWA, Private Bag 50061, Omakau, Central Otago 9320, New Zealand

Station Country/Territory	Name	Address
	Gordon Brailsford	National Institute of Water & Atmospheric Research Ltd. 301 Evans Bay Parade, Greta Point, Private Bag 14-901, Kilbirnie, Wellington, New Zealand
	Sylvia Nichol	National Institute of Water & Atmospheric Research Ltd. 301 Evans Bay Parade, Greta Point, Private Bag 14-901, Kilbirnie, Wellington, New Zealand
Tanah Rata (Malaysia)	Lim Sze Fook	Environmental Studies Division Malaysian Meteorological Department Jalan Sultan, 46667 Petaling Jaya, Selangor, Malaysia
Danum Valley GAW Baseline Station (Malaysia)	Lim Sze Fook	Environmental Studies Division Malaysian Meteorological Department Jalan Sultan, 46667 Petaling Jaya, Selangor, Malaysia
	Maznorizan Mohamad	Environmental Studies Division Malaysian Meteorological Department
Bukit Koto Tabang Jakarta (Indonesia)	Mangasa Naibaho	The Indonesia Agency for Meteorology Climatology and Geophysics (BMKG) Jl.Angkasa 1,No.2,Kemayoran Jakarta 10720,Indonesia
Bukit Koto Tabang (Indonesia)	Mangasa Naibaho	The Indonesia Agency for Meteorology Climatology and Geophysics (BMKG) Jl.Angkasa 1,No.2,Kemayoran Jakarta 10720,Indonesia
	Nahas, Alberth Christian	The Indonesia Agency for Meteorology Climatology and Geophysics (BMKG) Jl. Raya Bukittinggi-Medan Km. 17 Palupuh, District Agam, West Sumatera, Indonesia PO BOX 11 Bukittinggi 26100
	Jörg Klausen	Federal Office of Meteorology and Climatology MeteoSwiss Krähbühlstrasse 58 P.O. Box 514 CH-8044 Zürich, Switzerland
	Martin Steinbacher	Empa - Swiss Federal Laboratories for Materials Science and Technology Ueberlandstrasse 129 CH-8600 Duebendorf Switzerland

Station Country/Territory	Name	Address
	Sugeng Nugroho	The Indonesia Agency for Meteorology Climatology and Geophysics (BMKG) Jl.Angkasa 1,No.2,Kemayoran Jakarta 10720,Indonesia
Baring Head (New Zealand)	Sylvia Nichol	National Institute of Water & Atmospheric Research Ltd. 301 Evans Bay Parade, Greta Point, Private Bag 14-901, Kilbirnie, Wellington, New Zealand
	Gordon Brailsford	National Institute of Water & Atmospheric Research Ltd. 301 Evans Bay Parade, Greta Point, Private Bag 14-901, Kilbirnie, Wellington, New Zealand
	Ross Martin	National Institute of Water & Atmospheric Research Ltd. 301 Evans Bay Parade, Greta Point, Private Bag 14-901, Kilbirnie, Wellington, New Zealand
REGION VI (Europe)		
Atmospheric Station Kresin u Pacova (Czech Republic)	Alice Dvorska	Global Change Research Centre AS CR, v.v.i. Belidla 986/4a, 603 00 Brno
Puszcza Borecka/Diabla Gora (Poland)	Anna Degorska	Institute of Environmental Protection Kolektorska 4 01-692 Warsaw, Poland
Monte Cimone (Italy)	Attilio Di Diodato	Italian Air Force Meteorological Service C.A.M.M. Mt. CIMONE,Via delle Ville 40, 41029-Sestola (MO), Italy
Hohe Warte Stephansplatz (Austria)	August Kaiser	Department for Environmental MeteorologyCentral Institute for Meteorology and Geodynamics Postfach 342, Hohe Warte 38, A-1191 Wien, Austria
Zeppelinfjellet (Ny-Alesund) (Norway)	Birgitta Noone	Department of Applied Environmental Science (ITM) Stockholm University SE-10691 Stockholm
	Hans-Christen Hansson	Department of Applied Environmental Science (ITM) Stockholm University SE-10691 Stockholm
Jungfraujoch (Switzerland)	Brigitte Buchmann	Empa - Swiss Federal Laboratories for Materials Science and Technology Überlandstrasse 129 CH-8600 Dübendorf Switzerland

