WORLD METEOROLOGICAL ORGANIZATION

GLOBAL ATMOSPHERE WATCH

WORLD DATA CENTRE FOR GREENHOUSE GASES

WMO WDCGG DATA SUMMARY

WDCGG No. 37

GAW DATA

Volume IV-Greenhouse Gases and Other Atmospheric Gases

PUBLISHED BY JAPAN METEOROLOGICAL AGENCY IN CO-OPERATION WITH WORLD METEOROLOGICAL ORGANIZATION

MARCH 2013

Acknowledgements

This issue of *Data Summary* reports the latest status of greenhouse and some reactive gases in the global atmosphere. This *Data Summary* has been prepared by the World Data Centre for Greenhouse Gases (WDCGG), established under the Global Atmosphere Watch (GAW) Programme of the World Meteorological Organization (WMO) and operated by the Japan Meteorological Agency (JMA). This *Data Summary* is based on the data submitted by many contributors worldwide (Appendix: LIST OF CONTRIBUTORS). These contributors include both organizations and individuals involved in observations and research of greenhouse and some reactive gases at stations and laboratories operating within the framework of GAW and some other monitoring and research programmes. The WDCGG thanks all of these organizations and individuals, including those from the global air sampling network of the National Oceanic and Atmospheric Administration (NOAA), for their efforts in maintaining the observation programme and continuous provision of observational data. Not all of the contributors may be explicitly acknowledged in this publication, owing to lack of space, but all the organizations and individuals that have submitted data to the WDCGG are nevertheless here acknowledged as invaluable contributors to this latest issue of *Data Summary*.

	Page
SUMMARY	1
1. INTRODUCTION	5
2. ANALYSIS	7
3. CARBON DIOXIDE	9
4. METHANE	17
5. NITROUS OXIDE	23
6. HALOCARBONS AND OTHER HALOGENATED SPECIES	27
7. SURFACE OZONE	33
8. CARBON MONOXIDE	37
9. NITROGEN MONOXIDE AND NITROGEN DIOXIDE	43
10. SULPHUR DIOXIDE	47
11. VOLATILE ORGANIC COMPOUNDS	51
REFERENCES	55
APPENDICES	59
CALIBRATION AND STANDARD SCALES	60
LIST OF ABBREVIATIONS IN THE CALIBLATION AND STANDARD SCALES	71
LIST OF OBSERVATIONAL STATIONS	73
LIST OF CONTRIBUTORS	85
GLOSSARY	109

LIST OF WMO/ WDCGG PUBLICATIONS

111

CONTENTS

SUMMARY

This *Data Summary* reports the results of basic analyses of greenhouse and some reactive gas data submitted to the WMO World Data Centre for Greenhouse Gases (WDCGG) by contributing organizations and individuals. This issue covers observations from 1968 through 2011, based on data reported to the WDCGG by October 2012. The *Data Summary* includes analyses of global, hemispheric and latitudinal monthly mean mole fractions of greenhouse and some reactive gases, and provides current information on the state of mole fractions of these gases.

Although only monthly mean mole fractions were used for the analyses, the WDCGG greatly appreciates those stations that submit daily and hourly mean mole fractions, which are important for analysis of variations on shorter time scales. All data submitted to the WDCGG are available on its web site, http://ds.data.jma.go.jp/gmd/wdcgg/. Please note that WDCGG website has moved to the new address in February 2012.

To represent dry mole fractions, this *Data Summary* uses the units ppm, ppb and ppt, which correspond to the SI units of mixing ratio µmol/mol, nmol/mol and pmol/mol, respectively.

Variations in the mole fractions of some gases are presented as combinations of seasonal cycles and deseasonalized long-term trends. Growth rates are presented as time derivatives of the long-term trends. For the first time global average mole fractions are presented with accompanying uncertainty. The analytical results are summarized below for each greenhouse and reactive gas.

Carbon Dioxide (CO₂)

The level of carbon dioxide (CO₂), which contributes the most to increases in anthropogenic induced radiative forcing, has been increasing since the beginning of the industrial era. The global average mole fraction of CO₂ reached a new high of 390.9 ± 0.1 ppm in 2011, which constitute 140% of the pre-industrial level (in 1750). The annual average increase of 2.0 ppm from 2010 to 2011 was larger than the average of yearly increases for the 1990s (about 1.5 ppm/year) and the same as that of the past decade (about 2.0 ppm/year.).

The global growth rate of CO_2 has a significant interannual variability driven by natural processes. Growth rates higher than 2 ppm/year in 1987/1988, 1997/1998, 2002/2003 and 2009/2010 resulted from warmer conditions caused by El Niño-Southern Oscillation (ENSO) events. The anomalously strong El Niño event in 1997/1998 resulted in greater annual increases in CO_2 worldwide in 1998 than during any other one-year period. The high growth rate in 2006 may have been related to the global high temperature during the same year. The exceptionally low growth rate in 1992, including negative values in northern high latitudes, may have been due to low global temperatures following the eruption of Mount Pinatubo in 1991. Variations in CO_2 mole fraction can be seen both on seasonal and long-term scales. The seasonal amplitudes are large in northern high and mid-latitudes and small in the Southern Hemisphere. In southern low latitudes, there is no clear annual cycle, but a semiannual cycle can be determined.

Methane (CH₄)

Methane (CH₄) is the second most significant greenhouse gas which is largely influenced by anthropogenic activity and whose level has been increasing since the beginning of the industrial era. The annual average mole fraction was 1813 ± 2 ppb in 2011, an increase of 5 ppb since 2010. The mole fraction is now 259% of that in the pre-industrial period. This is the fifth year of marked methane increases since levelling-off at the beginning of this century.

The latitudinal gradient of CH_4 mole fraction is large from the northern mid-latitudes to the tropics, suggesting that the major sources of CH_4 are located in the Northern Hemisphere.

CH₄ growth rates decreased significantly in some years, including 1992, when negative values were recorded in northern high and mid-latitudes. However, both hemispheres experienced high growth rates in 1998, caused by an exceptionally high global mean temperature. The global growth rates were generally low from 1999 to 2006, except during the El Niño event of 2002/2003. The global growth rate averaged over the period 1984–1990 was 11.5 ppb/year, but decreased markedly in the 1990s. The average global growth rate for the period 2001-2011 was 3.2 ppb/year, but in the last five years through 2011, the global mole fraction increased by a total of 29 ppb.

 CH_4 mole fractions vary seasonally, being relatively high in winter and low in summer. Unlike CO_2 , the seasonal amplitudes of CH_4 are large, not only in the Northern Hemisphere but also in southern high and mid-latitudes which are associated with methane sinks. In southern low latitudes, a distinct secondary maximum in boreal winter overlies the annual cycle.

Nitrous Oxide (N₂O)

Nitrous oxide (N_2O) is an important greenhouse gas whose level is increasing globally. N_2O data submitted to the WDCGG show that mole fractions are increasing in both hemispheres. The global mean mole fraction reached a new high of 324.2 ± 0.1 ppb in 2011, 1.0 ppb higher than that in the previous year. This mole fraction corresponds to 120% of that in the pre-industrial period. The mean growth rate of the global mean mole fraction over the period 2001-2011 was 0.78 ppb/year and the inter-hemispheric gradient in N₂O is 1.1 ppb (averaged over the years 1980 to 2010), indicating that majority of N₂O sources are situated in the Northern hemisphere.

Halocarbons and Other Halogenated Species

Halocarbons, most of which are anthropogenic and generated from 20th century, are potent greenhouse gases, with some also acting as ozone-depleting compounds. Levels of some halocarbons (e.g. CFCs) increased in the 1970s and 1980s, but this increase has almost ceased by now, due to the production and consumption control of halocarbons under the Montreal Protocol on Substances that Deplete the Ozone Layer and its subsequent Adjustments and Amendments. However, some substances targeted by the Kyoto Protocol but not regulated by the Montreal Protocol, such as HFCs and SF₆, are increasing.

The mole fraction of CFC-11 peaked around 1992 and then started decreasing. The mole fraction of CFC-12 increased until around 2005 and then started decreasing gradually. The mole fraction of CFC-113 stopped increasing in the 1990s, followed by a slight decrease over the last decade. The mole fractions of HCFCs, used mainly as substitutes for CFCs, have increased significantly during the last decade, but the growth of HCFC-141b decelerated rapidly in the second half of the decade. The mole fraction of Halon-1211 has not increased since 2005, whereas the mole fraction of Halon-1301 is increasing. The mole fraction of CCl₄ was maximal around 1991 and has since decreased slowly. The mole fraction of CH₃CCl₃ peaked around 1992 and decreased thereafter. The mole fractions of HFC-134a, HFC-152a and SF₆ are increasing.

Surface Ozone (O₃)

Ozone (O_3) plays important roles in the atmospheric environment through radiative and chemical processes. It absorbs solar UV radiation in the stratosphere, influencing the vertical temperature profile as well as terrestrial IR radiation, and contributing to the greenhouse effect as a greenhouse gas. Ozone is also involved in the chemical transformations of the primary air pollutants, as its mole fraction in the boundary layer serves as an indicator of air quality.

The mole fraction of O_3 near the surface, so-called surface ozone, reflects various processes. While some of the O_3 in the troposphere comes from the stratosphere, the rest is chemically produced in the troposphere through oxidation of CO or hydrocarbons in the presence of NO_x .

The mole fraction of surface ozone is measured at many locations in various environments. Continuous ozone observations are reported mostly as wet mole fraction. Due to uneven geographic distribution of surface ozone, it is difficult to identify its global long-term trend (WMO, 2011b).

Carbon Monoxide (CO)

Carbon monoxide (CO) is not a greenhouse gas itself but influences the mole fractions of greenhouse gases by affecting hydroxyl radicals (OH). Beginning in 1950, the CO mole fraction increased at a rate of 1% per year but started to decrease in the late 1980s (WMO, 1999). In 2011, the global mean mole fraction of CO was about 89 ppb. The mole fraction is high in the Northern Hemisphere and low in the Southern Hemisphere, suggesting substantial anthropogenic emissions in the Northern Hemisphere.

There is a large interannual variability of CO growth rates. The growth rate increases are usually attributed to biomass burnings emissions associated with El Niño events.

The monthly mean mole fractions show seasonal variations, with large amplitudes in the Northern Hemisphere and small amplitudes in the Southern Hemisphere with opposite phase.

Nitrogen Monoxide (NO) and Nitrogen Dioxide (NO₂)

Nitrogen oxides (NO_x, i.e., NO and NO₂) are not greenhouse gases, but they are involved in the photochemical production of ozone in the troposphere. In the presence of NO_x, CO and hydrocarbons are oxidized to produce ozone (O₃), which affects the Earth's radiative balance as a greenhouse gas and the oxidization capacity of the atmosphere by reproducing OH.

Most of the stations that have so far reported NO_x data to the WDCGG are located in Europe. NO_x has a large temporal and spatial variability, and it is difficult to identify its long-term global trend based on a spatially limited dataset.

Sulphur Dioxide (SO₂)

Sulphur dioxide (SO_2) is not a greenhouse gas but a precursor of atmospheric sulphate aerosols. Sulphate aerosols are produced by SO_2 oxidation through photochemical gas-to-particle conversion. SO_2 has also been a major source of acid rain and deposition throughout the industrial era.

Most of the stations reporting SO_2 data to the WDCGG are located in Europe, and it is difficult to identify its long-term global trend based on a spatially limited dataset.

Volatile Organic Compounds (VOCs)

Volatile organic compounds (VOCs) are organic chemicals that easily evaporate or sublimate at ordinary atmospheric temperatures. Many are in the form of non-methane hydrocarbons (NMHCs) of different complexity including aliphatics and aromatics which dominate anthropogenic emissions, and unsaturated molecules including terpenes which dominate natural emissions. They also exist as oxygenated hydrocarbons such as acetone and methanol, and sulphur-containing molecules such as dimethyl sulphide.

Although they are not important greenhouse gases in themselves, they do influence many other environmental issues of relevance to GAW, including ozone production and by acting as precursors to aerosols. Their main interest to GAW is as tracers of the processes which either produce or destroy other major species measured by GAW and an example is given in chapter 11 of how ethane measurements increase understanding of the behaviour of methane.

As a GAW world data centre for reactive gases as well as GHGs, WDCGG records 53 individual species of VOCs as of February 2013. Within this record a subset of gases which are widespread throughout the global atmosphere has been selected as a focus for the GAW VOC Programme. Temporal coverage of VOC measurements is growing extensively in the last decade with a global flask network having been in operation for the last eight years supplementing the longer series of measurements made at a few continental sites.

In this 37th edition of the WDCGG *Data Summary*, a new chapter for VOCs is provided with the support of GAW Scientific Advisory Group on Reactive Gases (SAG RG). A global analysis is performed for ethane with its relatively long lifetime and wide measurement network.

Ethane mole fractions are relatively high in winter and low in summer. The seasonal amplitudes are large in northern high and mid-latitudes but very small in the southern latitudes. Observed seasonal differences are connected with photochemical processes, whereas hemispheric differences indicate the majority of ethane sources in northern latitudes.

Analysis of other VOC species is taking place and will be presented at a later date.

1. INTRODUCTION

Human activities have had major impacts on the global environment. Since the beginning of the industrial era, mankind has increasingly made use of land, water, minerals and other natural resources, and continuous growth of the world human population and economies may further increase our impact on the environment. As the climate, biogeochemical processes and natural ecosystems are closely interlinked, changes in any one of these may affect the others and be detrimental to humans and other organisms. Emissions of man-made gaseous species and particulate matter alter the energy balance of the atmosphere, which in turn has implications for the multiple interactions within the complex Earth's system. These interactions are not fully understood, partly due to the lack of high quality observations.

The World Meteorological Organization (WMO) established the Global Atmosphere Watch (GAW) Programme in 1989 to promote systematic and reliable observations of the global environment, including but not limited to greenhouse gases (e.g., CO2, CH4, CFCs, and N_2O) and some reactive gases (e.g., O_3 , CO, VOCs, NO_x , and SO₂) in the atmosphere. In October 1990, WMO designated the Japan Meteorological Agency (JMA) in Tokyo to serve as the World Data Centre for Greenhouse Gases (WDCGG). The WDCGG is responsible for collecting, archiving and providing data on greenhouse and reactive gases in the atmosphere and oceans from a number of observational sites throughout the world that participate in GAW and other scientific monitoring programmes (Appendix: LIST OF OBSERVATIONAL STATIONS). In August 2002, the WDCGG took over the role of the World Data Centre for Surface Ozone from the Norwegian Institute for Air Research (NILU).

With regard to the issue of climate change the Kyoto Protocol to the United Nations Framework Convention on Climate Change came into force in February 2005. In March 2006, WMO commenced annual publication of the WMO Greenhouse Gas Bulletin, which summarizes the state of greenhouse gases in the atmosphere. The eighth issue of the Bulletin was published in November 2012. The WDCGG contributes to the production of the Bulletin through timely and adequate collection and analysis of data in cooperation with the contributors of the data.

Since its establishment, the WDCGG has provided its users with data and other information through its regular publications, including the Data Summary and DVD (Appendix: LIST OF WMO WDCGG PUBLICATIONS). In accordance with the GAW Strategic Plan: (2008-2015) and its Addendum, all data and information have been made available on the WDCGG web site, improving the accessibility of data, information and products (WMO, 2007a; WMO, 2011a). The WDCGG published the Data Submission and Dissemination Guide in 2007 (WMO, 2007b), which,

with its revision in 2009 (WMO, 2009b), is designed to facilitate submission of observational data and provide access to archived data in the WDCGG Clear guidelines of the data submission are included in the measurement guidelines published by GAW for the variables, which are under responsibility of WDCGG

The GAW Strategic Plan requests that World Data Centres assist data users by providing the data and analysis related to atmospheric observations. To this end, the WDCGG provides global and integrated diagnostics on the state of greenhouse and some reactive gases as analytical information in the *Data Summary*. The WDCGG global analysis method has been described in a GAW technical report (WMO, 2009a). The content of the *Data Summary* is revised and improved based on comments from data contributors and scientists. We hope the diagnostic information presented here will promote the use of data on greenhouse and reactive gases and will enhance appreciation of the value of the GAW Programme.

All users are required to accept the following statement endorsed by the Commission for Atmospheric Sciences (CAS) at its thirteenth session: "For scientific purposes, access to these data is unlimited and provided without charge. By their use you accept that an offer of co-authorship will be made through personal contact with the data providers or owners whenever substantial use is made of their data. In all cases, an acknowledgement must be made to the data providers or owners and to the data centre when these data are used within a publication." The WDCGG requests data users to make appropriate The principal investigators and acknowledgements. other contacts can be obtained from the WDCGG website, as well as from the GAW Station Information System (GAWSIS) website, http://gaw.empa.ch/gawsis/. Information on these websites is updated in cooperation with the data contributors and the WMO Secretariat.

Finally, the WDCGG would like to thank all data contributors worldwide, including those involved in on-site measurements, for their efforts in maintaining the observational programme and for continuous data provision.

Mailing address:

WMO World Data Centre for Greenhouse Gases		
(WDCG	G)	
c/o Japar	Meteorological Agency	
1-3-4, (Dtemachi, Chiyoda-ku, Tokyo 100-8122,	
Japan		
E-mail:	wdcgg@met.kishou.go.jp	
Telephone:	+81-3-3287-3439	
Facsimile:	+81-3-3211-4640	
Web Site:	http://ds.data.jma.go.jp/gmd/wdcgg/	

2. ANALYSIS

The WDCGG reposits, archives and provides observational data on the mole fractions of greenhouse and some reactive gases, and publishes diagnostic information on these gases based on the reported data.

The long-term trends and seasonal variations in the mole fractions of CO_2 , CH_4 and CO are calculated for the whole globe (global means) and for latitudinal belts (zonal means). Only global and hemispheric long-term trends are calculated for N₂O. Global long-term trends in the surface O₃, are not analysed due to its substantial spatial gradients, and its uneven geographic distribution which is poorly covered by observational sites. For halocarbons, NO_x and SO₂, only monthly mean mole fractions over time are presented without global, hemispheric or zonal averaging, due to insufficient number of reporting sites for each compound.

The units used in these analyses are ppm, ppb, and ppt, rather than the SI units for mixing ratios of µmol/mol, nmol/mol, and pmol/mol, respectively.

The method of analysis for CO₂, CH₄, CO and N₂O is summarized below. The details of the global analysis method for CO₂, CH₄, and N₂O are provided in the *Technical Report of Global Analysis Method for Major Greenhouse Gases by the World Data Centre* for Greenhouse Gases, published as a GAW technical report (WMO, 2009a). Additional uncertainty can be expected in the result of CO global analysis due to diversity of scales. When assessing long-term trends for CO₂, CH₄ and N₂O, the growth rates at both ends of the period were assumed to be simple linear extensions of the adjacent year, thus avoiding end effects. For simplicity, the rates for the rest of the period were approximated by linear expressions.

(1) Site selection

For CO₂, CH₄ and N₂O, the diagnostic analyses, including global, hemispheric and zonal means, were based on data from sites that have adopted a standard scale traceable to the Primary Standard designated by WMO. These analyses also utilize data on other standard scales that are convertible to the WMO scale through a proven equation. Letters informing data submitters of the most recent WMO scales are sent out regularly by the WDCGG as well as discussed at the regular expert meetings (WMO, 2012).

Selection of observational sites is also based on whether they provide data representing a reasonably large geographical area, considering the fact that some sites may be susceptible to local sources and sinks. Sites are selected objectively using data submitted to the WDCGG. For CO₂, CH₄ and CO, only those sites that provide annual mean mole fractions falling within a range of $\pm 3\sigma$ from a curve fitted to the LOESS model curve (Cleveland and Devlin, 1988) have been selected, with outliers rejected in an iterative manner. This procedure does not affect the datasets residing in the WDCGG, and these data may be useful for purposes other than global analysis, such as identification of sources and sinks.

The sites selected according to the above criteria are marked with asterisks in Plate 3.1 for CO_2 , Plate 4.1 for CH_4 , Plate 5.1 for N_2O and Plate 8.1 for CO, which represent 135, 127, 53 and 121 of the submitted datasets respectively (detailed in 'LIST OF OBSERNATIONAL STATIONS' in this issue).

(2) Analysis of long-term trends

The mole fractions of greenhouse and reactive gases over time, measured under unpolluted conditions, exhibit variations on different time scales. The two major components are seasonal variations and long-term trends. Various attempts have been made separate these variability scales from the measured data, including objective curve fitting (Keeling *et al.*, 1989), digital filtering (Thoning *et al.*, 1989; Nakazawa *et al.*, 1991), or both (Conway *et al.*, 1994; Dlugokencky *et al.*, 1994).

In this report, seasonal variations derived from components of Fourier harmonics and long-term trends are extracted by low-pass filtering with a cut-off frequency of 0.48 year⁻¹ for each selected site. Details are described in WDCGG *Data Summary* No. 22 (WMO, 2000).

(3) Estimation for missing periods and gaps

The number and distribution of sites used to assess trends during the analysis period should be kept as invariable as possible to avoid the effects of changes in the availability of data over time. However, only a small number of sites provided data throughout the entire analysis period; others may have covered shorter periods or had gaps in measurements due to different reasons. To use as many sites as possible, missing values are filled using interpolation and extrapolation for the calculation of zonal means as described below.

Existing gaps in some data were interpolated linearly based on the other data, by subtracting the seasonal variation calculated from the longest consecutive period of data with Lanczos filters (Duchon, 1979). The subtracted variation was added back to the data to obtain estimated mole fractions in a single sequence.

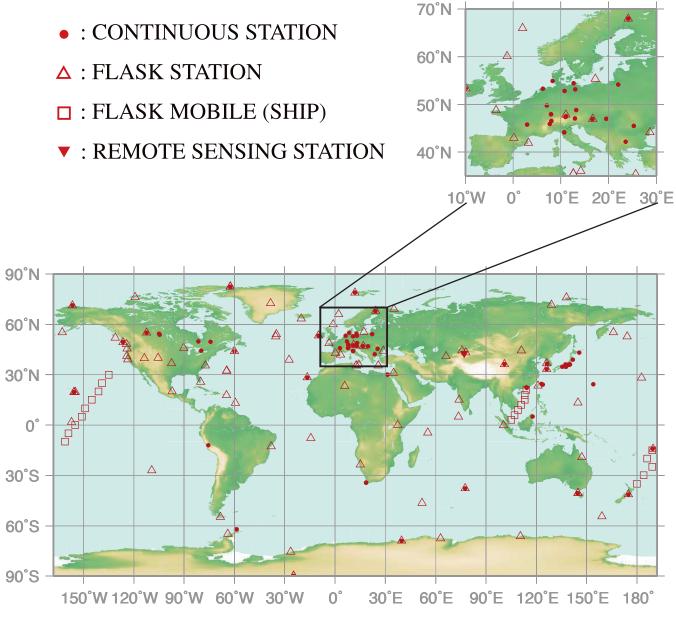
In the case of extrapolation, long-term trends from the existing or interpolated series of data were extrapolated based on zonal mean growth rates calculated from other sites in the same latitudinal zone. The seasonal variation was added to the extrapolated long-term trend to obtain estimated mole fractions for the entire period of analysis.

Using these statistical procedures, the future addition of new stations should not affect the consistency in global estimates over time.

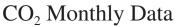
Nevertheless, while adding new sites in the analysis WDCGG performs calculations with/without new information to ensure the consistence of the global average calculations.

(4) Calculation of global, hemispheric and zonal means

Zonal means were calculated by determining the arithmetic average of the mole fractions in each latitudinal zone, based on consistent datasets derived as above.


Global and hemispheric means were calculated as the weighted averages of the zonal means taking account of the area of each latitudinal zone.

Deseasonalized long-term trends and growth rates for the globe, each hemisphere and each latitudinal zone were calculated from the global, hemispheric and zonal means, respectively, using the low-pass filter mentioned above and the time derivatives after filtering.


Error ranges estimated by a bootstrap method (Conway *et al.*, 1994) are attached to the global means of major GHGs (CO₂, CH₄ and N₂O), where uncertainty is estimated as the standard deviation of many global means calculated by each bootstrap network.

CARBON DIOXIDE (CO₂)

3.

This map shows locations of the stations that have submitted data for monthly mean mole fraction.

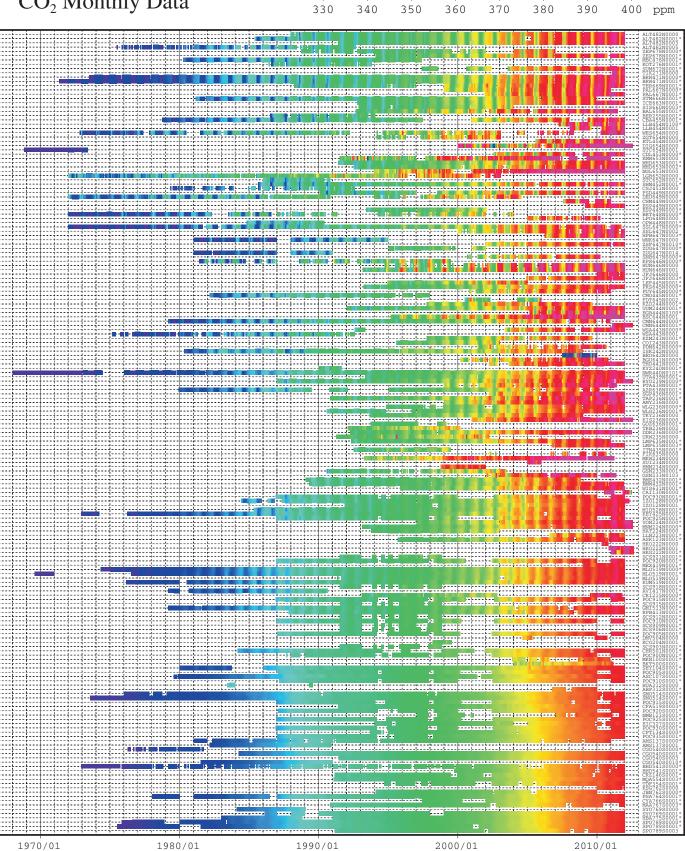
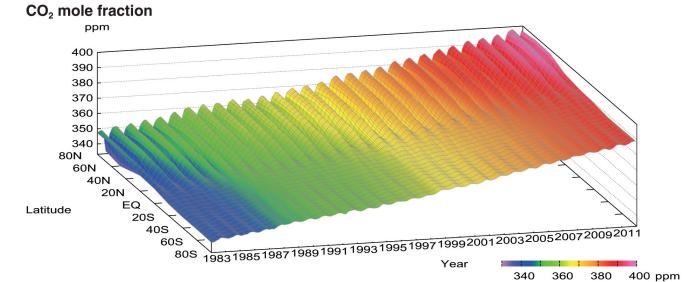
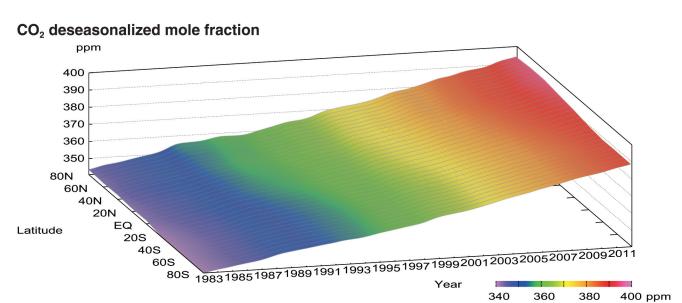
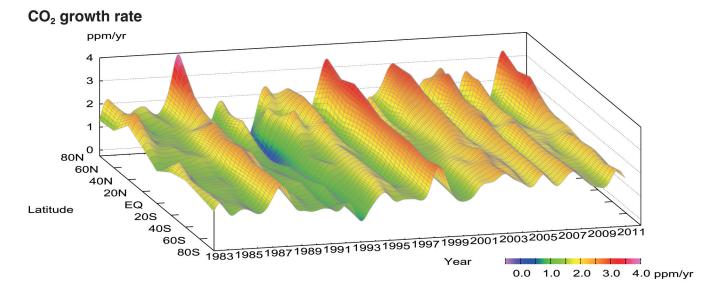





Plate 3.1 Monthly mean CO₂ mole fractions that have been reported to the WDCGG. The mole fractions are illustrated in different colours. The sites are listed in order from north to south. In the case where data are reported for two or three different altitudes, only the data at the highest altitudes are illustrated. In the case where monthly means are not reported, the WDCGG calculates them from hourly or other mole fractions reported to the WDCGG by simple arithmetic mean. The data from the sites with an asterisk at the end of the station index are used for the analysis shown in Plate 3.2. (see Chapter 2)

Plate 3.2 Variation of zonally averaged monthly mean CO_2 mole fractions (top), deseasonalized long-term trends (middle), and growth rates (bottom). The zonally averaged mole fractions are calculated for each 20° zone. The deseasonalized trends and growth rates are derived as described in Chapter 2.

3. CARBON DIOXIDE (CO₂)

Basic information on CO₂ with regard to environmental issues

Carbon dioxide (CO₂) has strong absorption bands in the infrared region and is the biggest anthropogenic contributor to the greenhouse effect. CO₂ accounts for about 64% of total increase in the radiative forcing (since 1750) due to long-lived greenhouse gases in the atmosphere (WMO, 2012). It is responsible for 85% of the increase in radiative forcing over the past decade and 81% over the past five years.

The balance of the fluxes between the atmosphere, the oceans and the biosphere determines the mole fraction of CO_2 in the atmosphere. About 762 gigatonnes of carbon are present in the atmosphere as CO₂ (IPCC, 2007) and annual anthropogenic emissions mainly due to fossil fuel combustion reached 9.1±0.5 gigatonnes in 2010 (http://www.globalcarbonproject.org/). Carbon in the atmosphere is exchanged with two other large reservoirs, the terrestrial biosphere and the oceans. CO_2 exchanges between the atmosphere and terrestrial biosphere occur mainly through absorption by photosynthesis and emission from the respiration of plants and the decomposition of organic soils. These biogenic activities vary seasonally, resulting in large seasonal variations in the level of CO₂. The direction of CO_2 exchange between the atmosphere and oceans is determined by the gradient of CO₂ mole fraction, and varies in time and space.