Station Country/Territory	Name	Address
	Hoerger Corinne	Swiss Federal Laboratories for Materials Science and Technologyh, EMPA, Air Pollution/Environmental Technology
	Stefan Reimann	Ueberlandstrasse 129,, CH-8600, Duebendorf, Switzerland
	Thomas Seitz	Swiss Federal Laboratories for Materials Science and Technologyh, EMPA, Air Pollution/Environmental Technology Ueberlandstrasse 129,, CH-8600, Duebendorf, Switzerland
	Martin Steinbacher	Empa - Swiss Federal Laboratories for Materials Science and Technology Überlandstrasse 129 CH-8600 Dübendorf Switzerland
Payerne Rigi (Switzerland)	Brigitte Buchmann	Empa - Swiss Federal Laboratories for Materials Science and Technology Überlandstrasse 129 CH-8600 Dübendorf Switzerland
	Thomas Seitz	Empa - Swiss Federal Laboratories for Materials Science and Technology Überlandstrasse 129 CH-8600 Dübendorf Switzerland
Fundata Semenic Stîna de Vale (Romania)	Daniela ZISU	National Research and Development Institute for Environmental Protection Splaiul Independentei nr. 294, sector 6, 77703 Bucuresti , Romania
Summit (Denmark)	Detlev Helmig	Institute of Arctic and Alpine Research (INSTAAR) INSTAAR, Univ. of Colorado 1560, 30th Street UCB 450 Boulder, CO 80309 U.S.A.
	Jacques Hueber	Institute of Arctic and Alpine Research (INSTAAR) INSTAAR, Univ. of Colorado 1560, 30th Street UCB 450 Boulder, CO 80309 U.S.A.

Station Country/Territory	Name	Address
Angra do Heroismo Beja Bragança Castelo Branco Lisboa / Gago Coutinho Monte Velho Penhas Douradas Viana do Castelo (Portugal)	Diamantino Henriques	Instituto de Meteorologia, I.P. Observatorio Afonso Chaves, Rua Mae de Deus - Relvao, 9500-321 Ponta Delgada, S. Miguel, Portugal
Kamenicki Vis (Serbia)	Dragan Djordjevic	Republic Hydrometeorological Service, Environmental Control Department Kneza Viseslava 66, 11030 Belgrade, Serbia
Burgas Plovdiv Pleven Sofia Varna (Bulgaria)	Ekaterina Batchvarova	National Institute of Meteorology and Hydrology 66 Tzarigradsko chaussee, 1784 Sofia, Bulgaria
Jarczew Leba Suwalki (Poland)	Eugeniusz Brejnak	Institute of Meteorology and Water Management;Laboratory for Research and Monitoring of Air Pollution 61 Podlesna Street, 01-673 Warszawa, Poland
Fundata (Romania)	Florin Nicodim	National Meteorological Administration Sos. Bucuresti-Ploiesti nr. 97, 71552 Bucharest, Romania
Giordan Lighthouse (Malta)	Francelle Azzopardi	
	Raymond Ellul	Atmospheric Research Unit / Physics Department / University of Malta Msida MSD 06, Malta
	Martin Saliba	
Plateau Rosa (Italy)	Francesco Apadula	Ricerca sul Sistema Energetico - RSE S.p.A. via Rubattino 54, 20134 Milano, Italy
	Daniela Heltai	Ricerca sul Sistema Energetico - RSE S.p.A. via Rubattino 54, 20134 Milano, Italy
	Andrea Lanza	Ricerca sul Sistema Energetico - RSE S.p.A. via Rubattino 54, 20134 Milano, Italy
Site J (Denmark)	Gen Hashida	National Institute of Polar Research Kaga 1-9-10, Itabashi-ku, Tokyo 173-8515, Japan
	Shinji Morimoto	National Institute of Polar Research Kaga 1-9-10, Itabashi-ku, Tokyo 173-8515, Japan

Station Country/Territory	Name	Address	
	Shuji Aoki	Center for Atmospheric and Oceanic Studies, Graduate School of Science, Tohoku University Aoba, Sendai 980-8578, Japan	
Mace Head (Ireland)	Gerard Spain	National University of Ireland, Galway (NUI) Mace Head Research Station Carna, Co. Galway, Ireland	
Hohe Warte Stephansplatz (Austria)	Guenther Schermann	Municipal Department 22 - Environmental ProtectionAir quality subdepartment, City of Vienna Ebendorferstrasse 4, A-1082 Vienna, Austria	
Vindeln (Sweden)	Hakan Blomgren	IVL Swedish Environmental Research Institute P.O.Box 5302S-400 14 Goteborg, Sweden	
Kloosterburen (Netherlands (the))	Hans Berkhout	RIVM - Centre for Environmental Monitoring (MIL) PO Box 1 3720 BA Bilthoven the Netherlands	
Kollumerwaard (Netherlands (the))	Hans Berkhout	RIVM - Centre for Environmental Monitoring (MIL) PO Box 1 3720 BA Bilthoven the Netherlands	
	Ronald Spoor	RIVM - Centre for Environmental Monitoring (MIL) PO Box 1 3720 BA Bilthoven the Netherlands	
Wank Peak Zugspitze (Germany)	Hans-Eckhart Scheel	Karlsruhe Institute of Technology (KIT), IMK-IFU 82467 Garmisch-Partenkirchen, Germany	
Danki Shepelevo (Russian Federation)	Irina Brouskina		
BEO Moussala (Bulgaria)	Ivo Kalapov	INRNE Institute for Nuclear Research and Nuclear Energy Tsarigradsko shose Blvd. 1784 Sofia Bulgaria	
	Todor Arsov		