The current mole fractions of atmospheric CO₂ far exceed historic records, dating back 650,000 years (Solomon et al., 2007). Based on the results of ice core studies, the mole fraction of atmospheric CO_2 in pre-industrial times was about 280 ppm (IPCC, 2007). The emission of CO_2 due to human activities has increased dramatically since the beginning of the industrial era, impacting CO2 exchange rates between different reservoirs and CO2 levels not only in the atmosphere but in the oceans and terrestrial biosphere. The global carbon cycle, which is comprised mainly of CO₂, is not fully understood. About half of anthropogenic CO₂ emissions have remained in the atmosphere, with the remainder removed by sinks, including the terrestrial biosphere and oceans. However, the amount of CO2 removed from the atmosphere varies significantly over time (Figure 3.1).

Carbon isotopic studies have shown the importance of the terrestrial biosphere and oceans as sources and sinks of CO₂ (Francey *et al.*, 1995; Keeling *et al.*, 1995; and Nakazawa *et al.*, 1993, 1997). In contrast, the atmospheric content of O₂ depends primarily on its removal by the burning of fossil fuels and on its release from the terrestrial biosphere. Therefore, the uptake of carbon by the terrestrial biosphere and oceans can be estimated from the combination of measurements of O_2 (O_2/N_2) and CO_2 (Manning and Keeling, 2006). A quasi-equilibrium amount of CO_2 is expected to be retained in the atmosphere by the end of the millennium that is surprisingly large: typically 40% of the peak concentration enhancement over preindustrial values (280 ppm) (Solomon *et al.*, 2009).

Large amounts of CO_2 are exchanged among the reservoirs in nature, and the global carbon cycle is coupled with the climate system on seasonal, yearly and decadal time scales. Complete understanding of the global carbon cycle is essential for estimating future CO_2 mole fractions in the atmosphere.

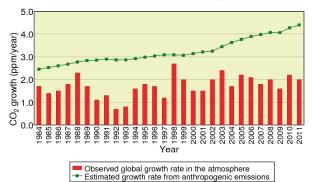


Fig. 3.1 Annual mean growth rates of CO₂ in the atmosphere, calculated from observational data (red columns) and from data for anthropogenic emissions (green curve). The estimated growth rates were calculated using CO₂ emissions as a proxy (from CDIAC, Boden et al., 2012). The values from 2010 to 2011 is quick estimation of Carbon Dioxide Information Analysis Center (CDIAC), expressed as moles divided by the total mass of gas in the atmosphere (5.2 petatonnes) converted to moles based on the mean molar weight of air (about 29). The observed growth rates were calculated by the WDCGG. The observational CO2 abundance is expressed as mole fraction with respect to dry air, while the CO₂ amount calculated from anthropogenic emissions is based on the atmosphere, including water vapor, usually in a fraction less than 1%.

Mole fractions of CO₂ can be analyzed utilizing data submitted to the WDCGG from fixed stations and some ships. The observational sites from which data were used for the analysis are shown on the map at the beginning of this chapter. They include fixed stations performing continuous measurements as well as flask-sampling stations, including those in the NOAA/ESRL cooperative air sampling network. In addition, mobile platforms as ships and aircraft and other stations observing on an event basis report their data to the WDCGG (see Appendix: LIST OF OBSERVATIONAL STATIONS), which are not used for global analysis.

Annual variation of CO₂ mole fraction in the atmosphere

The monthly mean mole fractions of CO₂ used in the analysis are shown in Plate 3.1, with mole fraction levels illustrated in different colours. Global. hemispheric and zonal mean mole fractions were analysed based on data from selected stations under unpolluted conditions (see the caption to Plate 3.1). Latitudinally averaged mole fractions of atmospheric CO₂, together with their deseasonalized components and growth rates, are shown as three-dimensional representations in Plate 3.2. These plots show that the seasonal variations in mole fraction are large in northern high and mid-latitudes, but are indistinct in the Southern Hemisphere. The increases in the Northern Hemisphere precede those in the Southern Hemisphere by one or two years, and the interannual variations in growth rate are larger in the Northern Hemisphere.

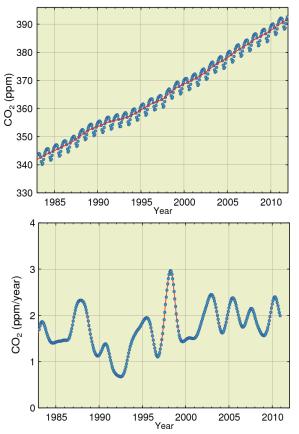


Fig. 3.2 Global monthly mean mole fraction of CO_2 from 1983 to 2011, including deseasonalized long-term trend shown as a red line (top) and annual growth rate (bottom).

Figure 3.2 shows global monthly mean CO_2 mole fractions and their growth rates from 1983 to 2011. The global average mole fraction reached a new high of 390.9±0.1^{*} ppm in 2011, which is 140% of the pre-industrial level of 280 ppm. The 2.0 ppm annual increase in 2010 - 2011 was larger than the average yearly increase for the 1990s (about 1.5 ppm/year) and the same as that of the past decade (about 2.0 ppm/year).

The global growth rate shows large interannual variations, with an instantaneous maximum of about 3 ppm/year in 1998 and a minimum below 1 ppm/year in 1992. There were short periods of high rates in 1987/1988, 1997/1998, 2002/2003, 2005/2006, 2007 and 2009/2010.

Figure 3.3 shows monthly mean mole fractions and long-term trends from 1983 to 2011 for each 30° latitudinal zone, indicating that there were clear long-term increases in both hemispheres and seasonal variations in the Northern Hemisphere.

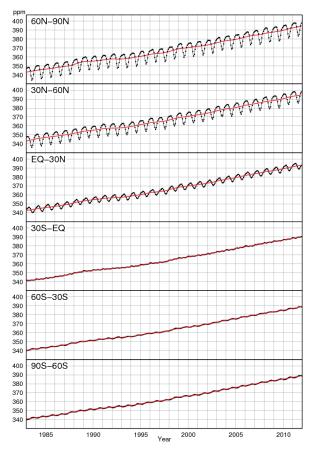


Fig. 3.3 Monthly mean mole fractions of CO_2 from 1983 to 2011 for each 30° latitudinal zone (dots) and their deseasonalized long-term trends (red lines).

^{*} Indicated error ranges were calculated using the bootstrap method by reference to Conway *et al.* (1994).

As shown in Figure 3.4, the growth rates for each 30° latitudinal zone fluctuated between -0.3 and 3.6 ppm/year, with the largest interannual variability in northern high latitudes. High growth rates for all 30° latitudinal zones were observed in 1987/1988, 1997/1998, 2002/2003, 2005, 2007, and 2010, with negative rates recorded in northern high latitudes in 1992.

Changes in growth rate are partly associated with El Niño-Southern Oscillation (ENSO). The El Niño events in 1982/1983, 1986–1988, 1991/1992, 1997/1998 and 2002/2003 coincided with high growth rates of CO₂, with an exception in 1992. The growth rates of CO₂ observed by aircraft at high altitudes (8–13 km) over the Pacific Ocean were also associated with ENSO (Matsueda *et al.*, 2002). The latest El Niño event occurred in 2009/2010.

During El Niño events, the up-welling of CO₂-rich ocean water in the eastern equatorial Pacific is suppressed, resulting in reduced CO₂ emissions from this area. In contrast, El Niño events induce high temperature anomalies in many areas, particularly in the tropics, resulting in increased CO₂ emissions from the terrestrial biosphere due to the enhanced respiration of plants and activated decomposition of organic matter in soil (Keeling et al., 1995). This effect is enhanced by the suppression of plant photosynthesis in areas of anomalously low precipitation, particularly in the tropics. These oceanic and terrestrial processes during El Niño events have opposing effects, but Heimann and Reichstein (2008) suggested that the latter was the main cause of the variation in the CO₂ growth rate.

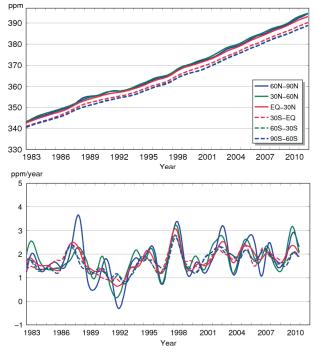


Fig. 3.4 Long-term trends in the mole fraction of CO_2 for each 30° latitudinal zone (top) and their growth rates (bottom).

However, an exceptionally low CO₂ growth rate occurred during the El Niño event in 1991/1992. The injection of 14 - 20 megatonnes (Mt) of SO₂ aerosols into the stratosphere by the Mount Pinatubo eruption in June 1991 affected the radiation budget and atmospheric circulation (Hansen et al., 1992; Stenchikov et al., 2002), resulting in a drop in global temperature. Angert et al. (2004) suggested that the low CO₂ growth rate observed during this El Niño event was due to reduced CO₂ emissions caused by consequent changes in the respiration of terrestrial vegetation and the decomposition of organic matter (Conway et al., 1994; Lambert et al., 1995; Rayner et al., 1999), and by enhanced CO_2 absorption due to intensive photosynthesis caused by an increase in diffuse radiation (Gu et al., 2003).

Seasonal cycle of CO₂ mole fraction in the atmosphere

Figure 3.5 shows average seasonal cycles in the mole fraction of CO_2 for each 30° latitudinal zone. The seasonal cycles are clearly large in amplitude in northern high and mid-latitudes and small in the Southern Hemisphere. The seasonal cycle in the Northern Hemisphere is mainly dominated by the land biosphere (Nevison *et al.*, 2008), and it is characterized by rapid decreases from June to August and large returns from September to December.

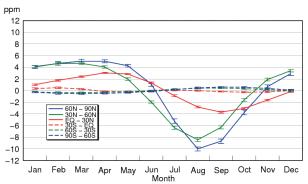


Fig. 3.5 Average seasonal cycles in the mole fraction of CO_2 for each 30° latitudinal zone obtained by subtracting long-term trends from the zonal mean time series. Vertical error bars represent the range of $\pm 1\sigma$ which is calculated for each month.

The mole fractions of CO_2 in northern low latitudes lagged behind that in high latitudes by one or two months. Minimum values appeared in August in northern high and mid-latitudes and in September in northern low latitudes.

In the Southern Hemisphere, seasonal variations showed small amplitudes with a half-year delay due to small amounts of net emission and absorption by the terrestrial biosphere. Seasonal variations in both northern and southern mid-latitudes were apparently superimposed in southern low latitudes $(0-30^{\circ}S)$. The direct influence of sources and sinks in the Southern Hemisphere may be partially cancelled by the propagation of an antiphase variation from the Northern Hemisphere.

Figure 3.6 shows latitudinal distributions of the mole fractions of CO_2 in January, April, July and October 2011, from sites marked with an asterisk in Plate 3.1. In latitudes north of 30°N, the mole fractions increased towards higher latitudes in January and April, and decreased towards higher latitudes in July, corresponding to the large seasonal variations in northern high and mid-latitudes, variations associated with activities of the terrestrial biosphere.

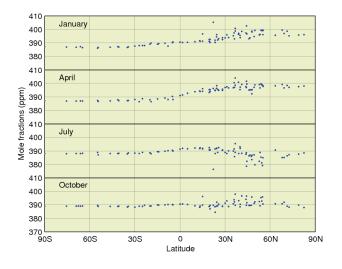
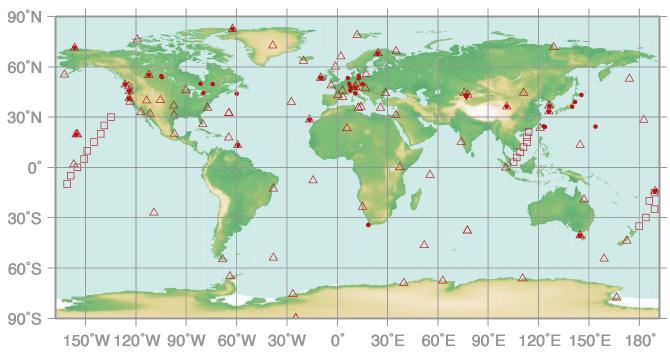
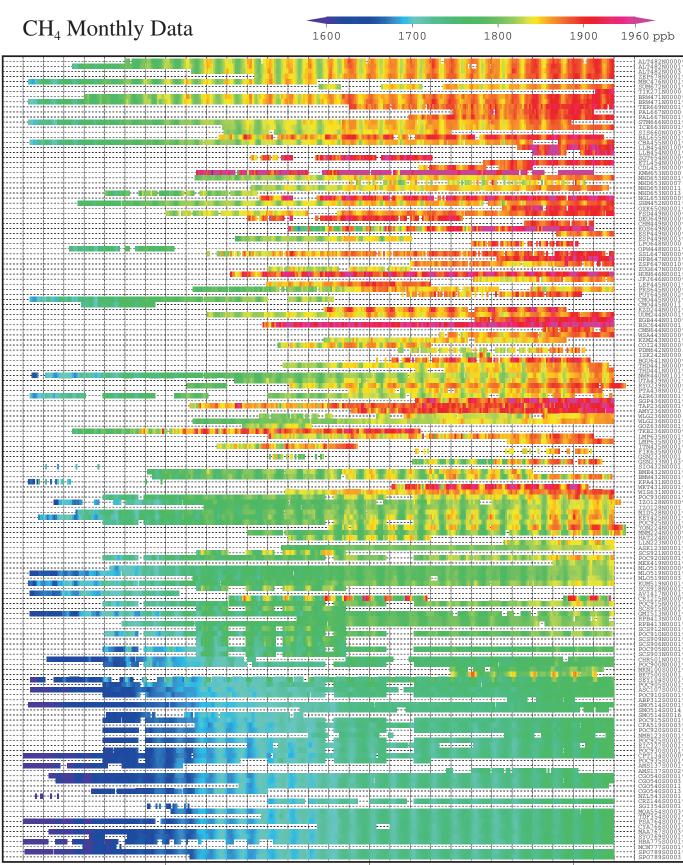



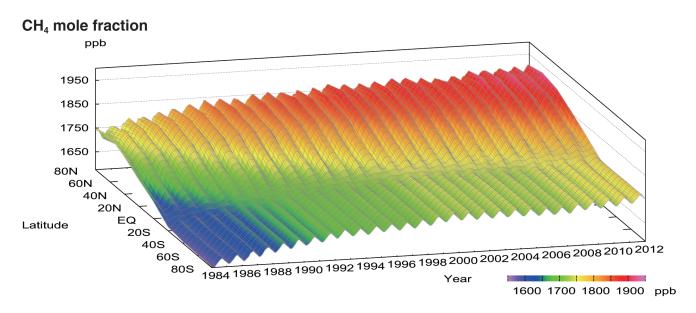
Fig. 3.6 Latitudinal distributions of the monthly mean mole fractions of CO_2 in January, April, July and October 2011.

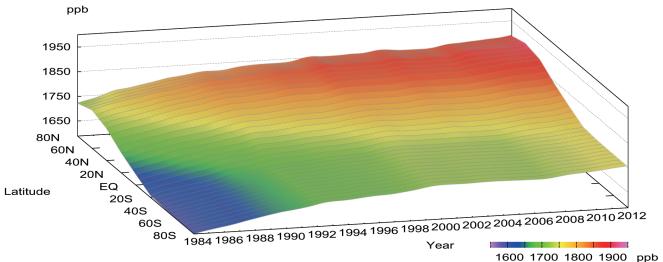

4. METHANE

(CH₄)

- : CONTINUOUS STATION
- △ : FLASK STATION
- □ : FLASK MOBILE (SHIP)
- ▼ : REMOTE SENSING STATION

This map shows locations of the stations that have submitted data for monthly mean mole fraction.




2000/01

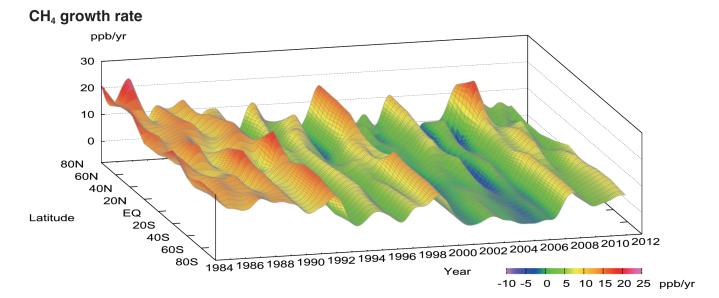

2010/01

Plate 4.1 Monthly mean CH_4 mole fractions that have been reported to the WDCGG. The mole fractions are illustrated in different colours. The sites are listed in order from north to south. In the case where data are reported for two or three different altitudes, only the data at the highest altitudes are illustrated. In the case where monthly means are not reported, the WDCGG calculates them from hourly or other mole fractions reported to the WDCGG by simple arithmetic mean. The data from the sites with an asterisk at the end of the station index are used for the analysis shown in Plate 4.2. (see Chapter 2)

Plate 4.2 Variation of zonally averaged monthly mean CH_4 mole fractions (top), deseasonalized long-term trends (middle), and growth rates (bottom). The zonally averaged mole fractions are calculated for each 20° zone. The deseasonalized trends and growth rates are derived as described in Chapter 2.

4. METHANE (CH₄)

Basic information on CH₄ with regard to environmental issues

Methane (CH₄) is the second most important anthropogenic greenhouse gas, with an estimated global warming potential per molecule 25 times greater over a 100 year horizon and 72 times greater over a 20 years horizon than CO₂. Between 1750 and 2011, CH₄ accounted for about 18% of the total increase in radiative forcing due to long-lived greenhouse gases in the atmosphere (WMO, 2012).

Analyses of air trapped in ice cores from Antarctica and the Arctic revealed that the current atmospheric CH₄ mole fraction is the highest it has been over the last 650,000 years (Solomon et al., 2007). The mole fraction of CH₄ remained at about 700 ppb from 1000 A.D. until the start of the industrial era when it started increasing. Measurements in ice cores have shown that interpolar differences in CH₄ mole fractions between Greenland and Antarctica ranged from 24 to 58 ppb between 1000 and 1800 A.D. (Etheridge et al., 1998). However, this difference determined by comparison of the averaged mole fraction over the years 1984 to 2011 in the northern high and southern high latitudinal belts (see Fig. 4.3) has reached the value of 135 ppb. Increase of interpolar gradient reflects the dominant impact of the emissions from the Northern Hemisphere, where major anthropogenic and natural sources are situated.

CH₄ is emitted by both natural and anthropogenic sources, including natural wetlands, oceans, landfills, rice paddies, enteric fermentation, fossil fuel production and consumption and biomass burning. Denman et al. (2007) estimated the global emission of CH₄ was 582 teragrams (Tg) CH₄ per year, with more than 60% related to anthropogenic activities. CH₄ is removed from the atmosphere by reaction with hydroxyl radicals (OH) in both the troposphere and stratosphere, and by reaction with chlorine atoms and $O(^{1}D)$, an excited state of oxygen, in the stratosphere. CH₄ is one of the most important sources of water vapour in the stratosphere and has an atmospheric lifetime of about 10 years. More information regarding sources and sinks of CH₄ must be collected to better understand the budget of atmospheric CH₄.

Mole fractions of CH_4 are analysed using data submitted to the WDCGG from fixed stations and some ships. These observational sites are shown on the map at the beginning of this chapter.

Annual variation of CH₄ mole fraction in the atmosphere

The monthly mean dry mole fractions of CH_4 used in this analysis are shown in Plate 4.1, with the mole fraction levels illustrated in different colours. Global, hemispheric and zonal mean mole fractions have been calculated based on data from selected stations under unpolluted conditions (see the caption for Plate 4.1). Latitudinally averaged atmospheric CH₄ mole fractions, together with their deseasonalized components and growth rates, are shown as three-dimensional representations in Plate 4.2. These plots show that the seasonal variations in CH₄ mole fraction are larger in the Northern than in the Southern Hemisphere and that the increase in the Northern Hemisphere propagates to the Southern Hemisphere. The growth rates vary on a global scale with the patterns similar to those for CO_2 (see Section 3). There is a large latitudinal gradient in CH₄ mole fraction from the northern mid-latitudes to the tropics, suggesting major sinks in the tropics, where the mole fraction of OH radicals is higher.

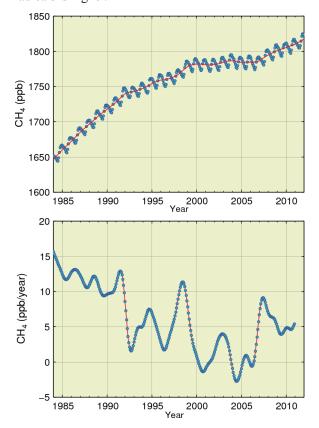


Fig. 4.1 Global monthly mean mole fraction of CH_4 from 1984 to 2011, including deseasonalized long-term trend in red line (top) and annual growth rate (bottom).

Figure 4.1 shows global monthly mean mole fractions and the global growth rates for CH_4 from 1984 to 2011. The global average mole fraction was $1813\pm2^*$ ppb in 2011, an increase of 5 ppb from 2010. The mole fraction did not change much between 1999 and 2006. The average growth rate over the period 2001 - 2011 was 3.2 ppb/year. The current mole fraction is 259% of its preindustrial level of 700 ppb.

Figure 4.2 shows monthly mean mole fractions from 1984 to 2011 for each 30° latitudinal zone. The smallest magnitude of the seasonal variations is registered in the latitudinal zone between the equator and 30°S.

Fig. 4.2 Monthly mean mole fractions of CH_4 from 1984 to 2011 for each 30° latitudinal zone (dots) and their deseasonalized long-term trends (red lines).

Figure 4.3 summarizes deseasonalized long-term trends for each 30° latitudinal zone and their growth rates. As it is the most distinctly seen in the deseasonalized long-term trends, a latitudinal gradient between the northern high and mid-latitudes with higher mole fractions and the southern latitudes with lower mole fractions is clearly pronounced, while mole fractions in most latitudinal belts have similar tendency.

In the 1990s, the growth rates clearly decreased in all latitudinal zones, while remaining positive nevertheless. The declined growth rate was especially evident during the second half of 1992, in 1996, and almost even in 1999 and in 2004/2005, when growth rates were less than 5 ppb/year in all latitudes. In 1998, the global growth rate increased to about 11 ppb/year (Fig. 4.1). Maximum increases occurred in northern high and mid-latitudes, where the growth rates were over 15 ppb/year. In 2000 and 2001, the global growth rate decreased to around -1 ppb/year. Around 2002/2003, the growth rates increased in the Northern Hemisphere, especially in northern high and mid-latitudes where they reached about 10 ppb/year. The global growth rate was -3 ppb/year in 2004 and 1 ppb/year in 2005. Despite the large growth rates in 1998 and 2002/2003, during El Niño events, the global mean mole fraction was relatively stable between 1999 and 2006. However, the global mean mole fraction increased by a total of 29 ppb in the five years since 2007.

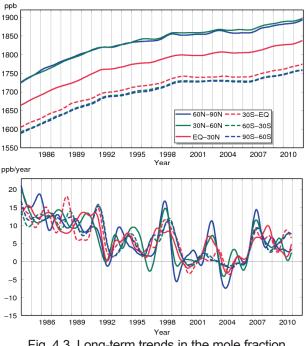


Fig. 4.3 Long-term trends in the mole fraction of CH_4 for each 30° latitudinal zone (top) and their growth rates (bottom).

The large increase in CH_4 growth rate in 1991 may have been caused by decreased levels of OH radicals in the atmosphere due to reduced UV radiation resulting from the eruption of Mount Pinatubo in 1991 (Dlugokencky *et al.*, 1996), and the subsequent decrease in 1992 may have been due to an increase in OH radicals resulting from the depletion of stratospheric ozone following this eruption (Bekki *et al.*, 1994).

^{*} Indicated error ranges were calculated using the bootstrap method by reference to Conway *et al.* (1994).

In 1998, the growth rates were high in all latitudes, which may have been due to increased emissions in northern high latitudes and tropical wetlands caused by high temperatures and increased precipitation, as well as by biomass burning in boreal forests, mainly in Siberia (Dlugokencky *et al.*, 2001). In contrast, Morimoto *et al.* (2006) estimated from isotope observations that the contribution of biomass burning to the increase in 1998 was about half that of wetlands. The growth rates were low from 1999 to 2006, with an exception during the El Niño event of 2002/2003. The causes of these decreases and increases again in CH₄ growth rates are being discussed (see chapter 11 (VOCs)).

Since 2007, atmospheric CH_4 has increased significantly throughout the entire monitoring network (Rigby *et al.*, 2008; Dlugokencky *et al.*, 2009). Although these increases may have been caused by emissions from natural sources in northern latitudes and the tropics, the reasons for renewed methane growth are not fully understood (WMO, 2012).

The WMO/GAW observational network includes the observations of carbon stable isotopes in methane, with 19 datasets submitted to the WDCGG. Such observations can be useful for the identification of primary methane sources.

Seasonal cycle of CH₄ mole fraction in the atmosphere

Figure 4.4 shows seasonal cycles in the mole fraction of CH₄ for each 30° latitudinal zone. The seasonal cycles are driven mainly by reaction with OH radicals, a major CH₄ sink in the atmosphere. Seasonal cycles are also affected by the magnitude and timing of CH₄ emissions from sources such as wetlands and biomass burning as well as by its atmospheric transport. The seasonal cycles are large in amplitude in the Northern Hemisphere. Unlike CO₂, amplitudes were also large in southern high and mid-latitudes. Seasonally, the Northern Hemisphere shows minima in summer and maxima in winter, while the Southern Hemisphere shows a seasonal cycle lagging two-thirds to three-quarter years behind. The seasonal variations in the mole fraction of CH₄ were almost consistent with those of the OH radical that reacts with CH₄. Southern low latitudes have a distinct antiphase annual component with that of the seasonal cycle arising from southern mid-latitudes. The maximum in the former component occurs in boreal winter due to the interhemisphere transportation of CH₄ from the Northern Hemisphere.

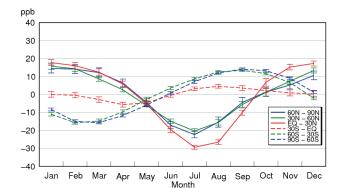
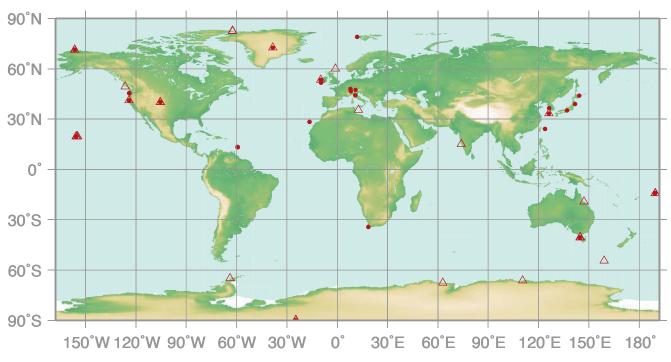
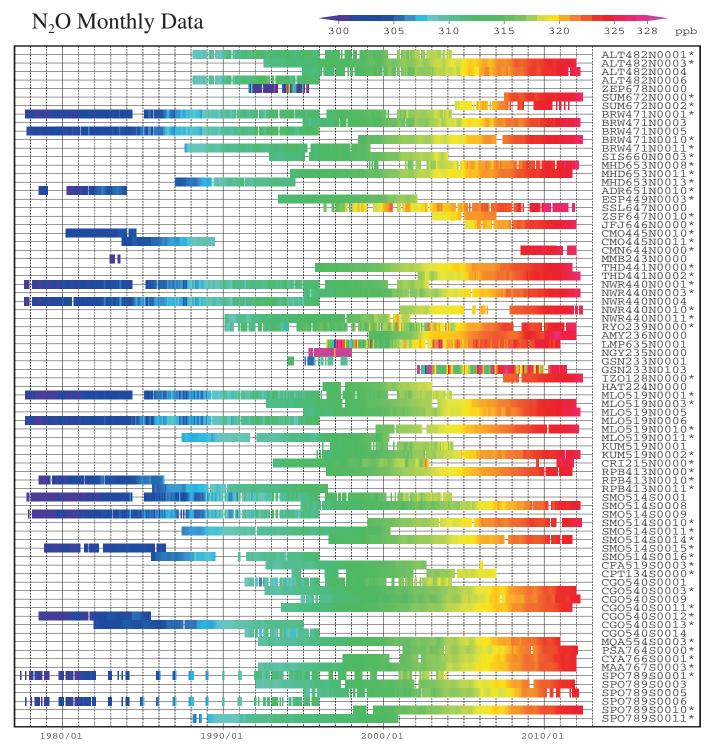
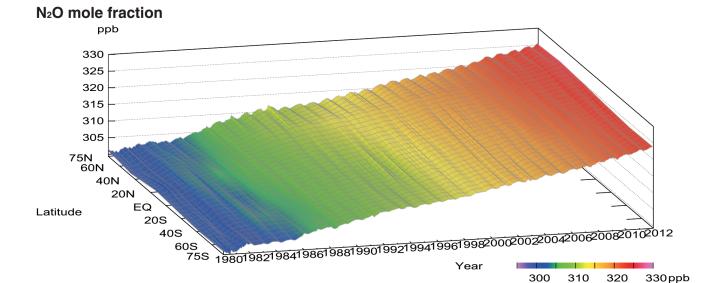
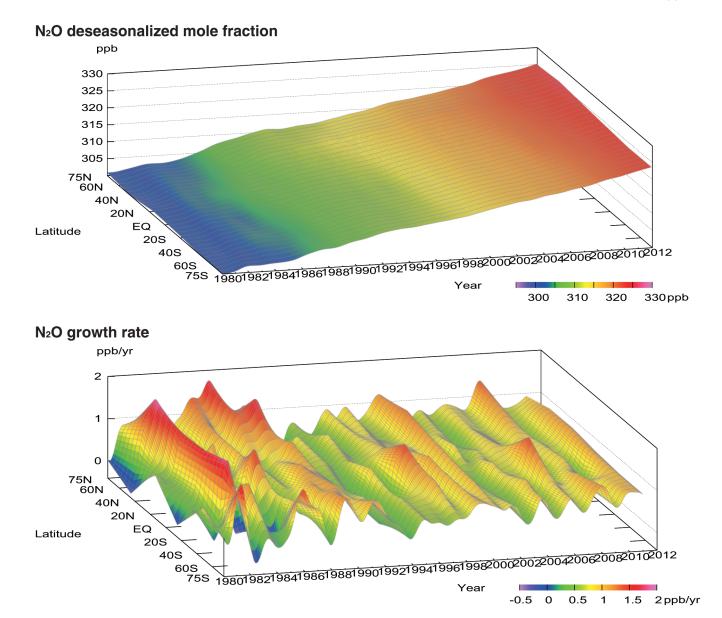



Fig. 4.4 Average seasonal cycles in the mole fraction of CH_4 for each 30° latitudinal zone obtained by subtracting long-term trends from the zonal mean time series. Vertical error bars represent the range of $\pm 1\sigma$ which is calculated for each month.


5. NITROUS OXIDE (N₂O)

• : CONTINUOUS STATION


△ : FLASK STATION



This map shows locations of the stations that have submitted data for monthly mean mole fraction.

Plate 5.1 Monthly mean N_2O mole fractions that have been reported to the WDCGG. The mole fractions are illustrated in different colours. The sites are listed in order from north to south. The data from the sites with an asterisk at the end of the station index are used for the analysis shown in Plate 5.2. (see Chapter 2)

Plate 5.2 Variation of zonally averaged monthly mean N_2O mole fractions (top), deseasonalized long-term trends (middle), and growth rates (bottom). The zonally averaged mole fractions are calculated for each 30° zone. The deseasonalized trends and growth rates are derived as described in Chapter 2.

5. NITROUS OXIDE (N_2O)

Basic information on N₂O with regard to environmental issues

Nitrous oxide (N_2O) is a relatively stable greenhouse gas in the troposphere with an "adjustment-time" of 114 years. Between 1750 and 2011, N₂O accounted for about 6 % of the total increase in radiative forcing due to long-lived greenhouse gases (WMO, 2012). N₂O is the third most important anthropogenic greenhouse gas in the atmosphere. The mole fraction of N₂O in the atmosphere has increased steadily from about 270 ppb in preindustrial times to its current value, which is 20% higher. N₂O is emitted into the atmosphere from natural and anthropogenic sources, including the oceans, soil, combustion of fuels, biomass burning, use of fertiliser and various industrial The amount of N₂O emitted into the processes. atmosphere by human activities is approximately equal to that derived from natural systems (oceans, chemical oxidation of ammonia in the atmosphere, and soils). Most of the anthropogenic N2O found in the atmosphere comes from the transformation of fertilizer nitrogen into N2O and its subsequent emission from agricultural soils. N₂O breaks down mainly by photo-dissociation in the stratosphere, forming nitrogen oxides that trigger ozone depleting reactions, so it can play more important role in ozone depletion in the future (Ravishankara et al., 2009). However, the cycling of N₂O in the global nitrogen cycle remains unclear.

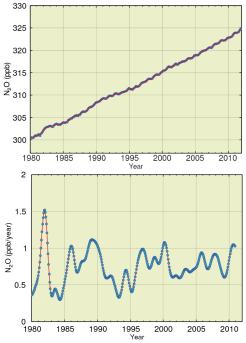
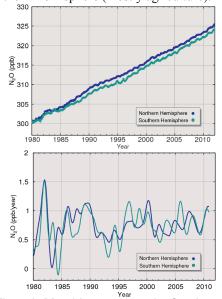
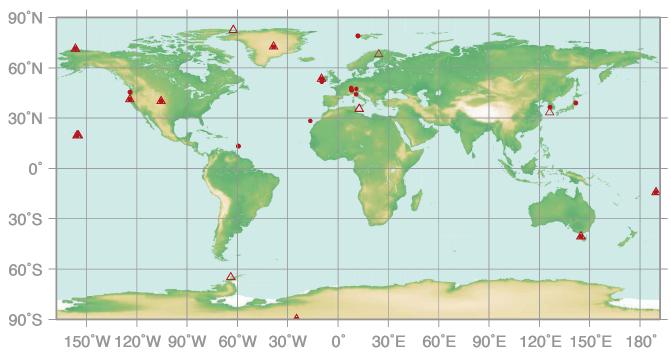


Fig. 5.1 Global monthly mean mole fraction of N_2O from 1980 to 2011, including deseasonalized long-term trend shown as a red line (top) and annual growth rate (bottom).

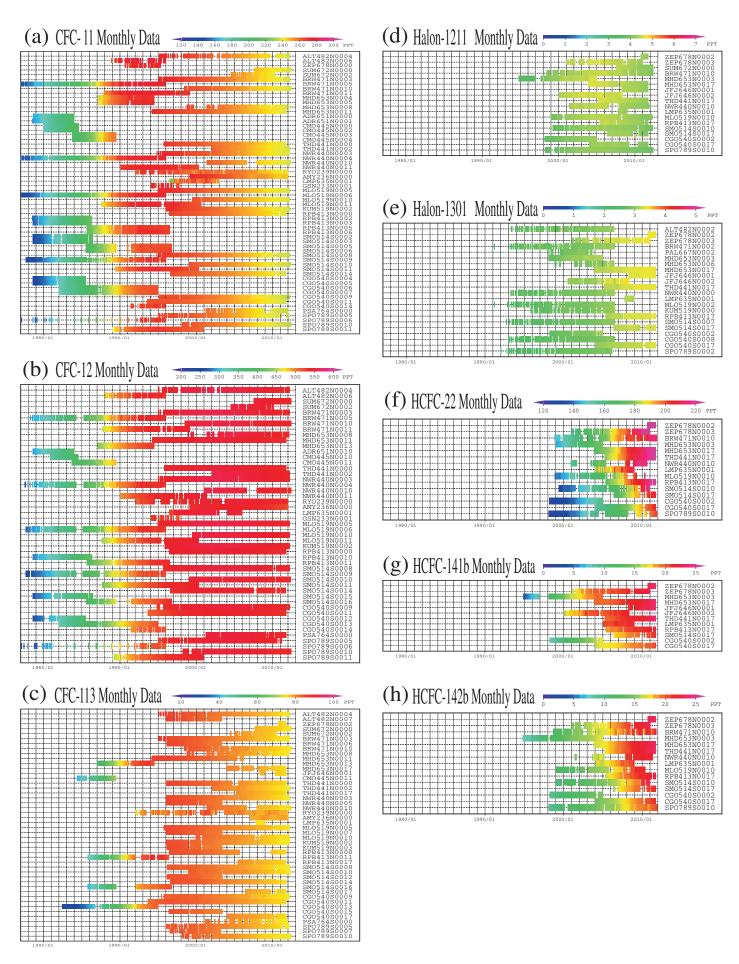
Long term trend of N₂O mole fraction in the atmosphere

Dry mole fractions of N₂O are analysed using the data submitted to the WDCGG from fixed stations and some ships. The observational sites that supplied data used for this analysis are shown on the map at the beginning of this chapter. The monthly mean mole fractions of N₂O used in the global analysis are shown in Plate 5.1, with the various mole fraction levels illustrated in different colours. The data submitted to the WDCGG show that N₂O mole fractions have increased at almost all stations. Latitudinally averaged atmospheric N₂O mole fractions, together with their deseasonalized components and growth rates, are shown as three-dimensional representations from 1980 to 2011 in Plate 5.2. Figure 5.1 shows global monthly mean N₂O mole fraction from 1980 to 2011 and its long-term trend. The global mean mole fraction reached a new high of $324.2\pm0.1^*$ ppb in 2011, an increase of 1.0 ppb over the previous year. The mean growth rate of the global mean mole fraction during the period 2001 to 2011 was 0.78 ppb/year. Atmospheric growth rate showed substantial variability (from 0.6 to 1.0 ppb/year) from the beginning of observations. Inter-hemispheric gradient in the mole fraction of N₂O averaged over the period 1980 - 2011 reaches 1.1 ppb (Figure 5.2 upper panel), indicating that the majority of N₂O sources are situated in the Northern Hemisphere (mostly agriculture).

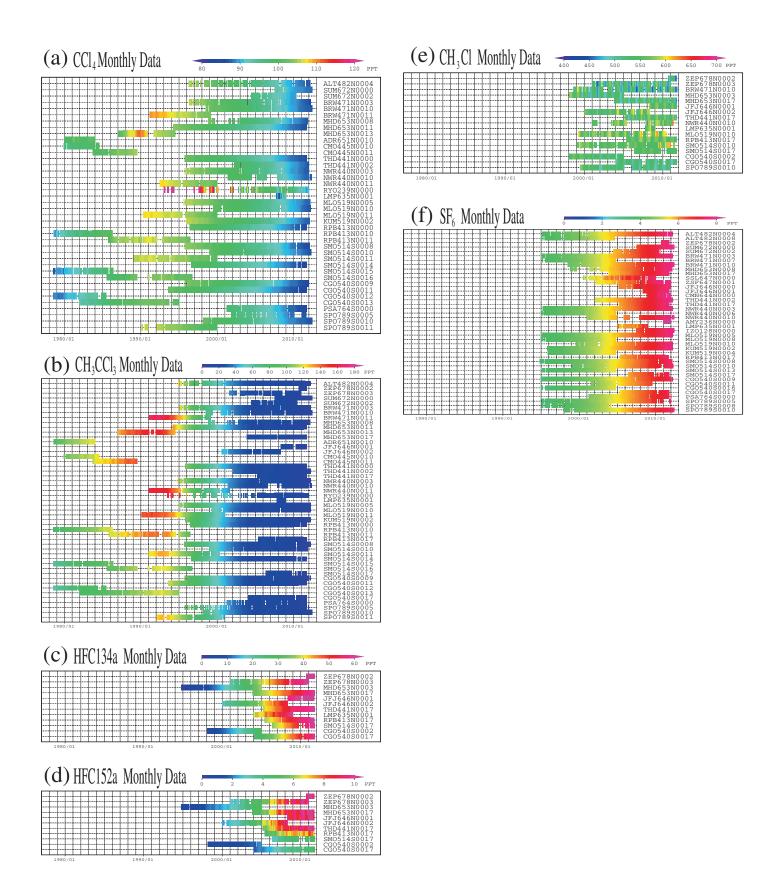



Fig. 5.2 Monthly mean mole fractions of N_2O from 1980 to 2011 (top) and annual growth rates (bottom), averaged over the Northern and Southern Hemispheres.

^{*} Indicated error ranges were calculated using the bootstrap method by reference to Conway *et al.* (1994).


HALOCARBONS AND OTHER HALOGENATED SPECIES

• : CONTINUOUS STATION


△ : FLASK STATION

This map shows locations of the stations that have submitted data for monthly mean mole fraction.

Plate 6.1 Monthly mean (a) CFC-11, (b) CFC-12, (c) CFC-113, (d) Halon-1211, (e) Halon-1301, (f) HCFC-22, (g) HCFC-141b, (h) HCFC-142b mole fractions that have been reported to the WDCGG. The mole fractions are illustrated in different colours. The sites are listed in order from north to south.

Plate 6.2 Monthly mean (a) CCl_4 , (b) CH_3CCl_3 , (c) HFC134a, (d) HFC152a, (e) CH_3Cl , (f) SF_6 mole fractions that have been reported to the WDCGG. The mole fractions are illustrated in different colours. The sites are listed in order from north to south.

6. HALOCARBONS AND OTHER HALOGENATED SPECIES

Basic information on halocarbons with regard to environmental issues

Halocarbons are carbon compounds containing one or more halogens, i.e., fluorine, chlorine, bromine or iodine, with most being industrial products. Halocarbons are classified into chlorofluorocarbons (CFCs), which contain fluorine and chlorine; the hydrochlorofluorocarbons (HCFCs), which contain hydrogen in addition to fluorine and chlorine; and the halons, which contain bromine and other halogens. Perfluorocarbons (PFCs) are carbon compounds in which all hydrogen atoms are replaced by fluorine atoms, and hydrofluorocarbons (HFCs) are halocarbons that contain hydrogen and fluorine but no chlorine. Sulphur hexafluoride (SF₆), although not a halocarbon, behaves similarly to halocarbons and is a potent long-lived greenhouse gas. Carbon tetrachloride (CCl_4) and methyl chloroform (CH_3CCl_3) are produced industrially, whereas methyl chloride (CH₃Cl) has natural sources. Although the mole fractions of the halocarbons are relatively low in the atmosphere, they have high global warming potentials. The halocarbons have been shown to account for about 12% of the total increase in radiative forcing due to long-lived greenhouse gases from 1750 to 2011 (WMO, 2012).

The halocarbons are colourless, odourless and innocuous substances that can be readily gasified and liquefied and have low surface tension. Thus, they were commonly used as refrigerants, propellants and detergents for semiconductors, resulting in a rapid increase in their mole fractions in the atmosphere until the mid-1980s. Halocarbons containing chlorine and bromine led to the depletion of the ozone layer. Since the mid-1990s, the Montreal Protocol on Substances that Deplete the Ozone Layer and its subsequent Adjustments and Amendments have progressively tightened the regulation of the production, consumption and trade of ozone-depleting substances.

The CFCs are destroyed mainly by ultraviolet radiation in the stratosphere, and their lifetimes are generally long (*e.g.*, about 50 years for CFC-11). However, the HCFCs and CH₃CCl₃, which contain hydrogen, react with hydroxyl radicals (OH) in the troposphere and have relatively short lifetimes (*e.g.*, about 5 years for CH₃CCl₃). As the reaction with OH in the troposphere is a major sink for CH₃CCl₃, global measurements of CH₃CCl₃ provide an accurate estimate of the global mole fraction of OH (Prinn *et al.*, 2001). Due to a substantial decrease of CH₃CCl₃ in the atmosphere, the reconstruction of OH levels using this molecule is getting more and more difficults and the other compounds are now used as reference tracers for OH mole fraction changes.

The Kyoto Protocol to the United Nations Framework Convention on Climate Change (UNFCCC), which came into force on 16 February 2005, specifies HFCs, PFCs and SF_6 as targets for quantified emission limitation and reduction commitments.

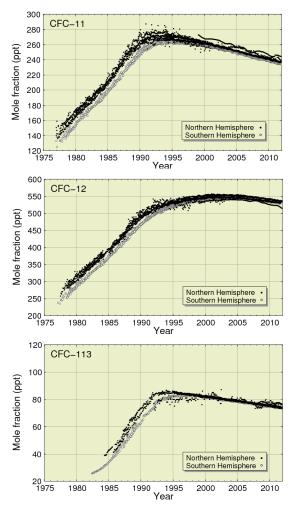


Fig. 6.1 Time series of the monthly mean mole fractions of CFC-11, CFC-12 and CFC-113. Solid circles show mole fractions measured in the Northern Hemisphere and open circles show mole fractions in the Southern Hemisphere.

Annual changes in the levels of halocarbons in the atmosphere

The cover map of this chapter shows observational sites that have submitted data on halocarbons and other halogenated species to the WDCGG. Although the number of indicated stations measuring these species is rather limited, halocarbons are generally well mixed in the atmosphere and the data may be sufficient to reflect their global tendencies. Plates 6.1 and 6.2 show all

the monthly mean mole fractions of these gases submitted to the WDCGG. The figures (6.1 - 6.7) in this chapter show the monthly mean data reported to the WDCGG without spatial averaging. Some discrepancies in the absolute mole fractions were observed for several stations, suggesting that these stations may have adopted different standard scales. Observational data based on identical standard scales revealed that the differences in the mole fractions between the two hemispheres were large in the 1980s for CFCs, CCl₄ and CH₃CCl₃ but have since narrowed as the emissions have been suppressed and the existing constituents have been mixed across the hemispheres.

Figure 6.1 shows monthly mean mole fractions of CFC-11 (CCl₃F), CFC-12 (CCl₂F₂) and CFC-113 (CCl₂FCClF₂) over time. The mole fractions of CFC-11 were maximal around 1992 in the Northern Hemisphere, followed by a maximum about one year later in the Southern Hemisphere. The mole fractions of CFC-113 were maximal around 1992 in the Northern Hemisphere and around 1997 in the Southern Hemisphere. The mole fractions of these gases have since been decreasing slowly in both hemispheres. The mole fraction of CFC-12 increased until around 2005 and then started decreasing gradually.

Figure 6.2 shows time series of the monthly mean mole fractions of Halon-1211 (CBrClF₂) and Halon-1301 (CBrF₃). The mole fraction of Halon-1211 has not increased since 2005, whereas the mole fraction of Halon-1301 is increasing.

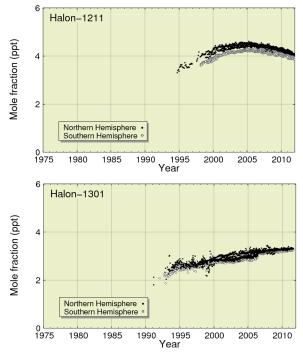


Fig. 6.2 Time series of the monthly mean mole fractions of Halon-1211 and Halon-1301. Solid circles show mole fractions measured in the Northern Hemisphere and open circles show mole fractions in the Southern Hemisphere.

Figure 6.3 shows time series of the mole fractions of HCFC-22 (CHClF₂), HCFC-141b (CH₃CCl₂F) and HCFC-142b (CH₃CClF₂). The mole fractions of these gases increased significantly during the last decade as a result of their continued use as substitutes for CFCs. However, the growth of HCFC-141b decelerated rapidly in the second half of the decade.

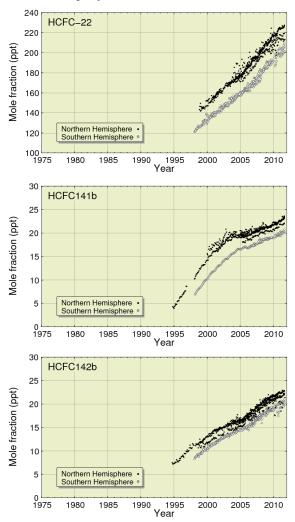


Fig. 6.3 Time series of the monthly mean mole fractions of HCFC-22, HCFC-141b, and HCFC-142b. Solid circles show mole fractions measured in the Northern Hemisphere and open circles show mole fractions in the Southern Hemisphere.

Figure 6.4 shows time series of the mole fractions of CCl_4 and CH_3CCl_3 . The mole fractions of CCl_4 in both hemispheres were at a maximum around 1991. The mole fractions of CH_3CCl_3 were at a maximum around 1992 in the Northern Hemisphere and around 1993 in the Southern Hemisphere. The mole fractions of these gases have since been decreasing.

Figure 6.5 shows time series of the monthly mean mole fractions of HFC-134a (CH_2FCF_3) and HFC-152a (CH_3CHF_2). The mole fractions of HFC-134a and HFC-152a have increased by 4 to

5-fold over the last 10 years. These increases have been larger in the Northern than in the Southern Hemisphere, suggesting that predominant sources of this compound are located in the Northern Hemisphere.

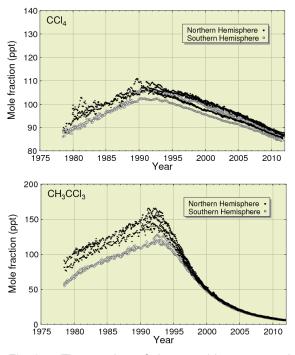


Fig. 6.4 Time series of the monthly mean mole fractions of CCl_4 and CH_3CCl_3 . Solid circles show mole fractions measured in the Northern Hemisphere and open circles show mole fractions in the Southern Hemisphere.

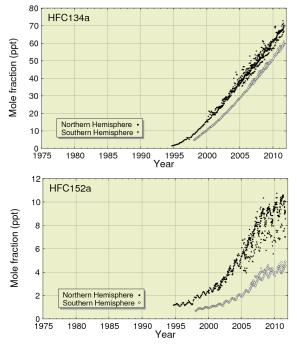


Fig. 6.5 Time series of the monthly mean mole fractions of HFC-134a and HFC-152a. Solid circles show mole fractions measured in the Northern Hemisphere and open circles show mole fractions in the Southern Hemisphere.

Figure 6.6 shows a time series of the monthly mean mole fractions of methyl chloride (CH₃Cl). The mole fraction of CH₃Cl does not show particular temporal tendency although indications of seasonal variation can be noticed in the dataset.

Figure 6.7 shows a time series of the monthly mean mole fractions of SF_6 . The mole fraction of SF_6 in 2011 was double that in the mid-1990s increasing nearly linearly at a rate of 0.24 ppt/year (WMO, 2012).

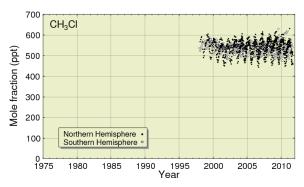


Fig. 6.6 Time series of the monthly mean mole fractions of CH_3CI . Solid circles show mole fractions measured in the Northern Hemisphere and open circles show mole fractions in the Southern Hemisphere.

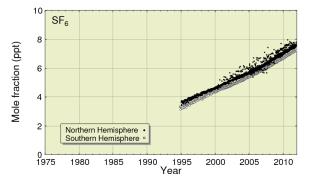
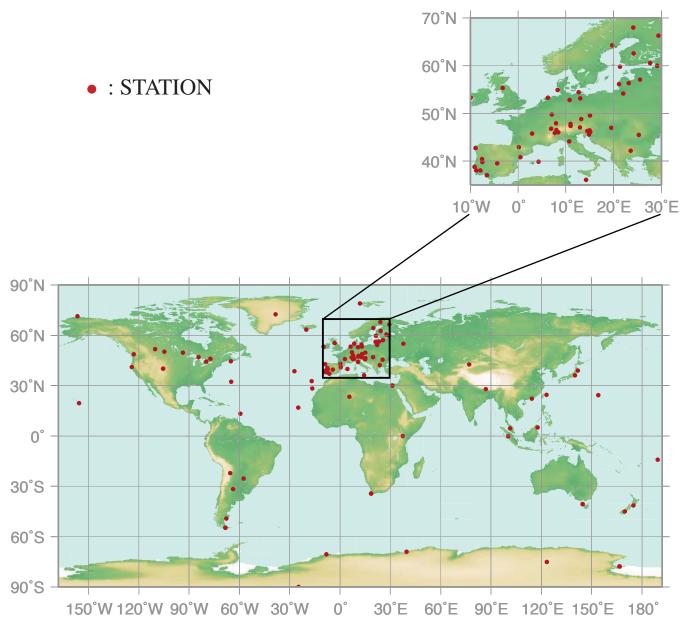
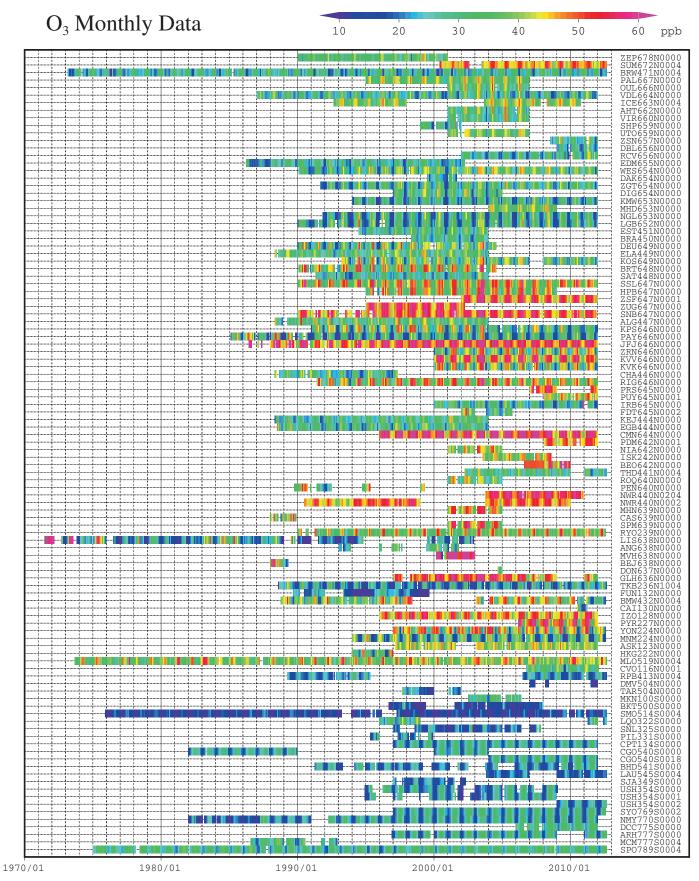



Fig. 6.7 Time series of the monthly mean mole fractions of SF_6 . Solid circles show mole fractions measured in the Northern Hemisphere and open circles show mole fractions in the Southern Hemisphere.


7.

SURFACE OZONE

(O₃)

This map shows locations of the stations that have submitted data for monthly mean mole fraction.

Plate 7.1 Monthly mean O_3 mole fractions that have been reported to the WDCGG. The mole fractions are illustrated in different colours. The sites are listed in order from north to south.

7. SURFACE OZONE (O₃)

Basic information on surface ozone (O₃) with regard to environmental issues

Ozone (O_3) in the atmosphere exists mostly in the stratosphere, with less than 10% in the troposphere. However, O₃ in the troposphere plays an important role in the atmospheric environment through its impact on radiative and involvement in the chemical processes. O3 absorbs UV radiation in the stratosphere, thus influencing the vertical profile of temperature and circulation in the stratosphere. Moreover, as a greenhouse gas in the troposphere, O₃ absorbs IR radiation. The latter effect is more significant in the upper troposphere. Tropospheric O₃ in the northern extratropics was the greatest contributor to global warming during the 20th century, and increases in tropospheric O₃ from industrialization in developing countries was found to contribute to accelerated warming in the tropics during the latter half of the century (Shindell et al., 2006). Furthermore, by reacting with water vapour in the presence of UV radiation, O₃ produces OH radicals, which control atmospheric mole fractions of many greenhouse gases, such as CH₄, through chemical reactions.

The observational results at high altitudes around 1990, compared with those from the end of the 19th century to the first half of the 20th century, show increases in tropospheric O₃, especially in urban areas (Staehelin et al., 1994). However, ozonesonde measurements in the troposphere show stable or decreasing trends in northern mid-latitudes after 1980 (Oltmans et al., 2006). There is as yet no consensus on the global trend of tropospheric O_3 . Recently however, an attempt has been made to systematically review the observed trends. It was found that in most regions of the world - excluding East Asia - surface and free tropospheric ozone concentrations have not risen significantly since year 2000. Prior to the 1990s almost all records indicate a strong rise, while during 1990s the the picture is very diverse (http://igac.jisao.washington.edu/Newsletter/ IGAC Newsletter Oct11.pdf).

Tropospheric O_3 originates from flux/mixing from the stratosphere and in-situ photochemical production. O_3 is destroyed in various processes, including chemical reactions with NO, the hydroperoxyl radical (HO₂) and OH, and deposition at the Earth's surface. The lifetime of tropospheric ozone varies from one or a few days in the boundary layer to a few tens of days or even a few months in the free troposphere. In the troposphere, the mole fractions of O_3 are high in high and mid-latitudes in both hemispheres, and low in the Tropics over the Atlantic (Marenco and Said, 1989) and Pacific (Tsutsumi *et al.*, 2003) Oceans. The localised sources of ozone precursors and the generally short lifetime of surface O_3 make its distribution spatially non-uniform and time-variant.

Annual variation of surface O_3 mole fraction

The observational sites that have submitted data for surface O_3 to the WDCGG are shown on the map at the beginning of this chapter. The monthly mean wet mole fractions of O_3 that have been reported from these observational sites are shown in Plate 7.1, with different mole fraction levels illustrated in different colours. Data for the mole fractions of surface O_3 are reported in two different units, *i.e.*, mixing ratio (ppb) and concentration (μ g/m³) at 25°C. The latter is converted to the former using the formula:

$$X_{p} [ppb] = (R \times T / M / P_{0}) \times 10 \times X_{g} [\mu g/m^{3}]$$

where R is the molar gas constant (8.31451 [J/K/mol]), T is the absolute temperature reported from each station, M is the molecular weight of O₃ (47.9982), and P₀ is the standard pressure (1013.25 [hPa]).

If temperature is not reported by a station T is taken to be 25 $^{\circ}$ C.

The mole fraction of surface O_3 was found to vary from station to station, though many of these stations are located in Europe. Moreover, the seasonal and interannual variations were found to be relatively large at most stations, making it difficult to identify a global long-term trend in the mole fraction of surface O_3 .

The seasonal cycles of monthly mean mole fraction of surface O_3 averaged for each 30° latitudinal zone are shown in Figure 7.1. The latitudinal mean mole fractions were found to be elevated in spring in most latitudinal zones. However, several patterns of seasonal-diurnal cycles were observed at different locations, including a pronounced spring maximum, a spring maximum at night and a summer maximum during the day, a wide spring-summer maximum, and a pronounced winter maximum (Tarasova *et al.*, 2007).