Station Country/Territory	Name	Address	
La Cartuja Doñana Logroño Mahón Noia Roquetes San Pablo de los Montes (Spain)	J.M. Saenz	Servicio de Desarrollos Medioambientales, Instituto Nacional de Meteorologia, Ministerio de Medio Ambiente Leonardo Prieto Castro, 8, 28071 Madrid, Spain	
Monte Cimone (Italy)	Jgor Arduini	Università degli Studi di Urbino Istituto di Scienze Chimiche, piazza Rinascimento 6, 61029 Urbino - Italy	
	Paolo Bonasoni	ISAC-CNR ISAC-CNR, VIa Gobetti 101 - 40129 Bologna -Italy	
	Paolo Cristofanelli	ISAC-CNR ISAC-CNR, VIa Gobetti 101 - 40129 Bologna -Italy	
	Rocco Duchi		
Pallas-Sammaltunturi (Finland)	Juha Hatakka	Finnish Meteorological Institute P.O.Box 503,FI-00101 Helsinki, Finland	
	Timo Salmi	Finnish Meteorological Institute Erik Palmenin aukio 1, P.O.Box 503, FIN-00101 Helsinki, Finland	
	Mika Vestenius	Finnish Meteorological Institute	
Brotjacklriegel Deuselbach Waldhof Neuglobsow Schauinsland Westerland Zingst Zugspitze / Schneefernerhaus Zugspitze (Germany)	Karin Uhse	Umweltbundesamt (UBA, Federal Environmental Agency) Air Monitoring Network Paul-Ehrlich-Strasse 29 D-63225 Langen, Germany	
Sniezka (Poland)	Krzaczkowski Piotr, MSc	Institute of Meteorology and Water Management - Wroclaw Branch, Meteorological Observatory on Sniezka Mountain	
Hegyhatsal K-puszta (Hungary)	Laszlo Haszpra	Hungarian Meteorological Service P.O. Box 39, H-1675 Budapest, Hungary	

Station Country/Territory	Name	Address	
Iskrba Kovk Krvavec Zavodnje (Slovenia)	Marijana Murovec	Slovenian Environment Agency Agencija RS za okolje / Slovenian Environment Agency Urad za meteorologijo / Meteorology Office Sektor za kakovost zraka / Air Quality Division Vojkova 1b, 1001 Ljubljana, p.p. 2608, Slovenia	
Dobele Rucava Zoseni (Latvia)	Marina Frolova	Observation Network Department, Latvian Environment, Geology and Meteorology Centre, Ministry of Environmental 165 Maskavas str. LV-1019, Riga, Latvia	
Sonnblick (Austria)	Marina Fröhlich	Federal Environment Agency Austria Spittelauer Lände 5, A-1090 Wien, Austria	
	Wolfgang Spangl	Federal Environment Agency Austria Spittelauer Lände 5, A-1090 Wien, Austria	
	Elisabeth Friedbacher	Federal Environment Agency Austria Spittelauer Lände 5, A-1090 Wien, Austria	
Jungfraujoch (Switzerland)	Markus Leunberger	University of Bern University of Bern Physics Institute Sidlerstrasse 5 CH-3012 Bern	
Ivan Sedlo (Bosnia and Herzegovina)	Martin Tais	Meteoroloski zavod Bosne i Hercegovine Bardakcije 12, 71000 Sarajevo, Bosnia and Herzegovina	
Pic du Midi (France)	Meyerfeld Yves	Laboratoire d'Aérologie	
	Gheusi Francois		
Ile Grande Pic du Midi Puy de Dome (France)	Michel Ramonet	LSCE (Laboratoire des Sciences du Climat et de l'Environnement) UMR CEA-CNRS LSCE - CEA Saclay - Orme des Merisiers - Bat.701 91191 Gif-sur-Yvette, France	
Finokalia (Greece)			
Mace Head (Ireland)			
Begur (Spain)			
Kosetice (Czech Republic)	Milan Vana	Czech Hydrometeorological Institute, Kosetice Observatory Na Sabatce 17, 143 06 Praha 4 - Komorany, Czech Republic	