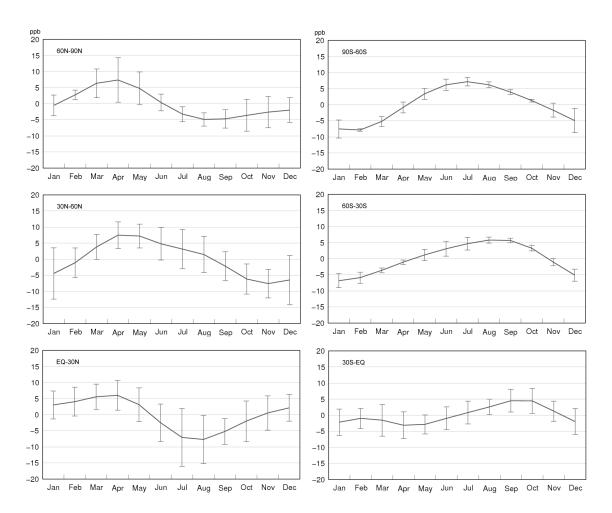
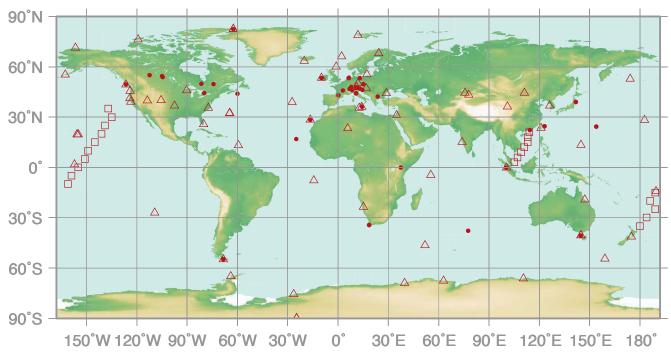
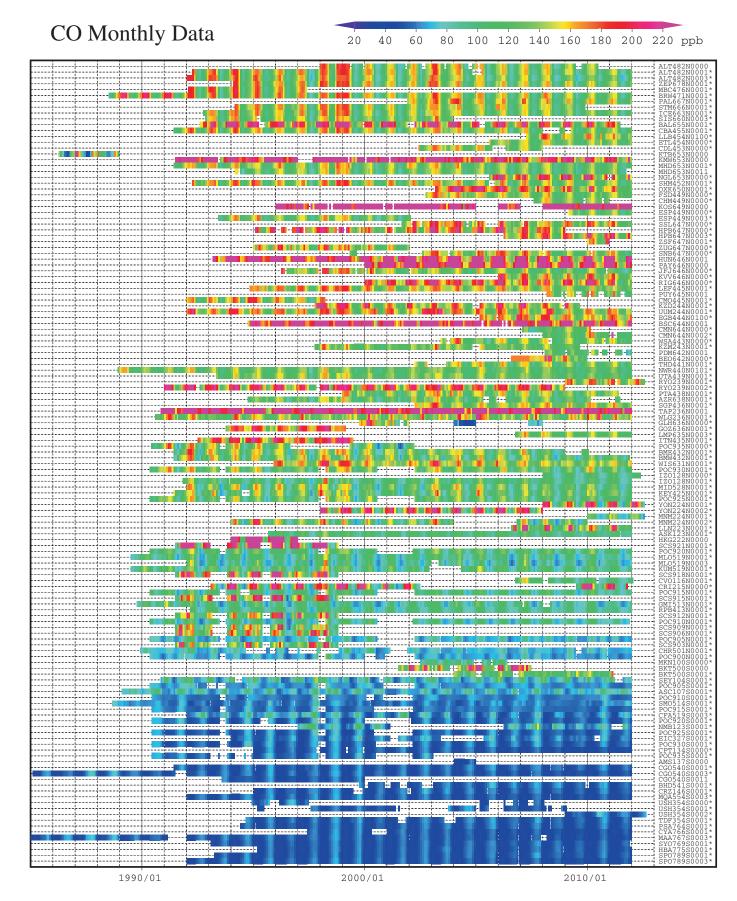
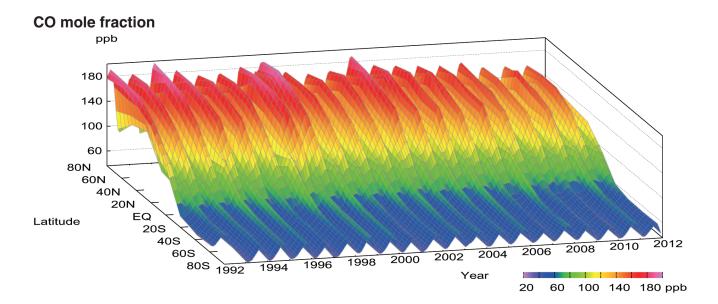
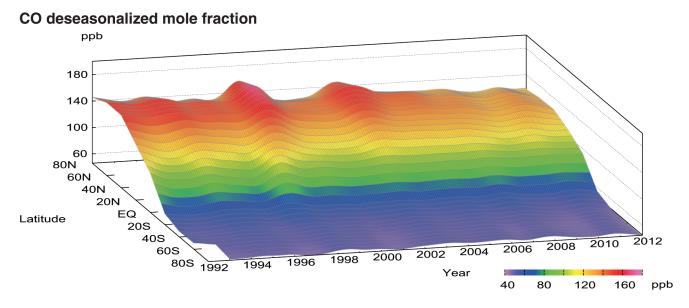



Fig. 7.1 Average seasonal cycles in the mole fraction of O_3 for each 30° latitudinal zone obtained from the seasonal cycle of each station. Vertical error bars represent the range of ±1 σ which is calculated for each month.


8. CARBON MONOXIDE (CO)

• : CONTINUOUS STATION


- △ : FLASK STATION
- □ : FLASK MOBILE (SHIP)




This map shows locations of the stations that have submitted data for monthly mean mole fraction.

Plate 8.1 Monthly mean CO mole fractions that have been reported to the WDCGG. The mole fractions are illustrated in different colours. The sites are listed in order from north to south. The data from the sites with an asterisk at the end of the station index are used for the analysis shown in Plate 8.2. (see Chapter 2)

Plate 8.2 Variation of zonally averaged monthly mean CO mole fractions (top), deseasonalized long-term trends (middle), and growth rates (bottom). The zonally averaged mole fractions are calculated for each 20° zone. The deseasonalized trends and growth rates are derived as described in Chapter 2.

8. CARBON MONOXIDE (CO)

Basic information on CO with regard to environmental issues

Carbon monoxide (CO) is not a greenhouse gas; it absorbs hardly any infrared radiation from the Earth. However, CO influences the oxidation capacity of the atmosphere through its reaction with hydroxyl radicals (OH), which controls lifetime of methane, halocarbons and tropospheric ozone. CO has been monitored due to its indirect influence on greenhouse gases through such reactions.

Sources of atmospheric CO include fossil fuel combustion and biomass burning, along with the oxidation of methane and non-methane hydrocarbons (NMHCs). Major sinks include reactions with OH and surface deposition; the reaction of CO and OH accounts for all of the chemical loss of CO in the troposphere (Seinfeld and Pandis, 1998). CO has a relatively long atmospheric lifetime, ranging from 10 days in summer in the tropics to more than a year over the polar regions in winter. Thus, unlike CO₂, anthropogenic CO emissions do not lead to CO accumulation in the atmosphere. Furthermore, the uneven distribution of sources causes large spatial and temporal variations in the CO mole fraction.

Measurements of trapped air in ice cores have shown that the preindustrial CO mole fraction over central Antarctica during the last two millennia was about 50 ppb and the CO level increased to 110 ppb by 1950 in Greenland (Haan and Raynaud, 1998). Beginning in 1950, the global average CO mole fraction increased at a rate of 1% per year but started to decrease in the late 1980s (WMO, 1999). Between 1991 and 2001, the global average mole fraction of CO decreased at an annual rate of about 0.5 ppb, excluding temporal enhancements from large biomass burning events (Novelli *et al.*, 2003).

Annual variation of CO mole fraction in the atmosphere

The monthly mean mole fractions of CO that have been reported from fixed stations and some ships to the WDCGG are shown in Plate 8.1, in which different mole fraction levels are plotted in different colours. The observational sites that supplied data for this analysis are shown on the map at the beginning of this chapter.

Latitudinally averaged mole fractions of CO in the atmosphere, together with their deseasonalized mole fractions and growth rates, are shown in Plate 8.2 as three-dimensional representations.

Data for the mole fractions of CO are reported in various units, *i.e.*, ppb, $\mu g/m^3$ -25°C, $\mu g/m^3$ -20°C and mg/m³-25°C. Units other than ppb were converted to ppb using the formulas:

$$\begin{split} X_p \left[ppb \right] &= (R \times T / M / P_0) \times 10 \times X_g \left[\mu g / m^3 \right] \\ X_p \left[ppb \right] &= (R \times T / M / P_0) \times 10^4 \times X_g \left[mg / m^3 \right] \end{split}$$

where R is the molar gas constant (8.31451 [J/K/mol]), T is the absolute temperature reported from each station, M is the molecular weight of CO (28.0101), and P₀ is the standard pressure (1013.25 [hPa]).

If temperature is not reported by a station, T is taken to be 25 °C.

Plate 8.2 shows that the seasonal variations of CO were larger in the Northern Hemisphere and smaller in the Southern Hemisphere, and that the deseasonalized mole fractions were the highest in northern mid-latitudes and the lowest in the Southern Hemisphere, having a large latitudinal gradient from northern mid- to southern low latitudes. This is likely due to the presence of numerous anthropogenic sources of CO in the northern mid-latitudes, combined with the destruction of CO in the tropics, where OH radicals are abundant.

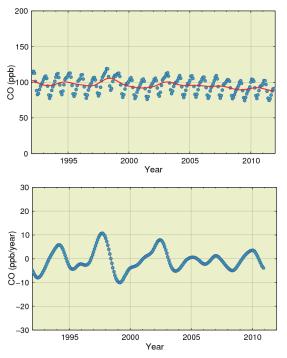


Fig. 8.1 Global monthly mean mole fraction of CO from 1992 to 2011, including deseasonalized long-term trend in red line (top) and annual growth rate (bottom).

Figure 8.1 shows global monthly mean CO mole fractions and their growth rates. Growth rates were high in 1993/1994, 1997/1998 and 2002, and low in 1992 and 1998/1999. The global annual mean mole fraction was about $89\pm2^*$ ppb in 2011, which was calculated irrespective of the difference in observation scales.

Figure 8.2 shows monthly mean mole fractions of CO for each 30° latitudinal zone. Seasonal variations were observed in both hemispheres, with mole fractions being higher in winter. Amplitudes of the seasonal cycle were larger in the Northern Hemisphere than in the Southern Hemisphere.

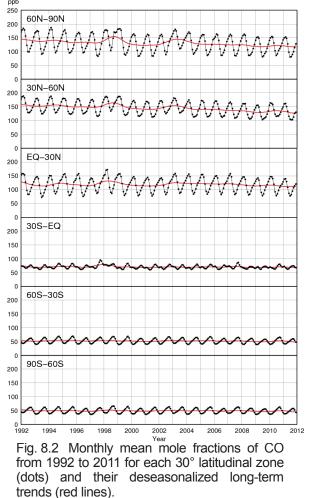


Figure 8.3 summarizes deseasonalized long-term trends for each 30° latitudinal zone and their growth rates. The CO mole fractions were highest in northern mid-latitudes. There was a decline in CO mole fractions around 1992, almost coinciding with the decrease in the growth rate of CH₄ mole fractions, most likely due to variations in their common sink (reaction with OH). The enhanced stratospheric ozone depletion due to increased volcanic aerosols

following the eruption of Mount Pinatubo in 1991 may have increased atmospheric OH radicals, which react with both CO and CH_4 (Dlugokencky *et al.*, 1996).

Increases in CO mole fractions were observed from 1997 to 1998 in northern latitudes and in southern low latitudes. These increases were attributed to large biomass burning events in Indonesia in late 1997 and in Siberia in the summer and autumn of 1998 (Novelli *et al.*, 1998).

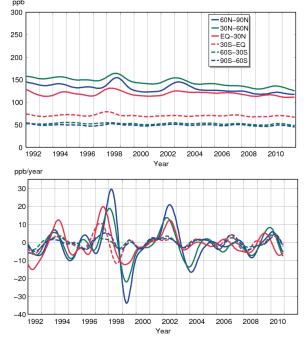
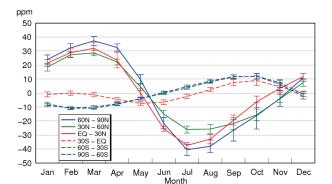
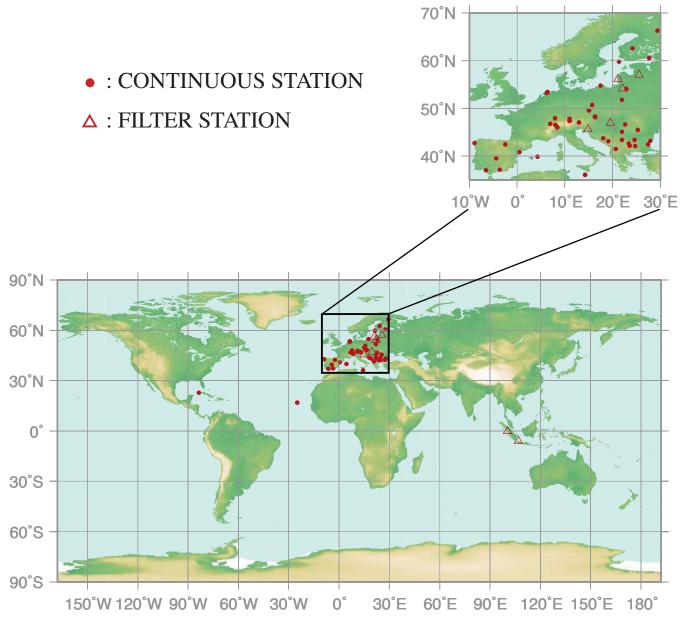


Fig. 8.3 Deseasonalized long-term trends of CO for each 30° latitudinal zone (top) and their growth rates (bottom).

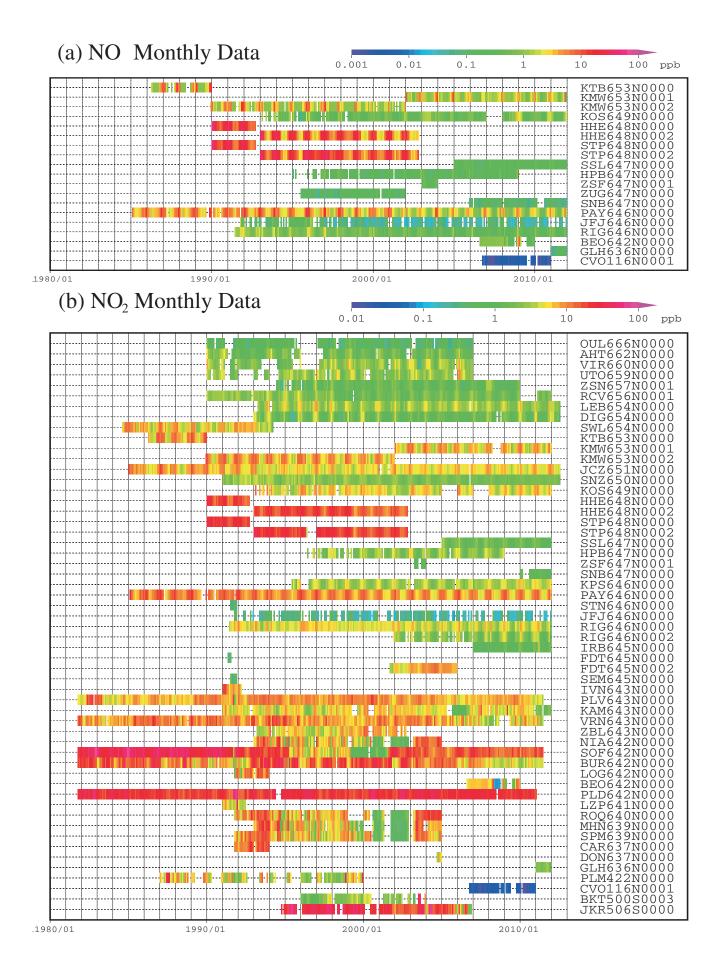
The CO mole fractions returned to normal after 1999, but the growth rates in the Northern Hemisphere increased substantially again in 2002. The latter may have been due to large biomass burning. Large-scale boreal forest fires occurred in Siberia and North America from 2002 to 2003. Large forest fire also occurred in Russia in summer 2010 which is reflected in the data in the bottom panel of Figure 8.3.

^{*} Indicated error ranges were calculated using the bootstrap method by reference to Conway *et al.* (1994).




Fig. 8.4 Average seasonal cycles in the mole fraction of CO for each 30° latitudinal zone obtained by subtracting long-term trends from the zonal mean time series. Error bars represent the range of $\pm 1\sigma$ which is calculated for each month.

Seasonal cycle of CO mole fraction in the atmosphere


Figure 8.4 shows average seasonal cycles in the mole fraction of CO for each 30° latitudinal zone. The seasonal cycle is driven mainly by seasonal variations in OH abundance as a CO sink. This seasonality and a short lifetime of about a few months resulted in a sharp decrease in early summer followed by a relatively slow increase in autumn. The levelling-off in the beginning of the year observed in the southern low latitudes may be attributed to the transport of CO from the Northern Hemisphere.

NITROGEN MONOXIDE (NO) AND NITROGEN DIOXIDE (NO₂)

9.

This map shows locations of the stations that have submitted data for monthly mean mole fraction.

Plate 9.1 Monthly mean (a) NO and (b) NO_2 mole fractions that have been reported to the WDCGG. The mole fractions are illustrated in different colours. The sites are listed in order from north to south.

9. NITROGEN MONOXIDE (NO) AND NITROGEN DIOXIDE (NO₂)

Basic information on NO and NO₂ with regard to environmental issues

Nitrogen oxides (NO_x, *i.e.*, NO and NO₂) are not greenhouse gases. Nevertheless, these compounds have a central regulatory role in the free radical and oxidising chemistry of the troposphere. These chemical cycles regulate the lifetime of methane and the production of tropospheric O_3 and secondary aerosols, all of which have important roles in the natural and anthropogenic greenhouse effect. The O_3 produced in the atmosphere as a result of the nitrogen oxides availability in the atmosphere can affect vegetation growth and human health.

Sources of NO_x include energy production, transport, lightning, soils and biomass burning (Reis *et al.*, 2009). They constitute major causes of acid rain and deposition. The dominant sink of NO_x in the atmosphere is its conversion into nitric acid (HNO₃) and peroxyacetyl nitrate (PAN), which are eventually removed by dry or wet deposition. In some cases, NO_x is removed from the atmosphere directly by dry deposition. NO_x abundance varies in both space and time because of their short lifetimes and uneven source distribution. Some regional assessments are done based on satellite information to clarify such variations and trends.

Annual variation of NO and NO₂ mole fractions in the atmosphere

The observational stations that have submitted data for NO and NO_2 to the WDCGG are shown on the map at the beginning of this chapter. Most of these stations are located in Europe.

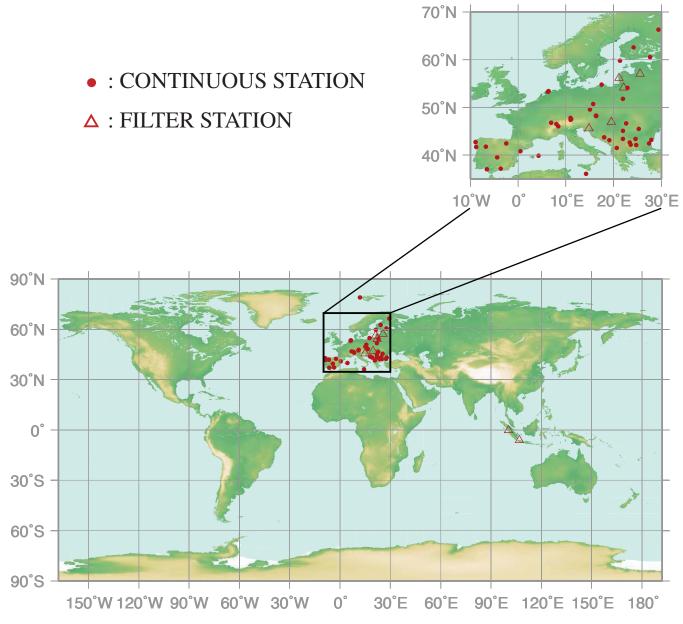
The monthly mean mole fractions of NO and NO₂ reported to the WDCGG are shown in Plate 9.1, in which different mole fraction levels are plotted in different colours. Data for NO_x are reported in various units, *i.e.*, ppb, $\mu g/m^3$ -25°C, $\mu g/m^3$ -20°C, $\mu gN/m^3$ -25°C and mg/m^3 -25°C. Units other than ppb were converted to ppb using the formulas:

- $\begin{aligned} X_{p} [ppb] &= (R \times T / M / P_{0}) \times 10 \times X_{g} [\mu g/m^{3}] \\ X_{p} [ppb] &= (R \times T / M / P_{0}) \times 10^{4} \times X_{g} [mg/m^{3}] \\ X_{p} [ppb] &= (R \times T / M_{N} / P_{0}) \times 10 \times X_{g} [\mu gN/m^{3}] \end{aligned}$
- where R is the molar gas constant (8.31451 [J/K/mol]),

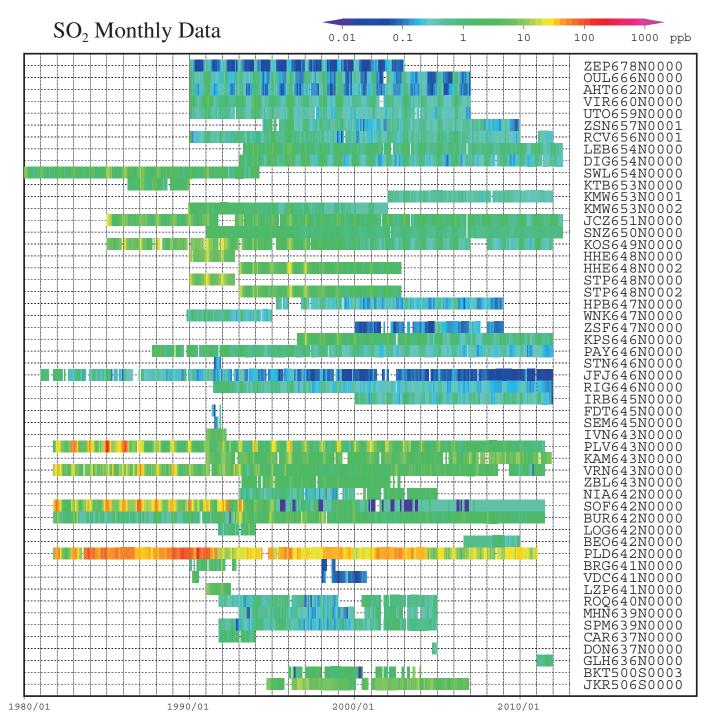
T is the absolute temperature reported from each station,

M is the molecular weight of NO (30.00614) or NO₂ (46.00554),

 $M_{\rm N}$ is the atomic weight of N (14.00674), and


P₀ is the standard pressure (1013.25 [hPa]).

If temperature is not reported by a station T is taken to be 25 $^{\circ}$ C.


The distributions of NO and NO₂ are spatially non-uniform and variable over time. Due to the high temporal variability in the mole fraction of NO₂ at each observational site, it was difficult to identify a long-term trend. A number of stations located in southern Europe showed higher mole fractions, and some stations reported increased NO₂ in winter.

As there are few observational sites for NO, it was difficult to identify whether the global average NO mole fraction increases or decreases.

10. SULPHUR DIOXIDE (SO₂)

This map shows locations of the stations that have submitted data for monthly mean mole fraction.

Plate 10.1 Monthly mean SO_2 mole fractions that have been reported to the WDCGG. The mole fractions are illustrated in different colours. The sites are listed in order from north to south.

10. SULPHUR DIOXIDE (SO₂)

Basic information on SO₂ with regard to environmental issues

Sulphur dioxide (SO_2) is not a greenhouse gas, but it is a precursor of atmospheric sulphuric acid (H_2SO_4) and sulphate aerosol. SO_2 is oxidised by hydroxyl radicals (OH) to form sulphuric acid, which then becomes aerosols through photochemical gas-to-particle conversion. While SO_2 reacts much more slowly with OH than does NO_2 , SO_2 dissolves readily in suspended liquid droplets in the atmosphere. The global sulphur cycle affects atmospheric chemistry, including tropospheric ozone (Berglen *et al.*, 2004).

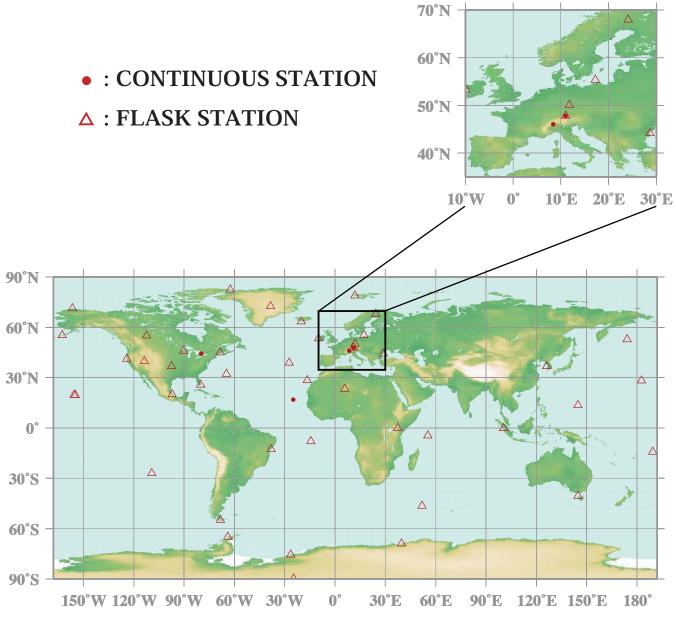
Sources of SO_2 include fossil fuel combustion by industry, biomass burning, volcanic release and the oxidation of dimethylsulphide (DMS) from the oceans (IPCC, 2007). Major SO_2 sinks are oxidation by OH and deposition onto wet surfaces. Anthropogenic SO_2 has caused acid rain and deposition throughout the industrial era. The mole fractions of SO_2 have shown large variations in both space and time because of the short lifetime and uneven anthropogenic source distribution of SO_2 .

Annual variation of SO₂ mole fraction in the atmosphere

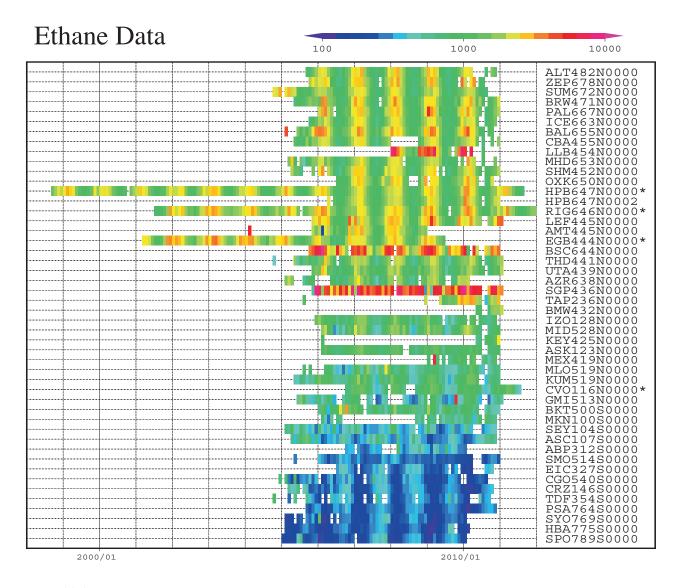
The observational sites that have submitted data for SO_2 to the WDCGG are shown on the map at the beginning of this chapter. Most of these stations are located in Europe.

The monthly mean mole fractions of SO₂ that have been reported to the WDCGG are shown in Plate 10.1, with different mole fraction levels illustrated in different colours. Data for SO₂ are reported in various units, *i.e.*, ppb, μ g/m³, mg/m³ and μ gS/m³. Units other than ppb were converted to ppb using the formulas:

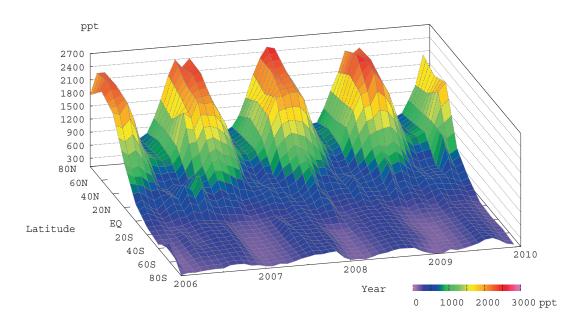
 $\begin{array}{l} X_p \left[ppb \right] = \left(R \times T \, / \, M \, / \, P_0 \right) \times 10 \times X_g \left[\mu g / m^3 \right] \\ X_p \left[ppb \right] = \left(R \times T \, / \, M \, / \, P_0 \right) \times 10^4 \times X_g \left[mg / m^3 \right] \\ X_p \left[ppb \right] = \left(R \times T \, / \, M_S \, / \, P_0 \right) \times 10 \times X_g \left[\mu g S / m^3 \right] \end{array}$


where R is the molar gas constant (8.31451 [J/K/mol]),

T is the absolute temperature reported from each station,


M is the molecular weight of SO_2 (64.0648), M_S is the atomic weight of S (32.066), and P_0 is the standard pressure (1013.25 [hPa]).

Although some stations in southern Europe have reported higher mole fractions, it has been difficult to identify the magnitude and the sign of the trend for SO₂.


11. VOLATILE ORGANIC COMPOUNDS (VOCs)

This map shows locations of the stations that have submitted data for mole fraction of VOCs (ethane only).

Plate 11.1 Monthly mean ethane mole fractions that have been reported to the WDCGG. The mole fractions are illustrated in different colours. The sites are listed in order from north to south. The data from the sites with an asterisk at the end of the station index are derived from continuous data.

Plate 11.2 Variation of zonally averaged monthly mean ethane mole fractions. The zonally averaged mole fractions are calculated for each 20° zone.