Station	Name	Address
Country/Territory	TValle	Redroop
• • • • • • • • • • • • • • • • • • • •		
Ocean Station Charlie Teriberka (Russian Federation)	Nina Paramonova	Main Geophysical Observatory (MGO) Karbyshev Street 7, St. Petersburg, 194021, Russian Federation
Zeppelinfjellet (Ny-Alesund) (Norway)	Ove Hermansen	Norwegian Institute for Air Research (NILU) P. O. Box 100 Instituttveien 18, N-2027 Kjeller, Norway
Eskdalemuir (United Kingdom of Great Britain and Northern Ireland)	Peter Kuria	Air and Environment Quality Division, DEFRA 4/F15, Ashdown House123 Victoria StreetLondon, SW1E 3DE, United Kingdom
Puy de Dome (France)	Pichon Jean-Marc	Laboratoire de Météorologie Physique
	Meyerfeld Yves	Laboratoire d'Aérologie
Lampedusa (Italy)	Salvatore Chiavarini	Italian National Agency for New Technology, Energy, and Sustainable Economic Development (ENEA) ENEA-UTPRA Via Anguillarese, 301 00123 Rome, Italy
	Salvatore Piacentino	Italian National Agency for New Technology, Energy, and Sustainable Economic Development (ENEA) Laboratory for Earth Observations and Analyses (UTMEA-TER) ENEA ACS-CLIMOSS, Via Catania 2, 90141 Palrmo, Italy.
	Damiano Sferlazzo	Italian National Agency for New Technology, Energy, and Sustainable Economic Development (ENEA) Laboratory for Earth Observations and Analyses (UTMEA-TER) Station for Climate Observations Contrada Capo Grecale 92010 Lampedusa Italy
	Alcide di Sarra	Italian National Agency for New Technology, Energy, and Sustainable Economic Development (ENEA) Laboratory for Earth Observations and Analyses (UTMEA-TER) Via Anguillarese, 301 00123 Rome, Italy.

Station Country/Territory	Name	Address
Ridge Hill Tacolneston Tall Tower (United Kingdom of Great Britain and Northern Ireland)	Simon O'Doherty	Atmospheric Chemistry Research Group School of Chemistry University of Bristol Atmospheric Chemistry Research Group School of Chemistry University of Bristol Cantocks Close BS8 1TS Bristol United Kingdom
	Aoife Grant	Atmospheric Chemistry Research Group School of Chemistry University of Bristol Atmospheric Chemistry Research Group School of Chemistry University of Bristol Cantocks Close BS8 1TS Bristol United Kingdom
Hohenpeissenberg Zugspitze / Schneefernerhaus (Germany)	Stefan Gilge	Deutscher Wetterdienst (DWD, German Meteorological Service)Meteorologisches Observatorium Hohenpeissenberg Albin-Schwaiger-Weg 10D-82383 Hohenpeissenberg, Germany
	Christian Plass-Duelmer	Deutscher Wetterdienst (DWD, German Meteorological Service)Meteorologisches Observatorium Hohenpeissenberg Albin-Schwaiger-Weg 10D-82383 Hohenpeissenberg, Germany
Lazaropole (The Former Yugoslav Republic of Macedonia)	Suzana Alcinova Monevska	Hydrometeorological Service Skupi bb, 1000 Skopie, The former Yugoslav Republic of Macedonia
Ähtäri Oulanka Utö Virolahti (Finland)	Timo Salmi	Finnish Meteorological Institute Erik Palmenin aukio 1, P.O.Box 503, FIN-00101 Helsinki, Finland
ANTARCTICA		
Jubany (Italy)	Claudio Rafanelli	ICES (Int.l Center for Earth Sciences) c/o CNR-Istituto di Acustica- Area della Ricerca di Roma Tor Vergata,via Fosso del Cavaliere 100, 00133 Rome, Italy
King Sejong (Republic of Korea)	Haeyoung Lee	Korea Global Atmosphere Watch Center, Korea Meteorology Administration 1764-6, Seungen-Ri, Anmyeon-Eup, Taean-Kun, ChungNam, 357-961, Republic of Korea

Station	Name	Address
Country/Territory		
	Taejin Choi	Division of Polar Climate Research, KOPRI Get-Pearl Tower, 12 Gaetbeol-ro, Yeonsu-gu, Incheon, 406-840, Republic of Korea
Marambio (Argentina)	Maria Elena Barlasina	National Weather Service Observatorio Central Villa Ortuzar División Radiación Av. de Los Constituyentes 3454 Cp 1427, Argentina
	Ricardo Sanchez	National Weather Service Observatorio Central Villa Ortuzar División Radiación Av. de Los Constituyentes 3454 Cp 1427, Argentina
Syowa Station (Japan)	Masato Fukuda	Office of Antarctic Observations, Japan Meteorological Agency (JMA) 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan
Concordia, Dôme C (Italy)	Paolo Cristofanelli	ISAC-CNR ISAC-CNR, VIa Gobetti 101 - 40129 Bologna -Italy
	Paolo Bonasoni	ISAC-CNR ISAC-CNR, VIa Gobetti 101 - 40129 Bologna -Italy
Neumayer (Germany)	Rolf Weller	Alfred Wegener Institute Am Handelshafen 12,27570 Bremerhaven, Germany
Arrival Heights (New Zealand)	Sylvia Nichol	National Institute of Water & Atmospheric Research Ltd. 301 Evans Bay Parade, Greta Point, Private Bag 14-901, Kilbirnie, Wellington, New Zealand
	Gordon Brailsford	National Institute of Water & Atmospheric Research Ltd. 301 Evans Bay Parade, Greta Point, Private Bag 14-901, Kilbirnie, Wellington, New Zealand
	Ross Martin	National Institute of Water & Atmospheric Research Ltd. 301 Evans Bay Parade, Greta Point, Private Bag 14-901, Kilbirnie, Wellington, New Zealand
Mizuho (Japan)	Takakiyo Nakazawa	Center for Atmospheric and Oceanic Studies, Graduate School of Science, Tohoku University Aoba, Sendai 980-8578, Japan
Syowa Station (Japan)	Takakiyo Nakazawa	Center for Atmospheric and Oceanic Studies, Graduate School of Science, Tohoku University Aoba, Sendai 980-8578, Japan
	Gen Hashida	National Institute of Polar Research Kaga 1-9-10, Itabashi-ku, Tokyo 173-8515, Japan

Station Country/Territory	Name	Address
	Shinji Morimoto	National Institute of Polar Research Kaga 1-9-10, Itabashi-ku, Tokyo 173-8515, Japan
MOBILE STATION		
NOPACCS - Hakurei Maru - WEST COSMIC - Hakurei Maru No.2 - (Japan)	General Environmental Texhnos	The General Environmental Technos Co., Ltd. (Old:Kansai Environmental Engineering Center, Co., Ltd.) 1-3-5, Azuchi machi, Chuo-ku, Osaka 541-0052, Japan
INSTAC-I (International Strato/Tropospheric Air Chemistry Project) (Japan)	Hidekazu Matsueda	Geochemical Research Department, Meteorological Research Institute Nagamine 1-1, Tsukuba, Ibaraki 305-0052, Japan
Comprehensive Observation Network for TRace gases by AIrLiner (CONTRAIL) (Japan)	Hidekazu Matsueda	Geochemical Research Department, Meteorological Research Institute Nagamine 1-1, Tsukuba, Ibaraki 305-0052, Japan
	Toshinobu Machida	National Institute for Environmental Studies 16-2 Onogawa, Tsukuba 305-8506, Japan
MRI Research, Mirai, R/V (Japan)	Hisayuki Yoshikawa-Inoue	Laboratory of Marine and Atmospheric GeochemistryGraduate School of Environmental Earth ScienceHokkaido University N10W5, Kita-ku, Sapporo 060-0810, Japan
northern and western Pacific (Japan)	Kentaro Ishijima	Japan Agency for Marine-earth Science and Technology (JAMSTEC) 3173-25 Showamachi, Kanazawa-ku, Yokohama, 236-0001, Japan
	Shuji Aoki	Center for Atmospheric and Oceanic Studies, Graduate School of Science, Tohoku University Aoba, Sendai 980-8578, Japan
	Takakiyo Nakazawa	Center for Atmospheric and Oceanic Studies, Graduate School of Science, Tohoku University Aoba, Sendai 980-8578, Japan
Santarem (Brazil)	Luciana Vanni Gatti	IPEN Atmospheric Chemistry Laboratory Av. Prof. Lineu Prestes, 2242, Cidade Universitaria, Sao Paulo, SP- BRAZIL CEP 05508-900

Station	Name	Address
Country/Territory		
	LuanaăS. Basso	IPEN Atmospheric Chemistry Laboratory Av. Prof. Lineu Prestes, 2242, Cidade Universitaria, Sao Paulo, SP- BRAZIL CEP 05508-900
	Alexandre Martinewski	
MRI Research, Hakuho Maru, R/V MRI Research, Kaiyo Maru, R/V MRI Research, 1978-1986, R/V MRI Research, Natushima, R/V MRI Research, Ryofu Maru, R/V MRI Research, Wellington Maru, R/V (Japan)	Masao Ishii	Geochemical Research Department, Meteorological Research Institute Nagamine 1-1, Tsukuba, Ibaraki 305-0052, Japan
Aircraft: Orleans (France)	Michel Ramonet	LSCE (Laboratoire des Sciences du Climat et de l'Environnement) UMR CEA-CNRS LSCE - CEA Saclay - Orme des Merisiers - Bat.701 91191 Gif-sur-Yvette, France
Observation of Atmospheric Chemistry Over Japan The Observation of Atmospheric Methane Over Japan The Observation of Atmospheric Sulfur Hexafluoride Over Japan (Japan)	Michio Hirota	Geochemical Research Department, Meteorological Research Institute 1-1, Nagamine, Tsukuba, Ibaraki 305-0052, Japan
Alligator liberty, M/V Keifu Maru, R/V Kofu Maru, R/V Ryofu Maru, R/V (Japan)	Shu Saito	Marine Division, Global Environment and Marine Department, Japan Meteorological Agency (JMA) 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan
Pacific Ocean (New Zealand)	Sylvia Nichol	National Institute of Water & Atmospheric Research Ltd. 301 Evans Bay Parade, Greta Point, Private Bag 14-901, Kilbirnie, Wellington, New Zealand
	Gordon Brailsford	National Institute of Water & Atmospheric Research Ltd. 301 Evans Bay Parade, Greta Point, Private Bag 14-901, Kilbirnie, Wellington, New Zealand