11. VOLATILE ORGANIC COMPOUNDS(VOCs)

Basic information on VOCs with regard to environmental issues

Volatile organic compounds (VOCs) have a variety of roles in issues concerned with the environment. They are major contributors to photochemical air pollution on both urban and regional scales and also impact ozone in the background troposphere and some are injurious to human health at modest concentrations; they are also precursors to aerosols at quite low concentrations. Their main role in GAW is as tracers of many atmospheric processes. VOC molecules occur in many forms and have both natural and anthropogenic sources. The GAW Programme has sought to focus measurements on species which help to provide understanding of a wide range of atmospheric properties, and which can mostly be measured using currently approved techniques. Table 11.1 shows the molecules selected for measurement within GAW, with reasons for their selection (WMO, 2007c). Some GAW stations have the analytical capability to produce high quality measurements of an extended range of organic species. Where appropriate calibration and quality assurance can be provided, these data should wherever possible be provided to WMO databases for wider scientific dissemination (WMO, 1996). The main reasons for measurement within GAW are associated with their use as tracers of the sources of greenhouse gases such as methane, to provide quantitative information on the extent of atmospheric processing by hydroxyl radicals and other oxidants, and as precursors to aerosols, particularly organic aerosols and sulphate aerosols. In addition VOC measurements provide valuable information for airmass characterisation at some stations to identify local sources of pollution. All of this information is of value to atmospheric modellers both in terms of input parameters and as constraints to model results.

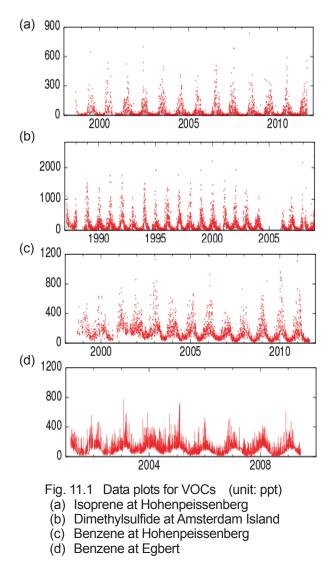
The current global network of VOC measurements is shown on the front page of this chapter. In many respects it is identical to that set up by NOAA to measure stable greenhouse gases and carbon monoxide with flask samples collected every 1 or 2 weeks, but it does include a number of sites where selected gases are measured at a higher frequency. These include three sites in Europe, one in Greenland (Summit) and one on the Island of Cape Verde. Unfortunately, Egbert a Canadian which provided valuable information on the VOC composition over North America closed in 2010. It is anticipated, however, that the number of sites with high frequency measurements will increase significantly in the next few years in the European region and the adjacent Arctic

Molecule Lifetime (OH=1E6cm ⁻³)				Network Type
Ethane	1.5 months	•Source of methane •Natural sources •Biomass burning •Fossil fuel •Ocean production(S.hemisphere) •Trend in size of seasonal cycle •Indication of halogen chemistry	GC/FID	Global
Propane	11 days	•Source of methane •Natural sources •Biomass burning •Fossil fuel •Ocean production(S.hemisphere)	GC/FID	Global
Acetylene	15 days	•Motor vehicle tracer •Biomass burning tracer •Ratios to the other hydrocarbons •Trends	GC/FID	Global
Isoprene	3 hours	 Biosphere product Sensitive to temperature/land use/climate change O₃ precursor •Oxidizing capacity Precursor to formaldehyde 	GC/FID PTr-MS	Mid latitudes and tropics
Formaldehyde	1 day	Indicator of isoprene oxidation Biomass burning Comparison with satellites Trends	DOAS	Small number of sites in Tropics for comparison with satellites
Terpenes	1.5 hours	Precursors to organic aerosols	GC/MS PTr-MS	Selected sites in forested areas
Acetonitrile	0.5-1 year	Biomass burning indicator Biofuel burning indicator	GC/MS PTRMS	Global
Methanol	12 days	Sources in the biosphere (methane oxidation) Abundant oxidation product	GC/FID PTR-MS	Global
Ethanol	4 days	•Tracer of alternative fuel usage	GC/FID PTR-MS	Global
Acetone	1.7 months	•Abundant oxidation product •Free radical source in the upper troposphere	GC/FID PTR-MS	Global
DMS	2 days	•Major natural sulphur source •Sulphate aerosol precursor •Tracer of marine bioproductivity	GC/FID PTR-MS	Global Marine
Benzene	10 days	Tracer of combustion Biomass burning indicator	GC/FID GC-MS	Global
Toluene	2 days	Ratio to benzene used for air massage Precursor to particulates	GC/FID GC-MS	Global
so/normal Butane	5 days	Chemical processing indicator Lifetime/ozone production	GC/FID GC-MS	Global
so/normal Pentane	3 days	•Ratio provides impact of NO ₃ chemistry	GC/FID GC-MS	Global

GC/FID is Gas Chromatography - Flame Ionization Detection GC/MS is Gas Chromatography - Mass Spectrometry

DOAS is Different Optical Absorption Spectrometry PTRMS is Proton Tranfer Reaction Mass Spectrometry

Table 11.1 Molecules selected for measurements within the GAW VOC Programme with reasons for their selection


Seasonal Variation of VOCs and trends

As with all other measurements within GAW which are designed to study atmospheric composition, an important use of the data is to evaluate trends over time. Sufficient data are available for many individual molecules, particularly the non-methane hydrocarbons (NMHCs) both from the American and the European continents. The current database also contains much information on the seasonal variation of both natural and anthropogenic hydrocarbons. Thus the map of the front page of this chapter shows the network currently reporting VOC data, differentiating between sites where flask samples are collected for a limited set of NMHC measurements, and sites with measurements of a wider range of VOCs collected in a semi-continuous manner.

Focusing on ethane, which has one of the longer lifetimes amongst VOCs, Plate 11.1 shows monthly mean mole fractions from 1998 to 2011 at each of the stations reporting to the database at WDCGG; and Plate 11.2 shows the global ethane distribution from the flask network between 2006 to 2010 projected on to a continuous surface, with vertical and horizontal coordinates respectively of the ethane mole fraction in ppt and latitude in degrees. A particular example is shown here for ethane in the format used for other molecules in the Data Summary. The ethane mole fraction shows a large seasonal variation which is mostly associated with its removal from the atmosphere by hydroxyl radical chemistry, leading to lower values in the summer months. The mole fractions are much larger in the Northern Hemisphere reflecting the preponderance of sources, mostly from oil and gas extraction in this region; Southern Hemisphere sources are dominated by emissions from biomass burning with a much smaller contribution associated with fossil fuel usage, including transfer from the Northern Hemisphere. A consideration of the budget of ethane in the atmosphere and its relevance to understanding the sources of methane was published by Simpson et al. (2012). This concluded that the slow-down in the growth of methane observed in 1999 to 2006 was predominantly associated with improved containment of methane emissions from processes such as flaring during oil and gas extraction. This result, concerned with the ethane budget and its relevance to the methane budget, is a perfect example of how VOCs can be used as tracers to understand the behaviour of important greenhouse gases, etc.

Molecules with large natural sources are shown in Figure 11.1 (a) and (b) with isoprene at Hohenpeissenberg in Southern Germany, and dimethylsulfide on Amsterdam Island at 37°S in the Indian Ocean; both molecules show a strong seasonal variation reflecting biological production which is affected by both light and temperature. By contrast Figure 11.1 (c) and (d) shows the variation with time in the twenty-first century of benzene, a predominantly anthropogenic molecule, at Hohenpeissenberg in southern Germany, and at Egbert, a continental site in Canada. As with ethane, the seasonal variation is mostly dominated by hydroxyl radical chemistry and the decline is the result of legislation designed to limit emissions of VOCs from motor vehicles on both continents (Europe and North America). Many other anthropogenic VOCs in the GAW database show a similar decline.

The database is already quite extensive since individual measurement programmes at several sites cover the behaviour of a large range of molecules over at least a decade, and the global flask network has been running now for eight years. A main goal for the GAW VOC Programme is to provide a high degree of comparability among measurement results. For most of the NMHCs this has already been achieved. The coverage of molecules selected for measurement within GAW is almost complete at some sites with standards becoming available in the near future for all selected molecules.

REFERENCES

References

- Angert, A., S. Biraud, C. Bonfils, W. Buermann, and I. Fung, CO₂ seasonality indicates origins of post-Pinatubo sink, *Geophys. Res. Lett.*, **31**, L11103, doi:10.1029/2004GL019760, 2004.
- Bekki, S., K. S. Law, and J. A. Pyle, Effects of ozone depletion on atmospheric CH₄ and CO concentrations, *Nature*, **371**, 595–597, 1994.
- Berglen, T. F., T. K. Berntsen, I. S. A. Isaksen, and J. K. Sundet, A global model of the coupled sulfur/oxidant chemistry in the troposphere: The sulfur cycle, *J. Geophys. Res.*, **109**, D19310, doi:10.1029/2003JD003948, 2004.
- Boden, T.A., G. Marland, and R. J. Andres, Global, Regional, and National Fossil-Fuel CO2 Emissions. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., USA, doi: 10.3334/CDIAC/00001 V2012, 2012.
- Cleveland, W. S., and S. J. Devlin, Locally weighted regression: an approach to regression analysis by local fitting, *J. Amer. Statist. Assn.*, **83**, 596–610, 1988.
- Conway, T. J., P. P. Tans, L. S. Waterman, K. W. Thoning, D. R. Kitzis, K. A. Masarie, and N. Zhang, Evidence for interannual variability of the carbon cycle from the National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostics Laboratory global air sampling network, J. Geophys. Res., 99, 22831–22855, doi:10.1029/94JD01951, 1994.
- Denman, K. L., G. Brasseur, A. Chidthaisong, P. Ciais,
 P. M. Cox, R. E. Dickinson, D. Hauglustaine, C. Heinze, E. Holland, D. Jacob, U. Lohmann, S. Ramachandran, P. L. da Silva Dias, S. C. Wofsy and X. Zhang, Couplings Between Changes in the Climate System and Biogeochemistry. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor and H. L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2007.
- Dlugokencky, E. J., L. P. Steele, P. M. Lang, and K. A. Masarie, The growth rate and distribution of atmospheric methane, *J. Geophys. Res.*, 99, 17021–17043, 1994.
- Dlugokencky, E. J., E. G. Dutton, P. C. Novelli, P. P. Tans, K. A. Masarie, K. O. Lantz, and S. Mardronich, Changes in CH₄ and CO growth rates after the eruption of Mt. Pinatubo and their link with changes in tropical tropospheric UV flux, *Geophys. Res. Lett.*, 23, 2761–2764, 1996.

- Dlugokencky, E. J., B. P. Walter, K. A. Masarie, P. M. Lang and E. S. Kasischke, Measurements of an anomalous global methane increase during 1998, *Geophys. Res. Lett.*, 28, 499–502, 2001.
- Dlugokencky, E. J., L. Bruhwiler, J. W. C. White, L. K. Emmons, P. C. Novelli, S. A. Montzka, K. A. Masarie, P. M. Lang, A. M. Crotwell, J. B. Miller, and L. V. Gatti, Observational constraints on recent increases in the atmospheric CH₄ burden, *Geophys. Res. Lett.*, **36**, L18803, 2009.
- Duchon, C. E., Lanczos filtering in one and two dimensions, J. Appl. Meteor., 18, 1016-1022, 1979.
- Etherridge, D. M., L. P. Steele, R. J. Francey, and R. L. Langenfelds, Atmospheric methane between 1000 A.D. and present: Evidence of anthropogenic emissions and climatic variability, *J. Geophys. Res.*, **103**, 15979–15993, 1998.
- Francey, R. J., P. P. Tans, C. E. Allison, I. G. Enting, J. W. C. White, and M. Trolier, Changes in oceanic and terrestrial carbon uptake since 1982, *Nature*, 373, 326–330, 1995.
- Gu, L., D. D. Baldocchi, S. C. Wofsy, J. W. Munger, J. J. Michalsky, S. P. Urbanski, and T. A. Bonden, Response of a deciduous forest to the Mount Pinatubo eruption enhanced photosynthesis, *Science*, **299**, 2035–2038, 2003.
- Haan, D. and D. Raynaud, Ice core record of CO variations during the last two millennia: atmospheric implications and chemical interactions within the Greenland ice, *Tellus*, **50B**, 253–262, 1998.
- Hansen, J., A. Lacis, R. Ruedy, and M. Sato, Potential Clim. Impact of Mount-Pinatubo Eruption, *Geophys. Res. Lett.*, **19(2)**, 215–218, 1992.
- Heimann, M. and M. Reichstein, Terrestrial ecosystem carbon dynamics and climate feedbacks, *Nature*, 451, 289–292, 2008.
- IPCC, Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M.Manning, Z.Chen, M.Marquis, K.B.Averyt, M.Tignor and H.L.Miller(eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2007.
- Keeling, C. D., R. B. Bacastow, A. F. Carter, S. C. Piper, T. P. Whorf, M. Heimann, W. G. Mook, and H. Roeloffzen, A three-dimensional model of atmospheric CO₂ transport based on observed winds: 1. Analysis of observational data, in aspects of climate variability in the Pacific and the Western Americas, edited by D. H. Peterson, *Geophysical Monograph* 55, 165–236, American Geophysical Union, Washington, D.C, 1989.

- Keeling, C. D., T. P. Whorf, M. Wahlen, and J. van der Plicht, Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980, *Nature*, 375, 666–670, 1995.
- Lambert, G, P. Monfray, B. Ardouin, G. Bonsang, A.Gaudry, V. Kazan and G. Polian, Year-to-year changes in atmospheric CO₂, *Tellus*, **47B**, 35–55, 1995.
- Manning, A. C., and R. F. Keeling, Global oceanic and land biotic carbon sinks from the Scripps atmospheric oxygen flask sampling network, *Tellus*, 58B, 95–116, 2006.
- Marenco, A., and F. Said, Meridional and vertical ozone distribution in the background troposphere from Scientific aircraft measurements during the STRATOZ III experiment. *Atmos. Env.*, **23**, 201–214, 1989.
- Matsueda, H., S. Taguchi, H.Y. Inoue, and M. Ishii, A large impact of tropical biomass burning on CO and CO₂ in the upper troposphere. *Science in China (Series C)*, **45**, 116–125, 2002.
- Morimoto, S., S. Aoki, T. Nakazawa, and T. Yamanouchi, Temporal variations of the carbon isotopic ratio of atmospheric methane observed at Ny Alesund, Svalbard from 1996 to 2004, *Geophys. Res. Lett.*, 33, L01807, doi:10.1029/2005GL024648, 2006.
- Nakazawa, T., K. Miyashita, S. Aoki, and M. Tanaka, Temporal and spatial variations of upper tropospheric and lower stratospheric carbon dioxide, *Tellus*, **43B**, 106–117, 1991.
- Nakazawa, T., S. Morimoto, S. Aoki and M. Tanaka, Time and space variations of the carbon isotopic ratio of tropospheric carbon dioxide over Japan, *Tellus*, **45B**, 258–274, 1993.
- Nakazawa, T., S. Morimoto, S. Aoki and M. Tanaka, Temporal and spatial variations of the carbon isotopic ratio of atmospheric carbon dioxide in the western Pacific region, *J. Geophys. Res.*, **102**, 1271–1285, 1997.
- Nevison, C. D., N. M. Mahowald, S. C. Doney, I. D. Lima, G. R. van der Werf, J. T. Randerson, D. F. Baker, P. Kasibhatla, and G. A. McKinley, Contribution of ocean, fossil fuel, land biosphere, and biomass burning carbon fluxes to seasonal and interannual variability in atmospheric CO₂, *J. Geophys. Res.*, **113**, doi:10.1029/2007JG000408, 2008.
- Novelli, P. C., K. A. Masarie, and P. M. Lang, Distributions and recent changes of carbon monoxide in the lower troposphere, *J. Geophys. Res.*, **103**, 19015–19033, 1998.
- Novelli, P. C., K. A. Masarie, P. M. Lang, B. D. Hall, R. C. Myers, and J. W. Elkins, Reanalysis of tropospheric CO trends: Effects of the 1997–1998 wildfires. J. Geophys. Res., 108(D15), 4464, doi:10.1029/2002JD003031, 2003.

- Oltmans *et al.*, Long-term changes in tropospheric ozone, *Atmos. Env.*, **40**, 3156–3173, 2006.
- Prinn, R. G, J. Huang, R. F. Weiss, D. M. Cunnold, P. J. Fraser, P. G. Simmonds, A. McCulloch, C. Harth, P. Salameh, S. O'Doherty, R. H. J. Wang, L. Porter and B. R. Miller, Evidence for substantial variations of atmospheric hydroxyl radicals in the past two decades, *Science*, **292**, 1882–1888, 2001.
- Rayner, P. J., I. G. Enting, R. J. Francey and R. Langenfelds, Reconstructing the recent carbon cycle from atmospheric CO_2 , $\delta^{13}C$ and O_2/N_2 observations, *Tellus*, **51B**, 213–232, 1999.
- Ravishankara, A. R., J. S. Daniel, and R. W. Portmann, Nitrous Oxide (N₂O): the dominant ozone-depleting substance emitted in the 21st century, *Science*, **326**, 123-125, 2009.
- Reis, S., R. W. Pinder, M. Zhang, G Lijie, and M. A. Sutton, Reactive nitrogen in atmospheric emission inventories, *Atmos. Chem. Phys.*, 9, 7657–7677, 2009.
- Rigby, M., R. G. Prinn, P. J. Fraser, P. G. Simmonds, R. L. Langenfelds, J. Huang, D. M. Cunnold, L. P. Steele, P. B. Krummel, R. F. Weiss, S. O'Doherty, P. K. Salameh, H. J. Wang, C. M. Harth, J. Mühle, and L. W. Porter, Renewed growth of atmospheric methane, *Geophys. Res. Lett.*, **35**, L22805, doi:10.1029/2008GL036037, 2008.
- Seinfeld, J. H., and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, *John Wiley & Sons, Inc., New York*, 1326 pp., 1998.
- Shindell, D., G. Faluvegi, A. Lacis, J. Hansen, R. Ruedy, and E. Aguilar, Role of tropospheric ozone increases in 20th-century climate change, J. Geophys. Res., 111, D08302, doi:10.1029/2005JD006348, 2006.
- Simpson, I. J., M. P. S. Anderson, S. Meinardi, L. Bruhwiler, N. J. Blake, D. Helmig, F. S. Rowland, and D. R. Blake, Long-term decline of global atmospheric ethane concentrations and implications for methane, *Nature*, **488**, 490-494, 2012.
- Solomon, S., D. Qin, M. Manning, R.B. Alley, T. Berntsen, N. L. Bindoff, Z. Chen, A. Chidthaisong, J. M. Gregory, G. C. Hegerl, M. Heimann, B. Hewitson, B. J. Hoskins, F. Joos, J. Jouzel, V. Kattsov, U. Lohmann, T. Matsuno, M. Molina, N. Nicholls, J. Overpeck, G. Raga, V. Ramaswamy, J. Ren, M. Rusticucci, R. Somerville, T. F. Stocker, P. Whetton, R. A. Wood and D. Wratt, Technical Summary. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2007.

- Solomon, S., G-K. Plattner, R. Knutti and P. Friedlingstein, Irreversible climate change due to carbon dioxide emissions, *Proc. Natl. Acad. Sci. USA*, **106**, 1704-1709, doi:10.1073/pnas.0812721106, 2009.
- Staehelin, J., J. Thudium, R.Buehler, A. Voltz-Thomas, and W. Graber, Trends in surface ozone concentrations at Arosa (Switzerland), *Atmos. Env.*, 28, 75–87, 1994.
- Stenchikov, G, A. Robock, V. Ramaswamy, M. D. Schwarzkopf, K. Hamilton, and S. Ramachandran, Arctic Oscillation response to the 1991 Mount Pinatubo eruption: Effects of volcanic aerosols and ozone depletion, *J. Geophys. Res.*, **107(D24)**, 4803, doi:10.1029/2002JD002090., 2002.
- Tarasova, O. A., C.A. M. Brenninkmeijer, P. Jöckel, A. M. Zvyagintsev, and G.I. Kuznetsov: A climatology of surface ozone in the extra tropics: cluster analysis of observations and model resolts. *Atmos. Chem. Phys.*, 7, 6099-6117, 2007.
- Tsutsumi, Y, Y. Makino, and J. B. Jensen, Vertical and latitudinal distributions of tropospheric ozone over the western Pacific: Case studies from the PACE aircraft missions. J. Geophys. Res., 108(D8), 4251, doi:10.1029/2001JD001374, 2003.
- Thoning, K. W., P. P. Tans, and W. D. Komhyr, Atmospheric carbon dioxide at Mauna Loa observatory, 2. Analysis of the NOAA GMCC data, 1974-1985, J. Geophys. Res., 94, 8549–8565, 1989.
- WMO, WMO-BMBF Workshop on VOC Establishment of a "World Calibration/Instrument Intercomparison Facility for VOC" to Serve the WMO Global Atmosphere Watch (GAW) Programme, GAW Report No. 111, WMO TD No. 756, 1996.
- WMO, Scientific assessment of ozone depletion: 1998. WMO global ozone research and monitoring project—Report No. 44, World Meteorological Organization, Geneva, 1999.
- WMO, World Data Centre for Greenhouse Gases (WDCGG) Data Summary, WDCGG No. 22, 84pp, 2000.
- WMO, Global Atmospheric Watch (GAW) Strategic Plan: 2008–2015, GAW Report No. 172, WMO TD No. 1384, 2007a.
- WMO, World Data Centre for Greenhouse Gases Data Submission and Dissemination Guide, GAW Report No. 174, WMO TD No. 1416, 2007b.
- WMO, A WMO/GAW Expert Workshop on Global Long-Term Measurements of Volatile Organic Compounds (VOCs), GAW Report No. 171, WMO TD No. 1373, 2007c.
- WMO, Technical Report of Global Analysis Method for Major Greenhouse Gases by the World Data Center for Greenhouse Gases, GAW Report No. 184, WMO TD No. 1473, 2009a.
- WMO, Revision of the World Data Centre for

Greenhouse Gases Data Submission and Dissemination Guide, GAW Report No. 188, WMO TD No. 1507, 2009b.

(http://www.wmo.int/pages/prog/arep/gaw/docume nts/GAW_188_web_20100128.pdf, accessed on 26 Feb. 2013)

- WMO, Addendum for the Period 2012-2015 to the WMO Global Atmosphere Watch (GAW) Strategic Plan 2008-2015, GAW Report No. 197, 2011a.
- WMO, Second Tropospheric Ozone Workshop -Tropospheric Ozone Changes: observations, state of understanding and model performances, GAW Report No.199, 2011b.
- WMO, WMO Greenhouse Gas Bulletin No.8, 2012. (http://www.wmo.int/pages/prog/arep/gaw/ghg/GH Gbulletin.html, accessed on 26 Feb. 2013)

APPENDICES

CALIBRATION AND STANDARD SCALES

1. Calibration System in the GAW Programme

Under the Global Atmosphere Watch (GAW) Programme, the Central Calibration Laboratories (CCLs) are assigned to host a Primary (Reference) standards and scale, while the World Calibration Centres (WCCs) are responsible for the scale propagation to the stations via support of calibration standards for certain compounds, conducting instrument calibrations and comparison campaigns and providing training to the stations. A Reference Standard/scale is designated for each variable to be used for all GAW measurements of that variable. Table 1 lists the organizations that serve as WCCs and CCLs for GAW (WMO, 2011). For CFCs and SO₂, no central facilities or quality control systems have so far been established within the GAW Programme, while central facilities for NO_X have only recently been formulated.

Table 1. Overview of the GAW Central Calibration Laboratories (GAW-CCL, Reference Standard) and World Calibration Centres for greenhouse and other related gases. The World Calibration Centres have assumed global responsibilities, except where indicated (Am, Americas; E/A, Europe and Africa; A/O, Asia and the South-West Pacific)

Compounds	Central Calibration Laboratory (Host of Primary Standard)	World Calibration Centre
Carbon Dioxide (CO ₂)	NOAA/ESRL	NOAA/ESRL (round robin) Empa (audits)
carbon isotopes	MPI-BGC	
Methane (CH ₄)	NOAA/ESRL	Empa (Am, E/A) JMA (A/O)
Nitrous Oxide (N ₂ O)	NOAA/ESRL	IMK-IFU
Chlorofluorocarbons (CFCs)		
Sulphur Hexafluoride (SF ₆)	NOAA/ESRL	KMA
Molecular Hydrogen (H ₂)	MPI-BGC	
Surface Ozone (O ₃)	NIST	Empa
Carbon Monoxide (CO)	NOAA/ESRL	Empa
Volatile Organic Compounds (VOCs)	NPL (8 components)	KIT/IMK-IFU
Sulphur Dioxide (SO ₂)		
Nitrogen Oxides (NO _x)		

2. Carbon Dioxide (CO₂)

In 1995, the National Oceanic and Atmospheric Administration's Earth System Research Laboratory (NOAA/ESRL, formerly CMDL; Climate Monitoring and Diagnostics Laboratory) in Boulder, Colorado, USA, took over the role of the Central Calibration Laboratory (CCL) from the Scripps Institution of Oceanography (SIO) in San Diego, California, USA. Since then, NOAA/ESRL has served as the CCL responsible for the maintenance of the GAW Primary Standard for CO₂. As the World Calibration Centre (WCC) for CO₂, NOAA/ESRL maintains a

high-precision manometric system for absolute calibration of CO_2 as the reference for GAW measurements throughout the world (Zhao *et al.*, 1997). It has been recommended that the standards of the GAW measurement laboratories be calibrated at least every three years at the CCL (WMO, 2012).

Under the WMO calibration system, there have been several calibration scales for CO_2 , *e.g.*, SIO-based X74, X85, X87, X93 and X2002 scales and the NOAA/ESRL-based WMO Mole Fraction Scale partially based on previous SIO scales. The

NOAA/ESRL and SIO are working to resolve the possible small differences between their scales. The CCL adopted the WMO X2005 scale, reflecting historical manometric calibrations of the CCL's set of cylinders and the possible small differences between SIO and NOAA/ESRL calibrations. The most current WMO Mole Fraction Scale is the WMO-X2007 scale.

To assess the differences in standard scales among measuring laboratories, NOAA/ESRL organizes intercomparisons or Round Robin experiments endorsed by WMO. It is recommended that round-robins are repeated once at least every three years. Many laboratories participated in the experiments organized in 1991–1992, 1995–1997, 1999–2000, and 2002–2006. Table 2 shows the results of the experiments performed in 2002–2006, in which the mole fractions measured by various laboratories are compared with the mole fractions measured by NOAA/ESRL (Zhou *et al.*, 2009). In addition, many laboratories compare their standards bilaterally or multilaterally.

Table 3 lists laboratories and sites used in the present issue of the *Data Summary* with standard scales of reported data and history of participation in WMO intercomparison experiments.

 Table 2. Round robin results for the mole fraction of carbon dioxide.
 Differences between the mole fractions measured by NOAA (Laboratory minus NOAA, ppm).

Laboratory	Analysis Date	Mole fraction Difference (ppm)		
		Low Medium High		0
		340–350 ppm	350–360 ppm	370–380 ppm
Tohoku Univ.	Jan-03	-0.11	-0.19	-0.29
NIES	Apr-03	-0.10	-0.15	-0.14
MRI	Jul-03	-0.16	-0.16	-0.08
AIST	Sep/Dec-03	-0.11	-0.22	-0.29
JMA	Jan-04	0.13	0.00	-0.02
KMA	Mar/Jun-04	-0.44	-0.12	-0.08
CMA (WLG)	Jul-04	-0.05	-0.19	-0.10
CMA (BJ)	Aug-04	-0.03	-0.20	0.02
Scripps (CMM)	Jun-05	0.23	0.17	0.20
Scripps (ECM II)		0.10	0.02	0.02
LSCE	Oct/Nov-05	-0.05	-0.11	-0.09
Monte Cimone	Oct-02	0.08	0.02	-0.03
Lampedusa	Nov-02	0.05	-0.15	-0.26
Plateau Rosa	Dec-02	-0.02	0.00	-0.05
HMS	Feb-03	0.06	-0.21	-0.06
EC	May-05	0.06	-0.05	-0.06
Penn State Univ.	Sep-05	0.09	-0.07	-0.05
Univ. Heidelberg	Sep/Oct-02	-0.01	-0.06	-0.06
UBA	Oct-02	0.05	-0.11	-0.21
LSCE	Nov/Dec-02	0.10	0.03	0.05
FMI	Jan-03	-0.02	-0.04	-0.14
Univ. Groningen	Oct/Nov-03	0.01	0.02	0.04
MPI-BGC	Nov/Dec-03	0.04	0.02	-0.02
HMS	Mar-04	-0.19	-0.36	-0.59
NIWA	May-05	-0.08	-0.08	-0.09
CSIRO	Sep/Oct-05	-0.01	-0.03	-0.08
Cape Point	Dec-05	-0.02	-0.09	-0.18
NCAR	May/Jun-06	0.07	-0.04	-0.04

Laboratory	WDCGG Filename Code	Calibration Scale	WMO Inter- comparison
AEMET	IZO128N0000	WMO	91/92, 96/97, 99/00
Aichi	MKW234N0000	WMO	
AIST	TKY236N0000	AIST	96/97, 99/00, 02/06
BoM & CSIRO	CGO540S0000, CGO540S0010	WMO	
CMA	WLG236N0000	WMO	96/97, 99/00, 02/06
CNR-ICES & DNA-IAA	JBN762S0000	WMO	
CSIRO	ALT482N0003, CFA519S0003, CGO540S0003, CRI215N0000, CYA766S0001, ESP449N0003, MAA767S0003, MLO519N0003, MQA554S0003, SIS660N0003, SPO789S0003	WMO	91/92, 96/97, 99/00, 02/06
EC	ALT482N0000, ALT482N0005, CDL453N0000, CHM449N0000, CSJ451N0000, EGB444N0100 , ESP449N0000, ETL454N0000 , FSD449N0000, LLB454N0100, WSA443N0000, WSA443N0001	WMO	91/92, 96/97, 99/00, 02/06
EMA	CAI130N0000		
Empa	JFJ646N0000	WMO	
ENEA	LMP635N0001	WMO	91/92, 96/97, 99/00, 02/06
FMI	PAL667N0000	WMO	02/06
НКО	HKG222N0001, HKO222N0001	WMO	
IIICO	HKO222N0000	NIST	
HMS	HUN646N0000, KPS646N0000	WMO	91/92, 96/97, 99/00, 02/06
IAFMS	CMN644N0000	WMO	91/92, 96/97, 02/06
IGP	HUA312S0000	WMO	
IMK-IFU	WNK647N0000, ZUG647N0014	WMO	99/00
INRNE	BEO642N0000	WMO	
IOEP	DIG654N0000		
ITM	ZEP678N0000	WMO	96/97, 99/00
JMA	MNM224N0000, RYO239N0000, YON224N0000	WMO	91/92, 96/97, 99/00, 02/06
KMA	AMY236N0000, KSG762S0000	KRISS	02/06
KSNU	ISK242N0000		
KUP	JFJ646N0003	WMO	
LSCE	AMS137S0000, BGU641N0000, FIK635N0000, LPO648N0000, MHD653N0002, PDM642N0000, PUY645N0000	WMO	91/92, 96/97, 99/00, 02/06
MGO	BER255N0001, KOT276N0001, KYZ240N0001, STC652N0001, TER669N0001, TIK271N0000	WMO	
MMD	DMV504N0000	WMO	
MRI	TKB236N0002		91/92, 96/97, 99/00, 02/06
NIER	GSN233N0103	WMO	1

Table 3. Status of standard scales and calibration/intercomparison for CO₂ at laboratories.

NIES	COI243N0000, HAT224N0000	NIES	96/97, 99/00, 02/06
NIMR	GSN233N0001	WMO	96/97
NIPR & Tohoku Univ.	SYO769S0000		Tohoku Univ.:91/92, 96/97, 99/00, 02/06
NIWA	BHD541S0000	WMO	91/92, 96/97, 99/00, 02/06
NMA	FDT645N0002		
NOAA/ESRL	BRW471N0000, MLO519N0000, SMO514S0000, SPO789S0000, NOAA/ESRL flask network [*]	WMO	91/92, 96/97, 99/00, 02/06
Osaka Univ.	SUI234N0000		
RIVM	KMW653N0000	NIST	
RSE	PRS645N0000	WMO	99/00, 02/06
Saitama	DDR236N0000, KIS236N0000, URW235N0000	WMO	
SAWS	CPT134S0000	WMO	99/00, 02/06
Shizuoka Univ.	HMM234N0000		
UBA	BRT648N0000, DEU649N0000, LGB652N0000, NGL653N0000 SNB647N0000, SSL647N0000, SSL647N0002, WES654N0000, ZGT654N0000, ZSF647N0010, ZUG647N0000	WMO	91/92, 96/97, 99/00, 02/06

* NOAA/ESRL flask network:

ABP312S0001,ALT482N0001,AMS137S0001,ASC107S0001,ASK123N0001,AVI417N0001,AZR638N0001,BAL655N0001,BHD541S0001, BKT500S0001,BME432N0001,BMW432N0001,BRW471N0001,BSC644N0001,CBA455N0001,CGO540S0001,CHR501N0001,CMO445N0001, CRZ146S0001,EIC327S0001,GMI513N0001,GOZ636N0001,HBA775S0001,HPB647N0003,HUN646N0001,ICE663N0001,ITN435N0001, IZO128N0001,KCO204N0001,KEY425N0001,KUM519N0001,KZD244N0001,KZM243N0001,LEF445N0001,LLB454N0001,LLN223N0001, ILMF635N0003,MBC476N0001,MEX419N0001,MHD653N0001,MID528N0001,MKN100S0001,MLD519N0001,NMB123S0001,NWR440N0101, OPW448N0001,PAL667N0001,POC900S0001,POC905S0001,POC910S0001,POC915S0001,POC915N0001,POC915S0001, POC920N0001,POC920S0001,POC925S0001,POC925S0001,POC930S0001,POC935S0001,PSA764S0001,SCS90514S0001,SCS903N0001,SCS915N0001,SCS915N0001,SCS915N0001,SCS921N0001,SCY0769S0001,TAP236N0001, TDF354S0001,THD441N0001,UTA439N0001,UUM244N0001,WIS631N0001,WLG236N0001,ZEP678N0001

3. Methane (CH₄)

The GAW Programmes have established two WCCs for CH₄, the Swiss Federal Laboratory for Materials Testing and Research (Empa), Dübendorf, Switzerland; and the Japan Meteorological Agency (JMA), Tokyo, Japan (WMO, 2007). In addition, the Central Calibration Laboratory for CH₄ has been established at NOAA/ESRL (Dlugokencky *et al.*, 2005; WMO, 2007).

The NOAA04 scale has been designated as the Primary Standard of the GAW Programme. This scale results in CH_4 mole fractions that are a factor of 1.0124 higher than the previous NOAA scale (Dlugokencky *et al.*, 2005).

Table 4 summarises the methane standard scales used by laboratories contributing to the WDCGG and lists tentative multiplying conversion factors applied for analysis in this issue of the *Data Summary*. The standard is the NOAA04 scale, and conversion factors were calculated from the results of comparisons with other laboratories performed bilaterally or multilaterally before the establishment of the GAW Standard.

The former CMDL scale is lower than an absolute gravimetric scale (Aoki *et al.*, 1992) by ~1.5% (Dlugokencky *et al.*, 1994) and lower than the AES (Atmospheric Environment Service, currently EC) scale by a factor of 1.0151 (Worthy *et al.*, 1998). The former CMDL scale can be converted to the Tohoku University standard by multiplying by 1.0121 (Dlugokencky *et al.*, 2005). The conversion factors 1.0124 / 1.0151 = 0.9973 and 1.0124 / 1.0121 = 1.0003 have been adopted for comparisons with the NOAA04 scale.

Laboratory	WDCGG Filename Code	Calibration Scale	Conversion Factor
AEMET	IZO128N0000	NOAA04	1
AGAGE	CGO540S0011, CGO540S0013, CMO445N0011, MHD653N0011, MHD653N0013, RPB413N0000, RPB413N0011, SMO514S0014, SMO514S0016, THD441N0000	Tohoku Univ.	1.0003
CHMI	KOS649N0000	CHMI	
CMA	WLG236N0000	NOAA04	1
CSIRO	ALT482N0003, CFA519S0003, CGO540S0003, CRI215N0000, CYA766S0001, ESP449N0003, MAA767S0003, MLO519N0003, MQA554S0003, SIS660N0003,SPO789S0003	NOAA04	1
EC	ALT482N0000, CDL453N0000, CHM449N0000, EGB444N0100, ESP449N0000, ETL454N0000, FSD449N0000, LLB454N0100, WSA443N0000	NOAA04	1
Empa	JFJ646N0000	NOAA04	1
ENEA	LMP635N0001	NOAA04	1
FMI	PAL667N0000	NOAA04	1
ISAC	CMN644N0000	NOAA04	1
JMA	MNM224N0000, RYO239N0000, YON224N0000	NOAA04	1
KMA	AMY236N0000	KRISS	
KSNU	ISK242N0000		
LSCE	AMS137S0002, BGU641N0000, LPO648N0000, PDM642N0000, PUY645N0001	NOAA83	1.0124
	FIK635N0000, MHD653N0007		
MGO	TER669N0001, TIK271N0000	NOAA04	1
MRI	TKB236N0000		0.9973
NIER	GSN233N0103	NOAA04	1
NIES	COI243N0000, HAT224N0000	NIES	0.9973
NIMR	GSN233N0001	SIO X97	
	BRW471N0000, MLO519N0000, NOAA/ESRL flask network*	NOAA04	1
NOAA/ESRL	KPA431N0001, LEF445N0001, MCM777S0001, NZL543S0001, POC935S0001, SGI354S0001, SIO432N0001	NOAA/CMDL	Factor 1 1.0003 1 0.9973 1 0.9973
RIVM	KMW653N0000	NIST	0.9973
RSE	PRS645N0000	NOAA04	1
SAWS	CPT134S0000	NOAA04	1
UBA DEU649N0000, NGL653N0000, SSL647N0000, ZGT654N0000, ZSF647N0010, ZUG647N0000		NOAA04	1

Table 4. Status of the standard scales of CH₄ at laboratories with conversion factors.

NOAA/ESRL flask network:

ABP312S0001,ALT482N0001,AMS137S0001,ASC107S0001,ASK123N0001,AVI417N0001,AZR638N0001,BAL655N0001,BKT500S0001, BME432N0001,BMW432N0001,BRW471N0001,BSC644N0001,CBA455N0001,CGO540S0001,CHR501N0001,CMO445N0001,CRZ146S0001, EIC327S0001,GMI513N0001,GOZ636N0001,HBA775S0001,HPB647N0003,HUN646N0001,ICE663N0001,ITN435N0001,IZO128N0001, KEY425N0001,KUM519N0001,KZD244N0001,KZM243N0001,LLB454N0001,LLN223N0001,LMP635N0003,MBC476N0001,MEX419N0001, MHD653N0001,MID528N0001,MKN100S0001,MLO519N0001,NMB123S0001,NWR440N0101,OPW448N0001,OXK650N0001,PAL667N0001, POC900N0001,POC905N0001,POC905S0001,POC910N0001,POC915N0001,POC915S0001,POC920N0001,POC920S0001, POC925N0001,POC925S0001,POC930N0001,POC930S0001,PSA764S0001,PTA438N0001,SCB903N0001,SCS903N0001,SCS906N0001, SCS909N0001,SCS912N0001,SCS915N0001,SCS918N0001,SCS921N0001,SEY104S0001,SGP436N0001,SHM452N0001,SMO514S0001, SPO789S0001,STM666N0001,SUM672N0001,ZY0769S0001,TAP236N0001,TDF354S0001,THD441N0001,UTA439N0001,UUM244N0001, WIS631N0001,WKT431N0001,WLG236N0001,ZEP678N0001

4. Nitrous Oxide (N₂O)

The Halocarbons and other Atmospheric Trace Species (HATS) Group of NOAA/ESRL maintains a set of standards for N₂O (Hall *et al.*, 2001). The NOAA-2006 N₂O scale (Hall *et al.*, 2007), revised and updated to NOAA-2006A in 2011 to deal with drifting in secondary standards, has been designated as the Primary Standard of the GAW Programme. This group analyses the standards of laboratories, including those of Environment Canada (EC) and the Australian Commonwealth Scientific and Industrial Research Organisation (CSIRO). Karlsruhe Institute of Table 5. Status of the standard scales of N₂O at laboratories. Technology, Institute for Meteorology and Climate Research, Germany, serves as the GAW WCC.

The SIO-98 scale is essentially equivalent to the NOAA-2006 scale, with an average difference of 0.01% over the range of 299–319 ppb; the NOAA-2000 scale can be converted to the 2006 scale by using the factor 0.999402 (Hall *et al.*, 2007). A constant ratio of 1.0017 between CSIRO and AGAGE data was used by Huang *et al.* (2008), and a factor of 1 / 1.0017 = 0.9983 has been used in this report to convert CSIRO scale to the NOAA-2006 scale.

Laboratory	WDCGG Filename Code	Calibration Scale	Conversion Factor
AEMET	IZO128N0000	NOAA-2006	1
AGAGE	ADR651N0010, CGO540S0011, CGO540S0012, CGO540S0013, CMO445N0010, CMO445N0011, MHD653N0011, MHD653N0013, RPB413N0000, RPB413N0010, RPB413N0011, SMO514S0014, SMO514S0015, SMO514S0016, THD441N0000	SIO 1998	1
CSIRO	ALT482N0003, CFA519S0003, CGO540S0003, CRI215N0000, CYA766S0001, ESP449N0003, MAA767S0003, MLO519N0003, MQA554S0003, SIS660N0003, SPO789S0003	NOAA-2006A	1
Empa	JFJ646N0000	SIO 1998	1
ENEA	LMP635N0001	NOAA-2006	1
ISAC	CMN644N0000	NOAA-2006	1
JMA	RYO239N0000	NOAA-2006A	1
KMA	AMY236N0000	KRISS	
MRI	MMB243N0000		
Nagoya Univ.	NGY235N0000		
NIER	GSN233N0103	NOAA-2006	1
NIES	HAT224N0000		
NILU	ZEP678N0000		
NIMR	GSN233N0001	WMO X97	
NOAA/ESRL	ALT482N0001, BRW471N0001, BRW471N0011, CGO540S0001, KUM519N0001, MLO519N0001, MLO519N0011, NWR440N0001, NWR440N0011, SMO514S0001, SMO514S0011, SPO789S0001, SPO789S0011	NOAA/CMDL	0.999402
NOAA/ESRL	ALT482N0004, ALT482N0006, BRW471N0003, BRW471N0005, CGO540S0009, CGO540S0014, KUM519N0002, MHD653N0008, MLO519N0005, MLO519N0006, MLO519N0010, NWR440N0003, NWR440N0004, PSA764S0000, SMO514S0008, SMO514S0009, SPO789S0005, SPO789S0006, SUM672N0002, THD441N0002	NOAA-2006	1
NOAA/ESRL	BRW471N0010, NWR440N0010, SMO514S0010, SPO789S0010, SUM672N0000,	NOAA-2006A	1
SAWS	CPT134S0000	NOAA/CMDL	0.999402
UBA	SSL647N0000, ZSF647N0010	SIO 1998	1

5. Surface Ozone (O₃)

INRNE

BEO642N0000

The National Institute of Standards and Technology (NIST) has developed and deployed Standard Reference Photometers (SRPs) in the USA and other countries. The GAW has designated SRP #2 maintained by NIST as the Primary Standard for the GAW Programme, making NIST the CCL for O₃. The Swiss Federal Laboratory for Materials Testing and Research (Empa) maintains NIST SRP #15 as the reference and is the GAW WCC for surface ozone (Hofer *et al.*, 1998). The traceability and uncertainty of O_3 within the GAW network were reported by Klausen *et al.*, (2003). Regional Calibration Centre has been established at Observatorio Central Buenos Aires, Argentina (WMO, 2007).

Audit Laboratory WDCGG Filename Code **Calibration Scale Empa-WCC** WMO IZO128N0000 96, 98, 00, 04 (NIST & Empa) AEMET DON637N0000, MHN639N0000, NIA642N0000, NPL (U.K.) ROQ640N0000, SPM639N0000 ALG447N0000, BRA450N0000, CHA446N0000, AQRB EGB444N0000, ELA449N0000, EST451N0000, KEJ444N0000, SAT448N0000 AWI NMY770S0000 WMO BMKG & Empa BKT500S0000 99, 01, 04, 07, 08, 11 (NIST & Empa) CGO540S0000 BoM & CSIRO WMO 02 CGO540S0018 (NIST & Empa) WMO CHMI KOS649N0000 (NIST & Empa) DEFRA EDM655N0000 WMO DWD 97, 06, 11 HPB647N0000 (NIST & Empa) IRB645N0000, KVK646N0000, KVV646N0000, WMO EARS ZRN646N0000 (NIST & Empa) **EMA** CAI130N0000 JFJ646N0000, PAY646N0000, WMO Empa Jungfraujoch: 99, 06 RIG646N0000 (NIST & Empa) WMO Empa & KMD MKN100S0000 00, 02, 05, 06, 08, 10 (NIST & Empa) AHT662N0000, OUL666N0000, PAL667N0000, Pallas-Sammaltunturi: FMI UTO659N0000, VIR660N0000 97, 03, 07 WMO HMS KPS646N0000 (NIST & Empa) ANG638N0000, BEJ638N0000, CAS639N0000, FUN132N0000, LIS638N0000, MVH638N0000, IM PEN640N0000

Table 6. Status of surface ozone standard scales at laboratories

WMO

(NIST & Empa)

IOEP	DIG654N0000	WMO (NIST & Empa)	
ISAC	CMN644N0000, PYR227N0000, DCC775S0000	WMO (NIST & Empa)	
IVL	VDL664N0000	WMO (NIST & Empa)	
JMA	MNM224N0000, RYO239N0000, SYO769S0002, TKB236N1004, YON224N0000	WMO (NIST & Empa)	Ryori: 05
KSNU	ISK242N0000		
LA	PDM642N0001	EMD (France)	
LAMP	PUY645N0001	EMD (France)	
LEGMA	DBL656N0000, RCV656N0000, ZSN657N0000	WMO (NIST & Empa)	
MMD	DMV504N0000, TAR504N0000	WMO (NIST & Empa)	Datum Valley GAW Baseline Station: 08
NILU	ZEP678N0000	WMO (NIST & Empa)	97, 01, 05
NIWA	BHD541S0000	WMO (NIST & Empa)	
NMA	FDT645N0002		
NOAA/ESRL	ARH777S0000, BMW432N0004, BRW471N0004, ICE663N0004, LAU545S0004, MLO519N0004, NWR440N0002, NWR440N0204, RPB413N0004, SMO514S0004, SPO789S0004, SUM672N0004, THD441N0004 (1)		Mauna Loa: 03 Barrow: 08 Lauder: 10
	MCM777S0004		
NUI	MHD653N0000	NPL (U. K.)	96, 98, 02, 05, 09
ONM	ASK123N0000	WMO (NIST & Empa)	03, 07
PolyU	HKG222N0000		
RIVM	KMW653N0001, KMW653N0002		
Roshydromet	DAK654N0000, SHP659N0000		
RSE	PRS645N0000	INRIM (Itary)	
SAWS	CPT134S0000	WMO (NIST & Empa)	97, 98, 02, 06, 11
SMN	USH354S0000, USH354S0001	WMO (NIST & Empa)	98, 03, 08
SMNA	LQO322S0000, PIL331S0000, SJA349S0000, USH354S0002	WMO (NIST & Empa)	
UBA	BRT648N0000, DEU649N0000, LGB652N0000, NGL653N0000, SNB647N0000, SSL647N0000		Zugspitze: 96, 97, 01 Sonnblick: 98 Zugspitze/Schneefern erhaus: 06

UNA	SNL325S0000		
Univ. Malta	GLH636N0000	UMEG	
Univ. York	CVO116N0001	NPL (U.K.)	

6. Carbon Monoxide (CO)

The Swiss Federal Laboratory for Materials Testing and Research (Empa) serves as the WCC under GAW based on its secondary standards calibrated against the

standard at NOAA/ESRL designated as the Primary Standard for GAW. The most recent scale is WMO CO X2004.

Laboratory	WDCGG Filename Code	Calibration Scale	Audit Empa-WCC
AEMET	IZO128N0000	WMO 2004 (NOAA/ESRL & Empa)	00, 04, 09
AGAGE	CGO540S0011, MHD653N0011	CSIRO	
BMKG & Empa	BKT500S0000	WMO 2000 (NOAA/ESRL & Empa)	04, 07, 08, 11
CHMI	KOS649N0000	CHMI	
CSIRO	ALT482N0003, CFA519S0003, CGO540S0003, CRI215N0000, CYA766S0001, ESP449N0003, MAA767S0003, MLO519N0003, MQA554S0003, SIS660N0003, SPO789S0003	ESP449N0003, CSIPO	
DWD	HPB647N0000	WMO (NOAA/ESRL & Empa)	97, 06, 11
EARS	KVV646N0000	CHMI	
EC	ALT482N0000, CDL453N0000, CHM449N0000, EGB444N0100, ESP449N0000, ETL454N0000, FSD449N0000, LLB454N0100, WSA443N0000	WMO (NOAA/ESRL & Empa)	Alert: 04
Empa	JFJ646N0000, PAY646N0000, RIG646N0000	WMO 2000 (NOAA/ESRL & Empa)	Jungfraujoch: 99,06
Empa &KMD	MKN100S0000	WMO 2000 (NOAA/ESRL & Empa)	05, 06, 08, 10
INRNE	BEO642N0000	WMO (NOAA/ESRL & Empa)	
ISAC	CMN644N0000, CMN644N0001	WMO 2004 (NOAA/ESRL & Empa)	
	MNM224N0001, RYO239N0001, YON224N0001	JMA	
JMA	MNM224N0002, RYO239N0002, YON224N0002	WMO 2000 (NOAA/ESRL)	Ryori:05
LA	PDM642N0001	EMD (France)	
LAMP	PUY645N0001	EMD (France)	
LSCE	AMS137S0000	WMO 2004 (NOAA/ESRL & Empa)	08
NOAA/ESRL	NOAA/ESRL flask network*	WMO (NOAA/ESRL & Empa)	Mauna Loa: 03 Barrow: 08 Mt. Waliguan: 00, 04, 09

PolyU	HKG222N0000		
RIVM	KMW653N0000, KTB653N0000		
SAWS	CPT134S0000	WMO (NOAA/CMDL)	98, 02, 06, 11
SMN	USH354S0000, USH354S0001	WMO (NOAA/ESRL & Empa)	98, 03, 08
SMNA	USH354S0002	WMO (NOAA/ESRL & Empa)	
UBA	NGL653N0000, SNB647N0000, SSL647N0000, ZUG647N0000, ZSF647N0001	WMO (NOAA/CMDL)	Zugspitze: 01 Sonnblick: 98
Univ. Malta	GLH636N0000		
Univ. York	CVO116N0001	WMO 2000 (NOAA/ESRL & Empa)	

NOAA/ESRL flask network:

ALT482N0001,ASC107S0001,ASK123N0001,AZR638N0001,BAL655N0001,BHD541S0001,BKT500S0001,BME432N0001,BMW432N0001, BRW471N0001,BSC644N0001,CBA455N0001,CGO540S0001,CHR501N0001,CMO445N0001,CRZ146S0001,EIC327S0001,GMI513N0001, GOZ636N0001,HBA775S0001,HPB647N0003,HUN646N0001,ICE663N0001,ITN435N0001,IZO128N0001,KEY425N0001,KUM519N0001, KZD244N0001,KZM243N0001,LEF445N0001,LLN223N0001,LMP635N0003,MBC476N0001,MHD653N0001,MID528N0001,MID528N0001,MID528N0001,MC519N0001, NMB123S0001,NWR440N0101,OXK650N0001,PAL667N0001,POC900N0001,POC905N0001,POC905S0001,POC910N0001,POC910S0001, POC915N0001,POC915S0001,POC920N0001,POC920S0001,POC925S0001,POC930N0001,POC930S0001,POC935SN000, POC935S0001,PSA764S0001,PTA438N0001,RPB413N0001,SCS9003N001,SCS909N0001,SCS912N0001,SCS915N0001, SCS918N0001,SCS921N0001,SEY104S0001,SGP436N0001,SHM452N0001,SMO514S0001,STM666N0001,ZEP678N0001 TAP236N0001,TIDF354S0001,THD441N0001,UTA439N0001,UUM244N0001,WIS631N0001,WLG236N0001,ZEP678N0001

References

- Aoki, S., T. Nakazawa, S. Murayama and S. Kawaguchi, Measurements of atmospheric methane at the Japanese Antarctic station, Syowa, *Tellus, Ser. B*, 44, 273–281, 1992.
- Dlugokencky, E. J., L. P. Steele, P. M. Lang, and K. A. Masarie, The growth rate and distribution of atmospheric methane, *J. Geophys. Res.*, **99**, 17021-17043, 1994.
- Dlugokencky, E. J., R. C. Myers, P. M. Lang, K. A. Masarie, A. M. Crotwell, K. W. Thoning, B. D. Hall, J. W. Elkins, and L. P. Steele, Conversion of NOAA atmospheirc dry air CH4 mole fractions to a gravimetrically prepared standard scale, J. Geophys. Res., 110, D18306, doi: 10.1029/2005JD006035, 2005.
- Hall, B. D. (ed.), J. W. Elkins, J. H. Butler, S. A. Montzka, T. M. Thompson, L. Del Negro, G. S. Dutton, D. F. Hurst, D. B. King, E. S. Kline, L. Lock, D. Mactaggart, D. Mondeel, F. L. Moore, J. D. Nance, E. A. Ray, and P. A. Romashkin, Halocarbons and Other Atmospheric Gases, Section 5 in Climate Monitoring and Diagnostics Laboratory, Summary Report N. 25, 1998–1999, R. S. Schnell, D. B. King, R. M. Rosson (eds.), NOAA-CMDL, Boulder, CO., USA, 2001.
- Hall, B. D., G. S. Dutton, and J. W. Elkins, The NOAA nitrous oxide standard scale for atmospheric observations, *J. Geophys. Res.*, **112**, D09305, doi:10.1029/2006JD007954,

2007.

- Hofer, P., B. Buchmann and A. Herzog, Traceability, Uncertainty and Assessment Criteria of Surface Ozone Measurements, *EMPA-WCC Report* 98/5, 20 pp, 1998.
- Huang, J., A. Golombek, R. Prinn, R. Weiss, P. Fraser,
 P. Simmonds, E J. Dlugokencky, B. Hall, J. Elkins, P. Steele, R. Langenfelds, P. Krummel,
 G. Dutton, and L. Porter, Estimation of regional emissions of nitrous oxide from 1997 to 2005 using multinetowrk measurements, a chemical transport model, and an inverse method, *J. Geophys. Res.*, 113, D17313, doi:10.1029/2007JD009381, 2008.
- Klausen, J., C. Zellweger, B. Buchmann, and P. Hofer, Uncertainty and bias of surface ozone measurements at selected Global Atmosphere Watch sites, *J. Geophys. Res.*, **108(D19)**, 4622, doi:10.1029/2003JD003710, 2003.
- WMO, WMO Global Atmosphere Watch (GAW) Strategic Plan: 2008–2015, WMO/GAW Report No. 172, 108pp, 2007.
- WMO, Addendum for the Period 2012 2015 to the WMO Global Atmosphere Watch (GAW) Strategic Plan 2008 – 2015, WMO/GAW Report No. 197, 57pp, 2011.
- WMO, Report of the 16th WMO/IAEA Meeting on Carbon Dioxide, Other Greenhouse Gases and Related Tracers Measurement Techniques (GGMT-2011), ed. Gordon Brailsford,

WMO/GAW Report No.206, 67pp, 2012.

- Worthy, D. E. J., I. Levin, N. B. A. Trivett, A. J. Kuhlmann, J. F. Hopper and M. K. Ernst, Seven years of continuous methane observations at a remote boreal site in Ontario, Canada, J. Geophys. Res., 103, 15995–16007, 1998.
- Zhao, C. L., P. P. Tans, and K. W. Thoning, A high precision manometric system for absolute calibrations of CO₂ in dry air, *J. Geophys. Res.*,

102, 5885-5894, 1997.