Station Country/Territory	Name	Address
Comprehensive Observation Network for TRace gases by AIrLiner (CONTRAIL) over the Pacific Ocean 20-50 km off the coast of the Sendai plain over Japan between Sendai and Fukuoka (Japan)	Taku Umezawa	Max Planck Institute for Chemistry Atmospheric Chemistry Department
	Shuji Aoki	Center for Atmospheric and Oceanic Studies, Graduate School of Science, Tohoku University
Soyo Maru, R/V Wakataka-Maru (Japan)	Tsuneo Ono	Hokkaido National Fisheries Research Institute 116 Katsurakoi, Kushiro 085-0802, Japan
Aircraft Observation of Atmospheric trace gases by JMA (Japan)	Yukio Fukuyama	Atmospheric Environment Division, Global Environment and Marine Department, Japan Meteorological Agency (JMA) 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan

Station	Name	Address
Country/Territory		
NOAA/ESRL Flask N	etwork	
A 1	D 11 1 **	(*)NOAA/EGDI GILLIM III DIII
Assekrem (Algeria)	Bruce Vaughn** James White**	(*)NOAA/ESRL Global Monitoring Division 325 Broadway R/GMD1 Boulder, CO 80305-3328,
(Algeria)	$(^{13}\text{CH}_4, ^{13}\text{CO}_2 \text{ and } \text{C}^{18}\text{O}_2)$	U.S.A.
Tierra del Fuego	(- , ,	
(Argentina)	Jocelyn Turnbull (¹⁴ CO ₂)	(**)Institute of Arctic and Alpine Research (INSTAAR) INSTAAR, Univ. of Colorado
Cape Grim	,	1560, 30th Street
(Australia)	Edward J.Dlugokencky* (CH ₄)	UCB 450 Boulder, CO 80309
Ragged Point		U.S.A.
(Barbados)	Paul C. Novelli* (CO and H ₂)	
Arembepe		
Natal	Thomas J. Conway*	
(Brazil)	(CO_2)	
Alert	Bruce Vaughn**	
Lac La Biche	$(N_2O \text{ and } SF_6)$	
Mould Bay	,	
(Canada)	Detlev Helmig** Jacques Hueber**	
Easter Island	(VOCs)	
(Chile)		
Lulin		
Shangdianzi		
Mt. Waliguan		
(China)		
Summit		
(Denmark)		
()		
Pallas-Sammaltunturi		
(Finland)		
Amsterdam Island		
Crozet		
(France)		
Hohenpeissenberg		
Ochsenkopf		
(Germany)		
Hegyhatsal		
(Hungary)		
Heimaey (Jacland)		
(Iceland)		
Bukit Koto Tabang		
(Indonesia)		

Station	Name	Address
Country/Territory	Name	Address
Mace Head		
(Ireland)		
Sede Boker		
(Israel)		
(ISI aci)		
Lampedusa		
(Italy)		
Syowa Station		
(Japan)		
Sary Taukum		
Plateau Assy		
(Kazakhstan)		
,		
Mt. Kenya		
(Kenya)		
Christmas Island		
(Kiribati)		
Kaashidhoo		
(Maldives)		
Dwejra Point		
(Malta)		
Mex High Altitude Global		
Climate Observation		
Center, Mexico		
(Mexico)		
,		
Ulaan Uul		
(Mongolia)		
Cababab		
Gobabeb (Namibia)		
(114411111114)		
Arrival Heights		
Baring Head		
Lauder		
Kaitorete Spit		
(New Zealand)		
Ocean Station "M"		
Zeppelinfjellet		
(Ny-Alesund)		
(Norway)		
Baltic Sea		
(Poland)		

	27		,
Station Country/Territory	Name	Address	
Terceira Island			
Pico, Azores			
(Portugal)			
Tae-ahn Peninsula			
(Republic of Korea)			
Black Sea			
(Romania)			
Mahe Island			
(Seychelles)			
Cape Point			
(South Africa)			
Izaña (Tenerife)			
(Spain)			
Ascension Island			
St. David's Head			
Tudor Hill			
Halley Bay			
Bird Island			
(United Kingdom of Great Britain and Northern			
Ireland)			
Akademik Korolev, R/V			
Argyle			
Atlantic Ocean			
St. Croix			
Barrow			
Cold Bay			
Cape Meares			
Discoverer 1983 & 1984,			
R/V			
Drake Passage			
Discoverer 1985, R/V			
Guam			
Grifton			

Station Country/Territory	Name	Address
John Biscoe, R/V		
Key Biscayne		
Korolev, R/V		
Kitt Peak		
Cape Kumukahi		
Park Falls		
Long Lines Expedition, R/V		
McMurdo Station		
Sand Island		
Mauna Loa		
Mexico Naval H-02, R/V		
Niwot Ridge (T-van)		
Niwot Ridge (Saddle)		
Oceanographer, R/V		
Olympic Peninsula		
Pacific-Atlantic Ocean		
Polar Star, R/V		
Pacific Ocean		
Palmer Station		
Point Arena		
South China Sea		
Southern Great Plains		
Shemya Island		
La Jolla		
Tutuila (Cape Matatula)		
South Pole		