Zhou, L. X., D. Kitzis, P. P. Tans, "Report of the fourth WMO round-robin reference gas intercomparison, 2002–2007" in the report of the 14th WMO/IAEA meeting of experts on carbon dioxide, other greenhouse gases and related tracers measurement techniques, Helsinki, Finland, 10–13 September 2007, edited by T. Laurila, WMO/GAW Report No. 186, 2009

LIST OF ABBREVIATIONS IN THE CALIBRATION AND STANDARD SCALES

AEMET	Agencia Estatal de Meteorología (Spain)							
AGAGE	Advanced Global Atmospheric Gases Experiment							
Aichi	Aichi Prefecture (Japan)							
AIST	National Institute of Advanced Industrial Science and Technology (Japan)							
AQRB	Air Quality Research Branch, Meteorological Service of Canada (Canada)							
AWI	Alfred Wegener Institute for Polar and Marine Research (Germany)							
BMKG	Agency for Meteorology, Climatology and Geophysics (Indonesia)							
BoM	Commonwealth Bureau of Meteorology (Australia)							
CHMI	Czech Hydrometeorological Institute (Czech Republic)							
CMA	China Meteorological Administration (China)							
CNR-ICES	International Centre for Earth Sciences, Consiglio Nazionale delle Ricerche (Italy)							
CSIRO	Commonwealth Scientific and Industrial Research Organisation (Australia)							
DEFRA	Department for Environment, Food and Rural Affairs (United Kingdom)							
DNA-IAA	Direccion Nacional del Antartico-Instituto Antartico Argentino (Argentina)							
DWD	Deutscher Wetterdienst (German Meteorological Service, Germany)							
EARS	Environmental Agency of the Republic of Slovenia							
EC	Environment Canada (Canada)							
EMA	Egyptian Meteorological Authority (Egypt)							
EMD	Ecole des Mines de Douai (France)							
Empa	Swiss Federal Laboratories for Material Testing and Research (Switzerland)							
ENEA	Italian National Agency for New Technology, Energy and the Environment							
	(Italy)							
FMI	Finnish Meteorological Institute							
GAGE	Global Atmospheric Gases Experiment							
GAW	Global Atmosphere Watch (WMO)							
HATS	Halocarbons and other Atmospheric Trace Species Group, NOAA/ESRL							
НКО	Hong Kong Observatory (Hong Kong, China)							
HMS	Hungarian Meteorological Service (Hungary)							
IAFMS	Italian Air Force Meteorological Service (Italy)							
IEK-8	Institute for Energy and Climate Research: Troposphere (IEK-8), Research							
ICD	Center Juelich GmbH (Germany)							
IGP	Instituto Geofísico del Perú (Peru)							
IM	Instituto de Meteorologia (Portugal)							
IMK-IFU	Institut für Meteorologie und Klimatologie, Atmosphärische							
INMH	Umweltforschung, Forschungszentrum Karlsruhe (Germany) National Meteorological Administration (Romania)							
INRIM	Istituto Nazionale di Ricerca Metrologica (Italy)							
INRNE	Institute for Nuclear Research and Nuclear Energy (Bulgaria)							
IOEP	Institute of Environmental Protection (Poland)							
ISAC	Istituto di Scienze dell'Atmosfera e del Clima, Consiglio Nazionale delle							
ISAC	Ricerche (Italy)							
ITM	Department of Applied Environmental Science, Stockholm University,							
# # 17#	(Sweden)							
IVL	Swedish Environmental Research Institute, Göteborg (Sweden)							
JMA	Japan Meteorological Agency (Japan)							
KMA	Korea Meteorological Administration (Republic of Korea)							
KMD	Kenya Meteorological Department (Kenya)							
	renju neveororgiour population (renju)							

KRISS KSNU KUP	Korea Research Institute of Standards and Science (Republic of Korea) Kyrgyz State National University (Kyrgyzstan) Physics Institute, Climate and Environmental Physics, University of Bern
-	(Switzerland)
LAMP	Laboratoire de Météorologie Physique (France)
LEGMA	Latvian Environment, Geology and Meteorology Agency (Latvia)
LSCE	Laboratoire des Sciences du Climat et de l'Environnement (France)
MGO	Main Geophysical Observatory, Roshydromet (Russian Federation)
MPI-BGC	Max-Planck Institute (MPI) for Biogeochemistry in Jena (Germany)
MMD	Malaysian Meteorological Department
MRI	Meteorological Research Institute, JMA (Japan)
Nagoya Univ.	Nagoya University (Japan)
NIER	National Institute of Environmental Research (Republic of Korea)
NIES	National Institute for Environmental Studies (Japan)
NILU	Norwegian Institute for Air Research (Norway)
NIMR	National Institute of Meteorological Reserch, KMA (Republic of Korea)
NIPR	National Institute of Polar Research (Japan)
NIST	National Institute of Standards and Technology (USA)
NIWA	National Institute of Water & Atmospheric Research (New Zealand)
NMA	National Meteorological Administration (Romania)
NOAA/ESRL	Earth System Research Laboratory, NOAA (USA)
NPL	National Physical Laboratory (United Kingdom)
NUI	National University of Ireland, Galway (Ireland)
ONM Osaka Univ	Office National de la Météorologie (Algeria)
Osaka Univ.	Osaka University (Japan)
PolyU	Hong Kong Polytechnic University (Hong Kong, China)
RIVM Boshydromot	National Institute for Health and Environment (Netherlands) Federal Service for Hydrometeorology and Environmental Monitoring
Roshydromet	(Russian Federation)
RSE	Ricerca sul Sistema Elettrico (Italy)
Saitama	Saitama Prefecture (Japan)
SAWS	South African Weather Service (South Africa)
	Shizuoka University (Japan)
SMN(SMNA)	Servicio Meteorológico Nacional (Argentina)
Tohoku Univ.	Tohoku University (Japan)
UBA	Umweltbundesamt (Germany)
UNA	Universidad Nacional de Asuncion (Paraguay)
Univ. Malta	University of Malta (Malta)
Univ. York	University of York (United Kingdom of Great Britain and Northern Ireland)
WDCGG	World Data Centre for Greenhouse Gases, operated by JMA, Japan (WMO)
WMO	

Station	Country/Territory	Index Number	Latitude (° ')	Location Longitude (° ')	Altitude (m)	e Parameter
REGION I (Africa)						
Amsterdam Island	France	AMS137S00	37 47 S	77 31 E	55	CH ₄ , CO ₂
Amsterdam Island	France	AMS137S00	37 47 S	77 31 E	55	CH ₄ , CO, CO ₂ , VOCs
Ascension Island	United Kingdom of Great Britain and Northern Ireland	ASC107S00	7 55 S	14 25 W	54	¹³ CH ₄ , ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂ , VOCs
Assekrem	Algeria	ASK123N00	23 16 N	5 37 E	2710	O ₃
Assekrem	Algeria	ASK123N00	23 16 N	5 37 E	2710	¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂ , VOCs
Cairo	Egypt	CAI130N00	30 04 N	31 16 E	35	CO ₂ , O ₃
Cape Point	South Africa	CPT134S00	34 21 S	18 28 E	230	CH ₄ , CO ₂
Cape Point	South Africa	CPT134S00	34 21 S	18 28 E	230	CH ₄ , CO, CO ₂ , N ₂ O, O ₃
Cape Verde Observatory	Cape Verde	CVO116N00	16 50 N	24 52 W	10	CO, NO, NO ₂ , NO _x , NO _y , O ₃ , VOCs
Crozet	France	CRZ146S00	46 27 S	51 51 E	120	¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂ , VOCs
Funchal	Portugal	FUN132N00	32 38 N	16 52 W	58	O ₃
Gobabeb	Namibia	NMB123S00	23 34 S	15 01 E	461	¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂
Izaña (Tenerife)	Spain	IZO128N00	28 18 N	16 30 W	2367	CH ₄ , CO, CO ₂ , N ₂ O, O ₃ , SF ₆
Izaña (Tenerife)	Spain	IZO128N00	28 18 N	16 30 W	2367	¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂ , VOCs
Mahe Island	Seychelles	SEY104S00	4 40 S	55 10 E	7	¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂ , VOCs
Mt. Kenya	Kenya	MKN100S00	0 03 S	37 17 E	3678	CO, O ₃
Mt. Kenya	Kenya	MKN100S00	0 03 S	37 17 E	3678	¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO ₂ , VOCs
REGION II (Asia)						
Anmyeon-do	Republic of Korea	AMY236N00	36 31 N	126 19 E	47	CFCs, CH ₄ , CO ₂ , N ₂ O, SF ₆
Bering Island	Russian Federation	BER255N00	55 12 N			CO ₂
Cape Ochi-ishi	Japan	COI243N00		145 30 E		CH ₄ , CO ₂ , HCFCs, HFCs
Cape Rama	India	CRI215N00	15 04 N	73 49 E		¹³ CO ₂ , CH ₄ , CO, CO ₂ , H ₂ , N ₂ O
Everest - Pyramid	Nepal	PYR227N00	27 57 N	86 48 E	5079	
Gosan	Republic of Korea	GSN233N00	33 16 N	126 10 E		CFCs, CH4, CO ₂ , N ₂ O
Gosan	Republic of Korea	GSN233N01	33 10 N	126 05 E		CH_4 , CO_2 , N_2O
Hamamatsu	Japan	HMM234N00	34 43 N	137 43 E		CO ₂
Hateruma	Japan	HAT224N00	24 03 N	123 47 E	10	CH ₄ , CO ₂ , HCFCs, HFCs, N ₂ O
Hok Tsui	Hong Kong, China	HKG222N00	22 12 N	114 15 E		CO ₂
Hok Tsui	Hong Kong, China	HKG222N00	22 12 N	114 15 E	60	CO, O ₃
Issyk-Kul	Kyrgyzstan	ISK242N00	42 37 N	76 58 E		CH_4 , CO_2 , O_3
Kaashidhoo	Maldives	KCO204N00	4 58 N	73 28 E		¹³ CO ₂ , CH ₄ , CO ₂
King's Park	Hong Kong, China	HKO222N00	22 18 N	114 10 E		CO ₂
Kisai	Japan	KIS236N00	36 04 N	139 33 E	13	CO ₂
Kotelny Island	Russian Federation	KOT276N00	76 00 N	137 52 E	5	CO ₂
Kyzylcha	Uzbekistan	KYZ240N00	40 52 N	66 09 E		CO_2
Lulin	China	LLN223N00	23 28 N	120 52 E		¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂
Memanbetsu	Japan	MMB243N00	43 55 N	144 11 E		N ₂ O
Mikawa-Ichinomiya	Japan	MKW234N00		137 25 E		CO ₂
Minamitorishima	Japan	MNM224N00	24 16 N	153 58 E		CH_4 , CO , CO_2 , O_3
Mt. Dodaira	Japan	DDR236N00	36 00 N	139 10 E		CO ₂
Mt. Waliguan	China	WLG236N00	36 16 N	100 54 E		CH ₄ , CO ₂
Mt. Waliguan	China	WLG236N00	36 16 N	100 54 E		¹³ CH ₄ , ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂

LIST OF OBSERVATIONAL STATIONS

Location Country/Territory Index Number Latitude Longitude Altitude Parameter Station (°') (°') (m) NGY235N00 35 08 N 136 58 E 35 N₂O Nagoya Japan 43 15 N 77 52 E 2519 ¹³CO₂, C¹⁸O₂, CH₄, CO, CO₂, H₂ Plateau Assy Kazakhstan KZM243N00 Ryori Japan RYO239N00 39 01 N 141 49 E 260 CCl₄, CFCs, CH₃CCl₃, CH₄, CO, CO₂, N₂O, O₃ 412 ¹³CO₂, C¹⁸O₂, CH₄, CO, CO₂, H₂ Sary Taukum Kazakhstan KZD244N00 44 27 N 75 34 E Shangdianzi China SDZ240N00 40 38 N 117 06 E 287 CH₄, CO₂ Ship between Ishigaki 24 07 N 123 49 E 5 CO₂ Japan SIH224N00 Island and Hateruma Island South China Sea (03N) N/A 3 00 N 105 00 E 15 ¹³CO₂, C¹⁸O₂, CH₄, CO, CO₂, H₂ SCS903N00 South China Sea (06N) N/A 600 N 107 00 E 15 ¹³CO₂, C¹⁸O₂, CH₄, CO, CO₂, H₂ SCS906N00 South China Sea (09N) N/A SCS909N00 900 N 109 00 E 15 ¹³CO₂, C¹⁸O₂, CH₄, CO, CO₂, H₂ South China Sea (12N) 111 00 E 15 ¹³CO₂, C¹⁸O₂, CH₄, CO, CO₂, H₂ N/A SCS912N00 12 00 N South China Sea (15N) N/A SCS915N00 15 00 N 113 00 E 15 ¹³CO₂, C¹⁸O₂, CH₄, CO, CO₂, H₂ South China Sea (18N) 18 00 N 113 00 E 15 ¹³CO₂, C¹⁸O₂, CH₄, CO, CO₂, H₂ N/A SCS918N00 South China Sea (21N) N/A SCS921N00 21 00 N 114 00 E 15 ¹³CO₂, C¹⁸O₂, CH₄, CO, CO₂, H₂ Suita SUI234N00 34 49 N 135 31 E 63 CO₂ Japan Tae-ahn Peninsula Republic of Korea TAP236N00 36 43 N 126 07 E 20 ¹³CH₄, ¹³CO₂, C¹⁸O₂, CH₄, CO, CO₂, H₂, VOCs Takayama Japan TKY236N00 36 08 N 137 25 E 1420 CO₂ Tiksi 71 35 N 128 55 E 8 CH4, CO2 **Russian Federation** TIK271N00 Tsukuba Japan TKB236N00 36 02 N 140 07 E 26 CH4, CO2 Tsukuba Japan TKB236N10 36 02 N 140 07 E 25 O₃ Ulaan Uul Mongolia UUM244N00 44 27 N 111 04 E 914 ¹³CO₂, C¹⁸O₂, CH₄, CO, CO₂, H₂ Urawa Japan URW235N00 35 52 N 139 35 E 10 CO₂ Yonagunijima Japan YON224N00 24 28 N 123 01 E 30 CH₄, CO, CO₂, O₃ **REGION III (South America)** Arembepe Brazil ABP312S00 12 46 S 38 10 W 0 CH4, CO, CO2, N2O ABP312S00 0 13CO2, C18O2, CH4, CO2, VOCs Arembepe Brazil 12 46 S 38 10 W Bird Island United Kingdom of SGI354S00 54 00 S 38 02 W 30 CH₄, CO₂ Great Britain and Northern Ireland Easter Island Chile EIC327S00 27 07 S 109 27 W 50 13CO2, C18O2, CH4, CO, CO2, H2, **VOCs** 12 04 S Huancayo Peru 75 31 W 3313 CO₂ HUA312S00 La Quiaca Observatorio Argentina LQO322S00 22 06 S 65 35 W 3459 O3 Pilar Observatorio Argentina PIL331S00 31 40 S 63 53 W 338 O₃ 67 49 W San Julian Aero Argentina SJA349S00 49 18 S 58 O₃ SNL325S00 25 22 S 57 32 W 133 O₃ San Lorenzo Paraguay Tierra del Fuego Argentina TDF354S00 54 52 S 68 28 W 20 ¹³CO₂, C¹⁸O₂, C₂Cl₄, CBrClF₂, CFCs, CH₂Cl₂, CH₃Br, CH₃CCl₃, CH₃Cl, CH₄, CO, CO₂, H₂, HCFCs, HFCs, VOCs Ushuaia Argentina USH354S00 54 49 S 68 17 W 18 CO, O₃ Ushuaia Argentina USH354S00 54 49 S 68 17 W 18 CO, O₃ **REGION IV (North and Central America)** Alert Canada ALT482N00 82 27 N 62 31 W 210 CH₄, CO, CO₂, N₂O, SF₆ Alert Canada ALT482N00 82 27 N 62 31 W 210 ¹³CO₂, CH₄, CO, CO₂, H₂, N₂O

Station	Country/Territory	Index Number	Latitude (° ')	Location Longitude (° ')	Altitude (m)	e Parameter
Alert	Canada	ALT482N00	82 27 N	62 31 W	210	¹³ CH ₄ , ¹³ CO ₂ , C ¹⁸ O ₂ , C ₂ Cl ₄ , CBrClF ₂ , CBrF ₃ , CCl ₄ , CFCs, CH ₂ Cl ₂ , CH ₃ Br, CH ₃ CCl ₃ , CH ₃ Cl, CH ₄ , CO, CO ₂ , H ₂ ,
Algoma	Canada	ALG447N00	47 01 N	84 22 W	411	HCFCs, HFCs, N ₂ O, SF ₆ , VOCs
Argyle	United States of America	AMT445N00	45 01 N			¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , VOCs
Barrow	United States of America	BRW471N00	71 19 N	156 35 W	11	¹³ CH4, ¹³ CO ₂ , C ¹⁸ O ₂ , C ₂ Cl ₄ , CBrClF ₂ , CBrF ₃ , CCl ₄ , CFCs, CH ₂ Cl ₂ , CH ₃ Br, CH ₃ CCl ₃ , CH ₃ Cl, CH ₄ , CO, CO ₂ , H ₂ , HCFCs, HFCs, N ₂ O, O ₃ , SF ₆ , VOCs
Bratt's Lake	Canada	BRA450N00	50 12 N	104 42 W	595	O ₃
Candle Lake	Canada	CDL453N00	53 52 N	104 39 W	489	CH_4 , CO , CO_2
Cape Meares	United States of America	CMO445N00	45 28 N	123 58 W	30	CCl ₄ , CFCs, CH ₃ CCl ₃ , CH ₄ , N ₂ O
Cape Meares	United States of America	CMO445N00	45 28 N	123 58 W	30	¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
Cape St. James	Canada	CSJ451N00	51 55 N	131 01 W	89	CO ₂
Chalk River	Canada	CHA446N00	46 04 N		184	
Chibougamau	Canada	CHM449N00	49 40 N			CH_4 , CO , CO_2
Churchill	Canada	CHL458N00	58 45 N			CH_4 , CO_2 , N_2O
Cold Bay	United States of America	CBA455N00	55 12 N	162 43 W	25	¹³ CH ₄ , ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂ , VOCs
East Trout Lake	Canada	ETL454N00		104 59 W		CH ₄ , CO, CO ₂
Egbert	Canada	EGB444N00	44 13 N		253	
Egbert	Canada	EGB444N01	44 13 N			CH ₄ , CO, CO ₂ , VOCs
Estevan Point	Canada	ESP449N00		126 32 W		CH4, CO, CO2, N2O, SF6
Estevan Point	Canada	ESP449N00		126 32 W		¹³ CO ₂ , CH ₄ , CO, CO ₂ , H ₂ , N ₂ O
Esther	Canada	EST451N00		110 12 W		O ₃
Experimental Lakes	Canada	ELA449N00	49 40 N	93 43 W	369	O_3
Area Fraserdale	Canada	FSD449N00	49 52 N	81 34 W	210	CH ₄ , CO, CO ₂
Grifton	United States of	ITN435N00	49 52 N 35 21 N			¹³ CO ₂ , C ¹⁸ O ₂ , CCl ₄ , CFCs, CH ₄ ,
Olittoli	America	11114551100	55 21 10	11 22 11	505	CO, CO ₂ , H ₂ , N ₂ O, SF ₆
Harvard Forest	United States of America	HFM442N00	42 53 N	72 17 W	340	C ₂ Cl ₄ , CBrClF ₂ , CCl ₄ , CFCs, CH ₂ Cl ₂ , CH ₃ Br, CH ₃ CCl ₃ , CH ₃ Cl, HCFCs, HFCs, N ₂ O, SF ₆
Kejimkujik	Canada	KEJ444N00	44 25 N	65 12 W	127	
Key Biscayne	United States of America	KEY425N00	25 40 N			¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂ , VOCs
Kitt Peak	United States of America	KPA431N00	31 58 N	111 35 W	2083	CH4
La Jolla	United States of America	SIO432N00	32 49 N	117 16 W	14	CH ₄
La Palma	Cuba	PLM422N00	22 45 N	83 31 W	47	NO ₂
Lac La Biche	Canada	LLB454N00	54 57 N	112 27 W	540	CH4, CO ₂ , VOCs
Lac La Biche (Alberta)	Canada	LLB454N01	54 57 N	112 27 W	540	CH_4 , CO , CO_2
Mex High Altitude Global Climate Observation Center, Mexico	Mexico	MEX419N00	19 58 N	97 10 W	4560	CH4, CO2, VOCs

Station	Country/Territory	Index Number	Latitude Lon	cation ngitude Altitu (° ') (m	ude Parameter
Moody	United States of America	WKT431N00	31 19 N 97	7 19 W 70	08 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄
Mould Bay Niwot Ridge (C-1)	Canada United States of America	MBC476N00 NWR440N00	76 15 N 119 40 02 N 105		 ¹³CO₂, C¹⁸O₂, CH₄, CO, CO₂, H₂ C₂Cl₄, CBrClF₂, CBrF₃, CCl₄, CFCs, CH₂Cl₂, CH₃Br, CH₃CCl₃, CH₃Cl, HCFCs, HFCs, N₂O, O₃, SF₆
Niwot Ridge (Saddle)	United States of America	NWR440N02	40 03 N 105	5 35 W 352	28 O ₃
Niwot Ridge (T-van)	United States of America	NWR440N01	40 03 N 105	5 35 W 352	23 ¹³ CH ₄ , ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
Olympic Peninsula	United States of America	OPW448N00	48 15 N 124	4 25 W 48	88 CH ₄ , CO ₂ , H ₂
Pacific Ocean (15N)	N/A	POC915N00	15 00 N 145	5 00 W	10 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
Pacific Ocean (20N)	N/A	POC920N00	20 00 N 141		$10^{-13}CO_2, C^{18}O_2, CH_4, CO, CO_2, H_2$
Pacific Ocean (25N)	N/A	POC925N00	25 00 N 139		10 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
Pacific Ocean (30N)	N/A	POC930N00	30 00 N 135		10 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
Pacific Ocean (35N)	N/A	POC935N00	35 00 N 137		10 ¹³ CO ₂ , C ¹⁸ O ₂ , CO, H ₂
Pacific Ocean (40N)	N/A	POC940N00	40 00 N 136		10 ¹³ CO ₂ , H ₂
Pacific Ocean (45N)	N/A	POC945N00	45 00 N 131		$10 \ {}^{13}\text{CO}_2, \text{H}_2$
Park Falls	United States of America	LEF445N00	45 55 N 90	0 16 W 80	 ¹³CO₂, C¹⁸O₂, C₂Cl₄, CBrClF₂, CCl₄, CFCs, CH₂Cl₂, CH₃Br, CH₃CCl₃, CH₃Cl, CH₄, CO, CO₂, H₂, HCFCs, HFCs, N₂O, SF₆, VOCs
Point Arena	United States of America	PTA438N00	38 57 N 123	3 43 W	¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂
Ragged Point	Barbados	RPB413N00	13 10 N 59	9 25 W	45 C ₂ Cl ₄ , C ₂ HCl ₃ , CBrClF ₂ , CBrF ₃ , CCl ₄ , CFCs, CH ₂ Cl ₂ , CH ₃ Br, CH ₃ CCl ₃ , CH ₃ Cl, CH ₄ , CHCl ₃ , HCFCs, HFCs, N ₂ O, PFCs, SF ₆ , SO ₂ F ₂
Ragged Point	Barbados	RPB413N00	13 10 N 59	9 25 W	45 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂ , O ₃
Sable Island	Canada	WSA443N00	43 55 N 60	0 01 W	5 CH ₄ , CO, CO ₂ , N ₂ O, SF ₆
Saturna	Canada	SAT448N00	48 46 N 123	3 07 W 1'	78 O ₃
Shemya Island	United States of America	SHM452N00	52 43 N 17	74 04 E	40 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂ , VOCs
Southern Great Plains	United States of America	SGP436N00	36 46 N 97	7 30 W 3	14 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , VOCs
St. Croix	United States of America	AVI417N00	17 45 N 64	4 45 W	3 CH ₄ , CO ₂
St. David's Head	United Kingdom of Great Britain and Northern Ireland	BME432N00	32 22 N 64	4 39 W	30 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
Trinidad Head	United States of America	THD441N00	41 02 N 124	4 09 W 12	20 C ₂ Cl ₄ , C ₂ HCl ₃ , CBrClF ₂ , CBrF ₃ , CCl ₄ , CFCs, CH ₂ Cl ₂ , CH ₃ Br, CH ₃ CCl ₃ , CH ₃ Cl, CH ₄ , CHCl ₃ , HCFCs, HFCs, N ₂ O, PFCs, SF ₆ , SO ₂ F ₂

Station	Country/Territory	Index Number	Latitude (° ')	Location Longitude (° ')	Altitude Parameter (m)	
Trinidad Head	United States of America	THD441N00	41 02 N	124 09 W	120 ¹³ CO ₂ , C ¹⁸ O ₂ , C ₂ Cl ₄ CCl ₄ , CFCs, CH ₂ Cl ₂ CH ₃ CCl ₃ , CH ₃ Cl, C HCFCs, HFCs, N ₂ O VOCs	2, CH3Br, H4, CO, CO2,
Tudor Hill	United Kingdom of Great Britain and Northern Ireland	BMW432N00	32 16 N	64 52 W	30 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , O ₃ , VOCs	CO, CO ₂ , H ₂ ,
Wendover	United States of America	UTA439N00	39 52 N	113 43 W	1320 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , VOCs	CO, CO ₂ , H ₂ ,
West Branch	United States of America	WBI441N00	41 43 N	91 21 W	241.7 ¹³ CO ₂ , C ¹⁸ O ₂	
REGION V (South-We	est Pacific)					
Baring Head	New Zealand	BHD541S00	41 24 S	174 52 E	85 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ ,	CO, CO_2
Baring Head	New Zealand	BHD541S00		174 52 E	85 ¹³ CH ₄ , ¹⁴ CO ₂ , CH ₄ , N ₂ O, O ₃ , VOCs	
Bukit Koto Tabang	Indonesia	BKT500S00	0 12 S	100 19 E	864.5 NO ₂ , SO ₂	
Bukit Koto Tabang	Indonesia	BKT500S00	0 12 S		864.5 CO, O ₃	
Bukit Koto Tabang	Indonesia	BKT500S00	0 12 S		864.5 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , VOCs	
Cape Ferguson	Australia	CFA519S00		147 03 E	2 ¹³ CO ₂ , CH ₄ , CO, CO	D_2, H_2, N_2O
Cape Grim	Australia	CGO540S00	40 40 S		94 CO ₂ , O ₃	
Cape Grim	Australia	CGO540S00	40 40 S	144 40 E	94 C ₂ Cl ₄ , C ₂ HCl ₃ , CBr CCl ₄ , CFCs, CH ₂ Cl ₂ CH ₃ CCl ₃ , CH ₃ Cl, C CO, H ₂ , HCFCs, HF PFCs, SF ₆ , SO ₂ F ₂	2, CH3Br, H4, CHCl3,
Cape Grim	Australia	CGO540S00	40 40 S	144 40 E	94 ¹³ CO ₂ , CH ₄ , CO, CO	D_2, H_2, N_2O
Cape Grim	Australia	CGO540S00	40 40 S	144 40 E	94 ¹³ CH ₄ , ¹³ CO ₂ , C ¹⁸ O ₂ CBrClF ₂ , CBrF ₃ , CC CH ₂ Cl ₂ , CH ₃ Br, CH CH ₃ Cl, CH ₄ , CO, C HCFCs, HFCs, N ₂ O	Cl4, CFCs, 3CCl3, O2, H2,
Cape Kumukahi	United States of America	KUM519N00	19 31 N	154 49 W	3 ¹³ CH ₄ , ¹³ CO ₂ , C ¹⁸ O ₂ CBrClF ₂ , CBrF ₃ , CC CH ₂ Cl ₂ , CH ₃ Br, CH CH ₃ Cl, CH ₄ , CO, C HCFCs, HFCs, N ₂ O	Cl4, CFCs, 3CCl3, O2, H2,
Christmas Island	Kiribati	CHR501N00		157 10 W	3 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ ,	CO, CO_2, H_2
Danum Valley GAW Baseline Station	Malaysia	DMV504N00		117 49 E	426 CO ₂ , O ₃	
Guam	United States of America	GMI513N00		144 46 E	2 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , VOCs	CO, CO ₂ , H ₂ ,
Jakarta	Indonesia	JKR506S00	6 10 S		7 NO ₂ , SO ₂	
Kaitorete Spit	New Zealand	NZL543S00	43 49 S		3 CH ₄	
Lauder	New Zealand	LAU545S00	45 01 S		370 O ₃	
Macquarie Island	Australia United States of	MQA554S00	54 28 S		12 ¹³ CO ₂ , CH ₄ , CO, CO	
Mauna Loa	United States of America	MLO519N00	19 32 IN	155 34 W	3397 ¹³ CO ₂ , CH ₄ , CO, CO	<i>у</i> 2, п 2, N 2U

Station	Country/Territory	Index Number	Latitude (° ')	Location Longitude (° ')	Altitude Parameter (m)
Mauna Loa	United States of America	MLO519N00	19 32 N	155 34 W	 3397 ¹³CH₄, ¹³CO₂, C¹⁸O₂, C₂Cl₄, CBrClF₂, CBrF₃, CCl₄, CFCs, CH₂Cl₂, CH₃Br, CH₃CCl₃, CH₃Cl, CH₄, CO, CO₂, H₂, HCFCs, HFCs, N₂O, O₃, SF₆, VOCs
Pacific Ocean (00N)	N/A	POC900N00	0 00 N	155 00 W	10 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
Pacific Ocean (05N)	N/A	POC905N00	5 00 N	151 00 W	10 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
Pacific Ocean (05S)	N/A	POC905S00	5 00 S	159 00 W	10 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
Pacific Ocean (10N)	N/A	POC910N00	10 00 N	149 00 W	10 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
Pacific Ocean (10S)	N/A	POC910S00	10 00 S	161 00 W	10 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
Pacific Ocean (15S)	N/A	POC915S00	15 00 S	171 00 W	10 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
Pacific Ocean (20S)	N/A	POC920S00	20 00 S	174 00 W	10 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
Pacific Ocean (25S)	N/A	POC925S00	25 00 S	171 00 W	10 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
Pacific Ocean (30S)	N/A	POC930S00	30 00 S	176 00 W	10 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
Pacific Ocean (35S)	N/A	POC935S00		180 00 E	10 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
Sand Island	United States of America	MID528N00	28 11 N	177 22 W	7.7 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂ , VOCs
Tanah Rata	Malaysia	TAR504N00	4 28 N	101 22 E	1545 O ₃
Tutuila (Cape Matatula)	United States of America	SMO514S00	14 14 S	170 34 W	42 C ₂ Cl ₄ , C ₂ HCl ₃ , CBrClF ₂ , CBrF ₃ , CCl ₄ , CFCs, CH ₂ Cl ₂ , CH ₃ Br, CH ₃ CCl ₃ , CH ₃ Cl, CH ₄ , CHCl ₃ , HCFCs, HFCs, N ₂ O, PFCs, SF ₆ , SO ₂ F ₂
Tutuila (Cape Matatula)	United States of America	SMO514S00	14 14 S	170 34 W	42 ¹³ CH ₄ , ¹³ CO ₂ , C ¹⁸ O ₂ , C ₂ Cl ₄ , CBrClF ₂ , CBrF ₃ , CCl ₄ , CFCs, CH ₂ Cl ₂ , CH ₃ Br, CH ₃ CCl ₃ , CH ₃ Cl, CH ₄ , CO, CO ₂ , H ₂ , HCFCs, HFCs, N ₂ O, O ₃ , SF ₆ , VOCs
REGION VI (Europe)					
Adrigole	Ireland	ADR651N00	51 40 N	9 43 W	50 CCl ₄ , CFCs, CH ₃ CCl ₃ , N ₂ O
Angra do Heroismo	Portugal	ANG638N00	38 40 N	27 13 W	74 O ₃
BEO Moussala	Bulgaria	BEO642N00	42 10 N	23 35 E	2925 CO, CO ₂ , NO, NO ₂ , NO _X , O ₃ , SO ₂
Baltic Sea	Poland	BAL655N00	55 21 N	17 13 E	28 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂ , VOCs
Begur	Spain	BGU641N00	41 58 N	3 13 E	13 CH ₄ , CO ₂
Beja	Portugal	BEJ638N00	38 01 N	7 52 W	246 O ₃
Black Sea	Romania	BSC644N00	44 10 N	28 40 E	3 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂ , VOCs
Bragança	Portugal	BRG641N00	41 47 N	6 43 W	690 SO ₂
Brotjacklriegel	Germany	BRT648N00	48 49 N	13 13 E	1016 CO ₂ , O ₃
Burgas	Bulgaria	BUR642N00	42 28 N	27 28 E	16 NO ₂ , SO ₂
Castelo Branco	Portugal	CAS639N00	39 49 N	7 28 W	386 O ₃
Danki	Russian Federation	DAK654N00	54 53 N	37 47 E	140 O ₃
Deuselbach	Germany	DEU649N00	49 46 N	7 02 E	480 CH4, CO ₂ , O ₃
Dobele	Latvia	DBL656N00	56 22 N	23 11 E	42 O ₃
Doñana Dwejra Point	Spain Malta	DON637N00 GOZ636N00	37 02 N 36 02 N	6 32 W 14 10 E	5 NO ₂ , O ₃ , SO ₂ 30 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
Dwejta i Ollit	1 *1 a1ta	0020301100	50 02 IN	14 IV E	50^{-10} CO ₂ , C ¹⁰ O ₂ , Cl14, CO, CO ₂ , H ₂