Station Country/Territory	Name	Address					
Ocean Station Charlie							
Surveyor, R/V							
Trinidad Head							
Wendover							
West Branch							
Moody							
Western Pacific							
(United States of America)							
NOAA /EGDI /HAEG N	T. ()						
NOAA/ESRL/HATS N							
Tierra del Fuego (Argentina)	James W. Elkins Stephen A. Montzka	Halocarbons and Other Atmosphere Trace Species Group (HATS)/NOAA/ESRL Global Monitoring					
Cape Grim (Australia)	Geoffrey S. Dutton	Division 325 Broadway R/GMD1 Boulder, CO 80305-3328, U.S.A					
Alert (Canada)							
Summit (Denmark)							
Mace Head (Ireland)							
BACPAC 99							
BLAST1							
BLAST2							
BLAST3							
Barrow							
CLIVAR 01							
Gas Change Experiment							
Harvard Forest							
HATS Ocean Projects							

Station Country/Territory	Name	Address
Grifton		
Cape Kumukahi		
Park Falls		
Mauna Loa		
Niwot Ridge (C-1)		
PHASE I-04		
Palmer Station		
Tutuila (Cape Matatula)		
South Pole		
Trinidad Head		
(United States of America)		
NOAA/ESRL Surface	Ozone Network	
Ragged Point (Barbados)	Audra McClure-Begley Irina Petropavlovskikh	NOAA/ESRL Global Monitoring Division 325 Broadway, R/GMD1, Boulder, CO 80305, U.S.A
Summit (Denmark)		
Heimaey (Iceland)		
Arrival Heights Lauder (New Zealand)		
Tudor Hill (United Kingdom of Great Britain and Northern Ireland)		
Barrow		
McMurdo Station		
Mauna Loa		
Niwot Ridge (C-1)		
Niwot Ridge (Saddle)		

Station Country/Territory	Name	Address
Tutuila (Cape Matatula)		
South Pole		
Trinidad Head		
Moody		
(United States of America)		

Station	Name	Address	
Country/Territory			

CSIRO Flask Network

Aircraft (over Bass Strait and Cape Grim)
Cape Ferguson
Cape Grim
Casey Station
Gunn Point
Mawson
Macquarie Island

Paul Krummel
Paul Steele
Ray Langenfelds
Marcel van der Schoot
Colin Allison

Commonwealth Scientific and Industrial Research Organisation (CSIRO) CSIRO Marine and Atmospheric Research

Aspendale, Vic, Australia 3195

Private Bag 1

Alert

Estevan Point (Canada)

(Australia)

Cape Rama (India)

Shetland

(United Kingdom of Great Britain and Northern

Ireland)

Mauna Loa South Pole

(Ireland)

(Italy)

Monte Cimone

Zeppelinfjellet (Ny-Alesund) (Norway)

(United States of America)

ALE/GAGE/AGAGE Network

 $\begin{array}{ccc} \text{Cape Grim} & \text{Stefan Reimann} \\ & & \text{Paul Krummel} \\ & & \text{Paul Steele} \\ \text{Ragged Point} & \text{Prof. Michela Maione} \\ & \text{(Barbados)} & \text{Simon O'Doherty} \\ & & \text{Jgor Arduini} \\ \text{Adrigole} & \text{Ray Wang} \\ \text{Mace Head} & \text{Ray F. Weiss} \\ \end{array}$

School of Earth and Atmospheric Sciences, Georgia Institute of Technology

311 Ferst Drive School of Earth and Atmospheric Sciences Georgia Institute of Technology Atlanta, GA 30332-0340, U.S.A

50552-0540, C.S.I

Jungfraujoch (Switzerland)

Station	Name	Address	
Country/Territory			

Cape Meares Tutuila (Cape Matatula) Trinidad Head (United States of America)

GLOSSARY

ATMOSPHERIC SPECIES:

CCl₄ tetrachloromethane (carbon tetrachloride)

C₂Cl₄ tetrachloroethylene

CFC-11 chlorofluorocarbon-11 (trichlorofluoromethane, CCl₃F) **CFC-12** chlorofluorocarbon-12 (dichlorodifluoromethane, CCl₂F₂)

CFC-113 chlorofluorocarbon-113 (1,1,2-trichlorotrifluoroethane, CCl₂FCClF₂)

CFCs chlorofluorocarbons

CH₄ methane

CHBr₃ tribromomethane (bromoform)

CH₂Br₂ dibromomethane CH₃Br bromomethane

CH₃CCl₃ 1,1,1-trichloroethane (methyl chloroform)

CHCl₃ trichloromethane (chloroform)

CH₂Cl₂ dichloromethane (methylene chloride) CH₃Cl chloromethane (methyl chloride)

C₂HCl₃ trichloroethylene CO carbon monoxide CO₂ carbon dioxide H₂ hydrogen

Halon-1211 chlorodifluorobromomethane (CBrClF₂)

Halon-1301 bromotrifluoromethane (CBrF₃)

HCFC-141b hydrochlorofluorocarbon-141b (1,1-dichloro-1-fluoroethane, CH₃CCl₂F) hydrochlorofluorocarbon-142b (1,1-difluoro-1-chloroethane, CH₃CClF₂)

HCFC-22 hydrochlorofluorocarbon-22 (chlorodifluoromethane, CHClF₂)

HCFCs hydrochlorofluorocarbons

HFC-134a hydrofluorocarbon-134a (1,1,1,2-tetrafluoroethane, CH₂FCF₃) **HFC-152a** hydrofluorocarbon-152a (1,1-difluoroethane, CHF₂CH₃)

HFCs hydrofluorocarbons

N₂O nitrous oxide

NO nitrogen monoxide NO₂ nitrogen dioxide NO_X nitrogen oxides

 O_3 ozone

PAN peroxyacyl nitrate PFCs perfluorocarbons

Rn radon

SF₆ sulphur hexafluoride
 SO₂ sulphur dioxide
 TIC total inorganic carbon
 VOCs volatile organic compounds

UNITS:

ppmparts per millionppbparts per billionpptparts per trillion

Others:

ENSO El Niño-Southern Oscillation

M/V merchant vessel R/V research vessel

LIST OF WMO/WDCGG PUBLICATIONS

DATA REPORTING MANUAL:

WDCGG No. 1 January 1991

WMO WDCGG DATA REPORT:

(period of data accepted)

			(I			. /	
WDCGG No. 2 Part A	October	1992	October	1990	\sim	August	1992
WDCGG No. 2 Part B	October	1992	October	1990	\sim	August	1992
WDCGG No. 3	October	1993	September	1992	~	March	1993
WDCGG No. 5	March	1994	April	1993	~	September	1993
WDCGG No. 6	September	1994	September	1993	~	March	1994
WDCGG No. 7	March	1995	April	1994	~	December	1994
WDCGG No. 9	September	1995	January	1995	~	June	1995
WDCGG No.10	March	1996	July	1995	~	December	1995
WDCGG No.11	September	1996	January	1996	~	June	1996
WDCGG No.12	March	1997	July	1996	~	November	1996
WDCGG No.14	September	1997	December	1996	~	June	1997
WDCGG No.16	March	1998	July	1997	~	December	1997
WDCGG No.17	September	1998	January	1998	~	June	1998
WDCGG No.18	March	1999	July	1998	~	December	1998
WDCGG No.20	September	1999	January	1999	\sim	June	1999
WDCGG No.21	March	2000	July	1999	\sim	December	1999
WDCGG No.23	September	2000	January	2000	~	June	2000
WDCGG No.25	March	2001	July	2000	\sim	December	2000

WMO WDCGG DATA CATALOGUE:

WDCGG No. 4	December	1993
WDCGG No.13	March	1997
WDCGG No.19	March	1999
WDCGG No 24	March	2001

WMO WDCGG DATA SUMMARY:

WDCGG No. 8	October	1995
	Octobel	
WDCGG No.15	March	1998
WDCGG No.22	March	2000
WDCGG No.26	March	2002
WDCGG No.27	March	2003
WDCGG No.28	March	2004
WDCGG No.29	March	2005
WDCGG No.30	March	2006
WDCGG No.31	March	2007
WDCGG No.32	March	2008
WDCGG No.33	March	2009
WDCGG No.34	March	2010
WDCGG No.35	March	2011
WDCGG No.36	March	2012
WDCGG No.37	March	2013
WDCGG No.38	March	2014
WDCGG No.39	March	2015

WMO WDCGG CD-ROM:

(period of data accepted)

CD-ROM No. 1	March	1995	October	1990	\sim	December	1994
CD-ROM No. 2	March	1996	October	1990	~	June	1995
CD-ROM No. 3	March	1997	October	1990	~	June	1996

CD-ROM No. 4	March	1998	October	1990	~	December	1997
CD-ROM No. 5	March	1999	October	1990	\sim	December	1998
CD-ROM No. 6	March	2000	October	1990	~	December	1999
CD-ROM No. 7	March	2001	October	1990	~	December	2000
CD-ROM No. 8	March	2002	October	1990	\sim	January	2002
CD-ROM No. 9	March	2003	October	1990	\sim	December	2002
CD-ROM No.10	March	2004	October	1990	\sim	December	2003
CD-ROM No.11	March	2005	October	1990	~	December	2004
CD-ROM No.12	March	2006	October	1990	~	December	2005
CD-ROM No.13	March	2007	October	1990	~	November	2006
CD-ROM No.14	March	2008	October	1990	~	November	2007
WMO WDCGG DV	D:		(period	of data	acc	epted)	
DVD No. 1	March	2009	October	1990	~	November	2008
DVD No. 2	March	2010	October	1990	~	November	2009
DVD No. 3	March	2011	October	1990	~	November	2010
DVD No. 4	March	2012	October	1990	~	November	2011
DVD No. 5	March	2013	October	1990	~	November	2012
DVD No. 6	March	2014	October	1990	~	November	2013
DVD No. 7	March	2015	October	1990	~	November	2014