Location Country/Territory Index Number Latitude Longitude Altitude Parameter Station (°') (°') (m) United Kingdom of EDM655N00 55 19 N 3 12 W 242 O₃ Eskdalemuir Great Britain and Northern Ireland Finokalia FIK635N00 35 20 N 25 40 E 150 CH₄, CO₂ Greece Fundata 45 28 N 25 18 E 1383.5 NO₂, SO₂ Romania FDT645N00 Fundata Romania FDT645N00 45 28 N 25 18 E 1383.5 CO2, NO2, O3 160 ²²²Rn, CO, NO, NO₂, NO_x, O₃, Giordan Lighthouse 36 04 N 14 13 E Malta GLH636N00 SO₂ 46 57 N 16 38 E 248 CO₂ Hegyhatsal Hungary HUN646N00 Hegyhatsal Hungary 46 57 N 1638E 248 ¹³CO₂, C¹⁸O₂, CH₄, CO, CO₂, H₂ HUN646N00 100 ¹³CO₂, C¹⁸O₂, CH₄, CO, CO₂, H₂, Heimaey Iceland ICE663N00 63 23 N 20 16 W O₃, VOCs Hohe Warte 202 NO, NO₂, SO₂ Austria HHE648N00 48 15 N 16 22 E Hohe Warte Austria HHE648N00 48 15 N 16 22 E 202 NO, NO₂, SO₂ 11 01 E 985 222Rn, CO, H2O2, NO, NO2, NOx, Hohenpeissenberg HPB647N00 47 47 N Germany NO_V, O₃, PAN, ROOH, SO₂, VOCs Hohenpeissenberg Germany HPB647N00 47 47 N 11 01 E 985 ¹³CO₂, C¹⁸O₂, CH₄, CO, CO₂, VOCs Ile Grande France LPO648N00 48 48 N 3 35 W 10 CH₄, CO₂ Iskrba 14 52 E Slovenia IRB645N00 45 34 N 520 NO₂, O₃, SO₂ Ivan Sedlo Bosnia and Herzegovina IVN643N00 43 46 N 18 01 E 970 NO₂, SO₂ 51 49 N Jarczew Poland JCZ651N00 21 58 E 180 NO₂, SO₂ Jungfraujoch Switzerland JFJ646N00 46 32 N 7 59 E 3580 CO₂ Jungfraujoch Switzerland JFJ646N00 46 32 N 7 59 E 3580 CH₄, CO, CO₂, N₂O, NO, NO₂, NO_X, NO_V, O₃, PAN, SF₆, SO₂ Switzerland 7 59 E Jungfraujoch JFJ646N00 46 32 N 3580 C₂Cl₄, C₂HCl₃, CBrClF₂, CBrF₃, CFCs, CH₂Cl₂, CH₃Br, CH₃CCl₃, CH₃Cl, CHCl₃, HCFCs, HFCs, PFCs, SF₆, SO₂F₂ 125 CO₂, NO₂, O₃, SO₂ K-puszta Hungary KPS646N00 46 58 N 1933 E Kamenicki Vis Serbia KAM643N00 43 23 N 21 56 E 813 NO₂, SO₂ Kloosterburen Netherlands (the) KTB653N00 53 23 N 625 E 0 CO, NO, NO₂, NO_X, SO₂ Kollumerwaard Netherlands (the) KMW653N00 53 19 N 616E 0 CH₄, CO, CO₂, NO, NO₂, NO_X, O_3 , SO_2 Kosetice Czech Republic KOS649N00 49 34 N 15 04 E 534 CH₄, CO, NO, NO₂, O₃, SO₂ Slovenia 46 07 N 15 05 E Kovk KVK646N00 600 O₃ Krvavec Slovenia KVV646N00 46 17 N 14 31 E 1720 CO, O₃ La Cartuja Spain CAR637N00 37 12 N 3 36 W 720 NO₂, SO₂ 12 37 E Lampedusa Italy LMP635N00 35 31 N 45 CBrClF₂, CBrF₃, CCl₄, CFCs, CH₂Br₂, CH₂Cl₂, CH₃Br, CH₃CCl₃, CH₃Cl, CH₃I, CH₄, CHCl₃, CO₂, HCFCs, HFCs, N₂O, SF₆ Lampedusa Italy LMP635N00 35 31 N 12 37 E 45 ¹³CO₂, C¹⁸O₂, CH₄, CO, CO₂ The former Yugoslav 41 31 N Lazaropole LZP641N00 20 41 E 1320 NO₂, SO₂ Republic of Macedonia Poland Leba LEB654N00 54 45 N 17 31 E 2 NO₂, SO₂ 38 46 N Lisboa / Gago Coutinho Portugal LIS638N00 907W 105 O₃ Logroño Spain LOG642N00 42 27 N 2 30 W 370 NO₂, SO₂ Mace Head Ireland 954 W MHD653N00 53 19 N 8 O₃ Mace Head Ireland MHD653N00 53 19 N 954 W 8 CH4, CO2

Station	Country/Territory	Index Number	Latitude (° ')	Location Longitude (° ')	Altitude Parameter (m)	
Mace Head	Ireland	MHD653N00	53 19 N	9 54 W	8 C ₂ Cl ₄ , C ₂ HCl ₃ , CBrClF ₂ , CBr CCl ₄ , CFCs, CH ₂ Cl ₂ , CH ₃ Br, CH ₃ CCl ₃ , CH ₃ Cl, CH ₄ , CHCl CO, H ₂ , HCFCs, HFCs, N ₂ O,	l ₃ ,
Mace Head	Ireland	MHD653N00	53 19 N	9 54 W	PFCs, SF ₆ , SO ₂ F ₂ 8 ¹³ CH ₄ , ¹³ CO ₂ , C ¹⁸ O ₂ , C ₂ Cl ₄ , CBrClF ₂ , CBrF ₃ , CCl ₄ , CFCs CH ₂ Cl ₂ , CH ₃ Br, CH ₃ CCl ₃ , CH ₃ Cl, CH ₄ , CO, CO ₂ , H ₂ , HCFCs, HFCs, N ₂ O, SF ₆ , VC	5,
Mahón	Spain	MHN639N00	39 52 N	4 19 E	78 NO ₂ , O ₃ , SO ₂	100
Monte Cimone	Italy	CMN644N00	44 10 N	10 41 E	2165 CO ₂	
Monte Cimone	Italy	CMN644N00	44 10 N	10 11 E	2165 CH ₄ , CO, H ₂ , N ₂ O, O ₃ , SF ₆	
Monte Velho	Portugal	MVH638N00	38 04 N	8 48 W	43 O ₃	
Neuglobsow	Germany	NGL653N00	53 10 N	13 01 E	65 CH ₄ , CO, CO ₂ , O ₃	
Noia	Spain	NIA642N00	42 43 N	8 55 W	685 NO ₂ , O ₃ , SO ₂	
Ocean Station "M"	Norway	STM666N00	66 00 N	2 00 E	5 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂	Ha
Ocean Station Charlie	Russian Federation	STC652N00	52 45 N	35 30 W	5 CO ₂	, 112
Ocean Station Charlie	United States of	STC654N00	54 00 N	35 00 W	6 CO ₂	
Ocean Station Charne	America	510054100	54 00 11	55 00 W	0 002	
Ochsenkopf	Germany	OXK650N00	50 01 N	11 48 E	1185 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , VOCs	,
Oulanka	Finland	OUL666N00	66 19 N	29 23 E	310 NO ₂ , O ₃ , SO ₂	
Pallas-Sammaltunturi	Finland	PAL667N00	67 58 N	24 07 E	560 CH ₄ , CO ₂ , O ₃	
Pallas-Sammaltunturi	Finland	PAL667N00	67 58 N	24 07 E	560 ¹³ CO ₂ , C ¹⁸ O ₂ , CBrF ₃ , CH ₄ , C CO ₂ , VOCs	20,
Payerne	Switzerland	PAY646N00	46 49 N	6 57 E	490 CO, NO, NO ₂ , NO _X , O ₃ , SO ₂	2
Penhas Douradas	Portugal	PEN640N00	40 25 N	7 32 W	1380 O ₃	
Pic du Midi	France	PDM642N00	42 56 N	0 08 E	2877 CO, O ₃	
Pic du Midi	France	PDM642N00	42 56 N	0 08 E	2877 CH ₄ , CO ₂	
Plateau Rosa	Italy	PRS645N00	45 55 N	7 42 E	3480 CH ₄ , CO ₂ , O ₃	
Pleven	Bulgaria	PLV643N00	43 25 N	24 36 E	64 NO ₂ , SO ₂	
Plovdiv	Bulgaria	PLD642N00	42 07 N	24 45 E	179 NO ₂ , SO ₂	
Puszcza Borecka/Diabla Gora	Poland	DIG654N00	54 08 N	22 04 E	157 CO ₂ , NO ₂ , O ₃ , SO ₂	
Puy de Dome	France	PUY645N00	45 46 N	2 57 E	1465 CO, O ₃	
Puy de Dome	France	PUY645N00	45 46 N	2 57 E	1465 CH ₄ , CO ₂	
Rigi	Switzerland	RIG646N00	46 04 N	8 26 E	1031 CO, NO, NO ₂ , NO _X , O ₃ , SO ₂ VOCs	.,
Roquetes	Spain	ROQ640N00	40 49 N	0 28 E	50 NO ₂ , O ₃ , SO ₂	
Rucava	Latvia	RCV656N00	56 09 N	21 10 E	18 NO ₂ , O ₃ , SO ₂	
San Pablo de los Montes	Spain	SPM639N00	39 32 N	4 20 W	917 NO ₂ , O ₃ , SO ₂	
Schauinsland	Germany	SSL647N00	47 55 N	7 55 E	1205 CH4, CO, CO ₂ , N ₂ O, NO, NC O ₃ , PAN, SF ₆) ₂ ,
Sede Boker	Israel	WIS631N00	31 07 N	34 52 E	400 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ ,	, H ₂
Semenic	Romania	SEM645N00	45 07 N	21 58 E	1432 NO ₂ , SO ₂	-
Shepelevo	Russian Federation	SHP659N00	59 58 N	29 07 E	4 O ₃	
Shetland	United Kingdom of Great Britain and Northern Ireland	SIS660N00	60 04 N	1 15 W	30 ¹³ CO ₂ , CH ₄ , CO, CO ₂ , H ₂ , N ₂	2O
Site J	Denmark	GRL666N00	66 30 N	46 12 W	2030 CH ₄	
Sniezka	Poland	SNZ650N00	50 43 N	46 12 W 15 43 E	$1603 \text{ NO}_2, \text{SO}_2$	
Sofia	Bulgaria	SOF642N00	30 43 N 42 38 N	13 43 E 23 22 E	$1003 \text{ NO}_2, \text{SO}_2$ 586 NO ₂ , SO ₂	
Sonnblick	Austria	S0F642N00 SNB647N00	42 38 N 47 02 N	23 22 E 12 56 E	3106 CO, CO ₂ , NO, NO ₂ , NO _y , O ₃	
SUITURE	1 1 45011a	DIADO4/1000	7/02 IN	12 JU E	5100 CO, CO ₂ , INO, INO ₂ , INO ₉ , O ₃	,

Station	Country/Territory	Index Number	Latitude (° ')	Location Longitude (° ')	Altitude (m)	e Parameter
Stephansplatz	Austria	STP648N00	48 13 N	16 22 E	171	NO, NO ₂ , SO ₂
Stephansplatz	Austria	STP648N00	48 13 N	16 22 E	171	NO, NO ₂ , SO ₂
Stîna de Vale	Romania	STN646N00	46 40 N	22 37 E		NO_2 , SO_2
Summit	Denmark	SUM672N00	72 34 N	38 28 W	3238	¹³ CO ₂ , C ¹⁸ O ₂ , CBrClF ₂ , CCl ₄ , CFCs, CH ₂ Cl ₂ , CH ₃ Br, CH ₃ CCl ₃ , CH ₃ Cl, CH ₄ , CO ₂ , HCFCs, HFCs, N ₂ O, O ₃ , SF ₆ , VOCs
Suwalki	Poland	SWL654N00	54 07 N	22 56 E	184	NO_2 , SO_2
Terceira Island	Portugal	AZR638N00	38 46 N	27 22 W	40	¹³ CH ₄ , ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂ , VOCs
Teriberka	Russian Federation	TER669N00	69 12 N	35 06 E	40	CH4, CO ₂
Utö	Finland	UTO659N00	59 46 N	21 22 E	7	NO ₂ , O ₃ , SO ₂
Varna	Bulgaria	VRN643N00	43 12 N	27 55 E	41	NO_2 , SO_2
Viana do Castelo	Portugal	VDC641N00	41 42 N	8 48 W		SO_2
Vindeln	Sweden	VDL664N00	64 15 N	19 46 E	271	O ₃
Virolahti	Finland	VIR660N00	60 31 N	27 40 E	4	NO_2, O_3, SO_2
Waldhof	Germany	LGB652N00	52 47 N	10 46 E	74	CO_2, O_3
Wank Peak	Germany	WNK647N00	47 31 N	11 09 E	1780	CO ₂ , NO _x , SO ₂
Westerland	Germany	WES654N00	54 55 N	8 19 E	12	CO_2, O_3
Zabljak	Montenegro	ZBL643N00	43 08 N	19 07 E	1450	NO_2 , SO_2
Zavodnje	Slovenia	ZRN646N00	46 25 N	15 00 E	770	O ₃
Zeppelinfjellet (Ny-Alesund)	Norway	ZEP678N00	78 54 N	11 52 E	475	CO ₂
Zeppelinfjellet (Ny-Alesund)	Norway	ZEP678N00	78 54 N	11 52 E	475	CFCs, N ₂ O, O ₃ , SO ₂
Zeppelinfjellet (Ny-Alesund)	Norway	ZEP678N00	78 54 N	11 52 E	475	C ₂ Cl ₄ , C ₂ HCl ₃ , CBrClF ₂ , CBrF ₃ , CFCs, CH ₂ Cl ₂ , CH ₃ Br, CH ₃ CCl ₃ , CH ₃ Cl, CHCl ₃ , HCFCs, HFCs, PFCs, SF ₆ , SO ₂ F ₂
Zeppelinfjellet (Ny-Alesund)	Norway	ZEP678N00	78 54 N	11 52 E	475	¹³ CH ₄ , ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂ , VOCs
Zingst	Germany	ZGT654N00	54 25 N			CH4, CO ₂ , O ₃
Zoseni	Latvia	ZSN657N00	57 04 N	25 32 E	182	NO ₂ , O ₃ , SO ₂
Zugspitze	Germany	ZUG647N00	47 25 N	10 58 E	2960	CO ₂
Zugspitze	Germany	ZUG647N00	47 25 N	10 58 E	2960	CH4, CO, CO ₂ , NO, NO _X , NO _y , O ₃
Zugspitze / Schneefernerhaus	Germany	ZSF647N00	47 25 N	10 58 E	2656	SO ₂
Zugspitze / Schneefernerhaus	Germany	ZSF647N00	47 25 N	10 58 E	2656	CH4, CO, CO ₂ , N ₂ O, NO, NO ₂ , NO _y , O ₃ , PAN, SF ₆
Ähtäri	Finland	AHT662N00	62 34 N	24 11 E	180	NO_2, O_3, SO_2

Station	Country/Territory	Index Number	Latitude (° ')	Location Longitude (° ')	Altitude (m)	e Parameter
ANTARCTICA						
Arrival Heights	New Zealand	ARH777S00	77 47 S	166 40 E	184	O ₃
Arrival Heights	New Zealand	ARH777S00	77 47 S	166 40 E	184	¹³ CH ₄ , CH ₄ , CO, N ₂ O
Casey Station	Australia	CYA766S00	66 16 S	110 31 E	60	¹³ CO ₂ , CH ₄ , CO, CO ₂ , H ₂ , N ₂ O
Concordia, Dôme C	France	DCC775S00	75 05 S	123 20 E	3233	O ₃
Halley Bay	United Kingdom of Great Britain and Northern Ireland	HBA775S00	75 34 S	26 30 W	33	¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂ , VOCs
Jubany	Argentina	JBN762S00	62 13 S	58 40 W	15	CO ₂
King Sejong	Republic of Korea	KSG762S00	62 12 S	58 46 W	0	CO ₂
Mawson	Australia	MAA767S00	67 37 S	62 52 E	32	¹³ CO ₂ , CH ₄ , CO, CO ₂ , H ₂ , N ₂ O
McMurdo Station	United States of America	MCM777S00	77 49 S	166 34 E	11	CH4, O3
Mizuho	Japan	MZH770S00	70 42 S		2230	
Neumayer	Germany	NMY770S00	70 39 S	8 15 W		O ₃
Palmer Station	United States of America	PSA764S00	64 55 S	64 00 W	10	¹³ CO ₂ , C ¹⁸ O ₂ , C ₂ Cl ₄ , CBrClF ₂ , CCl ₄ , CFCs, CH ₂ Cl ₂ , CH ₃ Br, CH ₃ CCl ₃ , CH ₃ Cl, CH ₄ , CO, CO ₂ , H ₂ , HCFCs, HFCs, N ₂ O, SF ₆ , VOCs
South Pole	United States of America	SPO789S00	89 58 S	24 48 W	2810	¹³ CO ₂ , CH ₄ , CO, CO ₂ , H ₂ , N ₂ O
South Pole	United States of America	SPO789S00	89 58 S	24 48 W	2810	¹³ CH ₄ , ¹³ CO ₂ , C ¹⁸ O ₂ , C ₂ Cl ₄ , CBrClF ₂ , CBrF ₃ , CCl ₄ , CFCs, CH ₂ Cl ₂ , CH ₃ Br, CH ₃ CCl ₃ , CH ₃ Cl, CH ₄ , CO, CO ₂ , H ₂ , HCFCs, HFCs, N ₂ O, O ₃ , SF ₆ , VOCs
Syowa Station	Japan	SYO769S00	69 00 S	39 34 E	16	O ₃
Syowa Station	Japan	SYO769S00	69 00 S	39 34 E		CO ₂
Syowa Station	Japan	SYO769S00	69 00 S			¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂ , VOCs
MOBILE STATION						
Aircraft (over Bass Strait and Cape Grim)	Australia	AIA999900				¹³ CO ₂ , CH ₄ , CO, CO ₂ , H ₂ , N ₂ O
Aircraft Observation of Atmospheric trace gases by JMA	Japan	AOA9999900				CH4, CO, CO ₂ , N ₂ O
Aircraft: Orleans	France	ORL999900			150	CH ₄ , CO ₂
Akademik Korolev, R/V	United States of America	AKD999900				CH ₄
Alligator liberty, M/V	Japan	ALG999900				CO ₂
Atlantic Ocean	United States of America	AOC9XXX00			10	CH ₄ , CO ₂
Comprehensive Observation Network for TRace gases by AIrLiner (CONTRAIL)	Japan	EOM999900				CH4, CO2

Location Index Number Latitude Longitude Altitude Parameter Country/Territory Station (°') (°') (m) EOM999900 Comprehensive 13CH₄, CH₃D Japan Observation Network for TRace gases by AIrLiner (CONTRAIL) Discoverer 1983 & 1984, United States of CH₄ DIS999900 R/V America Discoverer 1985, R/V United States of DSC999900 CH₄ America United States of DRP999900 ¹³CO₂, C¹⁸O₂, CH₄, CO₂ Drake Passage America HATS Ocean Projects United States of HOP999900 HFCs America INSTAC-I (International Japan INS999900 13CO₂, CH₄, CO₂ Strato/Tropospheric Air Chemistry Project) John Biscoe, R/V United States of JBS999900 CH₄ America Keifu Maru, R/V Japan KEF999900 CO_2 Kofu Maru, R/V Japan KOF999900 CO_2 Korolev, R/V United States of KOR999900 CH_4 America Long Lines Expedition, United States of LLE999900 CH₄ R/V America MRI Research, MRI999900 CH₄ Japan 1978-1986, R/V MRI Research, Hakuho Japan HKH999900 CO_2 Maru. R/V MRI Research, Kaiyo KIY999900 CO_2 Japan Maru, R/V MRI Research, Mirai, Japan MMR999900 CO_2 R/V MRI Research, Japan NTU999900 CO_2 Natushima, R/V MRI Research, Rvofu Japan RFM999900 CO_2 Maru, R/V MRI Research, Japan WLT999900 CO_2 Wellington Maru, R/V Mexico Naval H-02, R/V United States of MXN999900 CH₄ America NOPACCS - Hakurei TIC Japan HAK999900 Maru -CFCs, N₂O Observation of Japan OAJ999900 Atmospheric Chemistry Over Japan Oceanographer, R/V United States of OCE999900 CH₄ America Pacific Ocean New Zealand BSL999900 13CH4, CH4, VOCs Pacific Ocean United States of POC9XXX00 10 ¹³CO₂, C¹⁸O₂, CH₄, CO, CO₂, H₂ America Pacific-Atlantic Ocean CH₄ United States of PAO999900 America Polar Star, R/V CH₄ United States of PLS999900 America RYF999900 Ryofu Maru, R/V Japan CFCs, CH4, CO2, N2O, TIC

				T /'		
Station	Country/Territory	Index Number	Latitude (° ')	Location Longitude (° ')	Altitude (m)	Parameter
Santarem	Brazil	SAN999900				CH4, CO, CO2, N2O, SF6
South China Sea	United States of America	SCS9XXX00			15	¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
Soyo Maru, R/V	Japan	SOY999900				CO ₂
Surveyor, R/V	United States of America	SUR999900				CH4
The Observation of Atmospheric Methane Over Japan	Japan	OAM999900				CH4
The Observation of Atmospheric Sulfur Hexafluoride Over Japan	Japan	OAS999900				SF ₆
WEST COSMIC - Hakurei Maru No.2 -	Japan	HAK999901				TIC
Wakataka-Maru	Japan	WAK999900				CO ₂
Western Pacific	United States of America	WPC9XXX00			10	¹³ CH ₄ , ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO ₂
northern and western Pacific	Japan	NWP9999900				N ₂ O

Station Name Address Country/Territory **REGION I** (Africa) Izaña (Tenerife) Angel J. Gomez-Pelaez Izana Atmospheric Research Center, Meteorological (Spain) State Agency of Spain (AEMET) C/ La Marina, 20, Planta 6. Apartado 880. 38071 Santa Cruz de Tenerife, Spain Carlos Marrero Izana Atmospheric Research Center, Meteorological State Agency of Spain (AEMET) C/ La Marina, 20 - Planta 6. Apartado 880. 38071 Santa Cruz de Tenerife, Spain Funchal **Diamantino Henriques** Instituto de Meteorologia, I.P. (Portugal) Observatorio Afonso Chaves, Rua Mae de Deus -Relvao. 9500-321 Ponta Delgada, S. Miguel, Portugal Ernst Günther Brunke South African Weather Service (Climate Division) Cape Point (South Africa) SAWS, c/o CSIR (Environmentek), P.O. Box 320, Stellenbosch 7599, South Africa Cairo Hamza Mohamed Hamza Egyptian Meteorological Authority (Egypt) Department of Air Pollution Study Egyptian Meteorological Authority P.O.Box:11784 – Cairo, Egypt LSCE (Laboratoire des Sciences du Climat et de Amsterdam Island Jean Sciare (France) l'Environnement) UMR CEA-CNRS LSCE - CEA Saclay - Orme des Merisiers - Bat.701 91191 Gif-sur-Yvette, France Michel Ramonet LSCE (Laboratoire des Sciences du Climat et de l'Environnement) UMR CEA-CNRS LSCE - CEA Saclay - Orme des Merisiers - Bat.701 91191 Gif-sur-Yvette, France KMD, Kenyan Meteorological Department Mt. Kenya Josiah Kariuki Murageh (Kenya) Kenya Meteorological Department Dagoretti Corner P.O. Box 30259 00100 Nairobi, Kenya Jörg Klausen Empa, Swiss Federal Laboratories for Materials Testing and Research Ueberlandstrasse 129 8600 Duebendorf, Switzerland Stephan Henne Empa, Swiss Federal Laboratories for Materials Testing and Research Ueberlandstrasse 129 8600 Duebendorf, Switzerland

LIST OF CONTRIBUTORS

Station	Name	Address
Country/Territory		
Cape Verde Observatory (Cape Verde)	Katie Read	Department of Chemistry, University of York Department of Chemistry, University of York, Heslington, York, Y010 5DD, United Kingdom
	Zoë Fleming	National Centre for Atmospheric Science (NCAS) Department of Chemistry University of Leicester National Centre for Atmospheric Science (NCAS) Department of Chemistry University of Leicester Leicester LE1 7RH, UK
Assekrem (Algeria)	Mimouni Mohamed	Office National de la Meteorologie POBox 31 Tamanrasset 11000, Algeria
REGION II (Asia)		
Nagoya (Japan)	A. Matsunami	Research Center for Advanced Energy Conversion, Nagoya University Furo-cho, Chikusaku, Nagoya 464-8603, Japan
Anmyeon-do (Republic of Korea)	Haeyoung Lee	Korea Global Atmosphere Watch Center, Korea Meteorology Administration 1764-6, Seungen-Ri, Anmyeon-Eup, Taean-Kun, ChungNam, 357-961, Republic of Korea
	Im-Chul Shin	Korea Global Atmosphere Watch Center, Korea Meteorology Administration 1764-6, Seungen-Ri, Anmyeon-Eup, Taean-Kun, ChungNam, 357-961, Republic of Korea
	Sang-Hoon Kim	Korea Global Atmosphere Watch Center, Korea Meteorology Administration 1764-6, Seungen-Ri, Anmyeon-Eup, Taean-Kun, ChungNam, 357-961, Republic of Korea
Cape Ochi-ishi Hateruma (Japan)	Hitoshi MUKAI	Center for Global Environmental Research, National Institute for Environmental Studies 16-2, Onogawa, Tsukuba-shi, Ibaraki 305-8506, Japan
Gosan (Republic of Korea)	Jeong-Ah Yu	National Institute of Environmental Research Environmental Research Complex, Gyeongseo-dong, Seo-gu, Incheon, 404-708, Republic of Korea
	Seung-Yeon Kim	National Institute of Environmental Research Environmental Research Complex, Gyeongseo-dong, Seo-gu, Incheon, 404-708, Republic of Korea

Station Country/Territory	Name	Address
Hok Tsui King's Park (Hong Kong, China)	K.H.Tam	Hong Kong Observatory 134A, Nathan Road, Kowloon, Hong Kong, China
	S.W.Chan	Hong Kong Observatory 134A, Nathan Road, Kowloon, Hong Kong, China
Hok Tsui (Hong Kong, China)	Ka Se Lam	Department of Civil and Structural Engineering, Hong Kong Polytechnic University Hung Hom, Kowloon, Hong Kong, China
Tsukuba (Japan)	Koji Miyagawa	Lower Aerological Observations Division, Aerological Observatory, Japan Meteorological Agency (JMA) Lower Aerological Observations Division, Aerological Observatory1-2 Nagamine, Tsukuba, Ibaraki, 305-0052, Japan
Mikawa-Ichinomiya (Japan)	Koji Ohno	Aichi Air Environment Division 1-2 Sannomaru-3chome, Naka-ku, Nagoya, Aichi 460-8501, Japan
Mt. Waliguan (China)	Lingxi ZHOU	Professor, PI for Greenhouse Gases & Related Tracers Chinese Academy of Meteorological Sciences (CAMS) China Meteorological Administration (CMA) 46 Zhongguancun Nandajie Beijing 100081, China
Memanbetsu (Japan)	Michio Hirota	Geochemical Research Department, Meteorological Research Institute 1-1, Nagamine, Tsukuba, Ibaraki 305-0052, Japan
Tsukuba (Japan)	Michio Hirota	Geochemical Research Department, Meteorological Research Institute 1-1, Nagamine, Tsukuba, Ibaraki 305-0052, Japan
	Yousuke Sawa	Geochemical Research Department, Meteorological Research Institute 1-1, Nagamine, Tsukuba, Ibaraki 305-0052, Japan
Hamamatsu (Japan)	Mitsuo TODA	Shizuoka University 3-5-1 Jyohoku, Hamamatsu 432-8561, Japan
Bering Island Kotelny Island Tiksi (Russian Federation)	Nina Paramonova	Main Geophysical Observatory (MGO) Karbyshev Street 7, St. Petersburg, 194021, Russian Federation
Kyzylcha (Uzbekistan)		
Everest - Pyramid (Nepal)	Paolo Cristofanelli	ISAC-CNR ISAC-CNR, VIa Gobetti 101 - 40129 Bologna -Italy

Station	Name	Address
Country/Territory		
	Paolo Bonasoni	ISAC-CNR ISAC-CNR, VIa Gobetti 101 - 40129 Bologna -Italy
Takayama (Japan)	Shohei Murayama	Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST) AIST Tsukuba West, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
Gosan (Republic of Korea)	So-young Bang	Applied Meteorology Research Laboratory, Meteorological Research Institute (METRI), Korea Meteorological Administration (KMA) 460-18, Shindaebang-dong, Dongjak-gu, Seoul 156-720, Rep. of Korea
Ship between Ishigaki Island and Hateruma Island (Japan)	Takakiyo Nakazawa	Center for Atmospheric and Oceanic Studies, Graduate School of Science, Tohoku University Aoba, Sendai 980-8578, Japan
	Shuji Aoki	Center for Atmospheric and Oceanic Studies, Graduate School of Science, Tohoku University Aoba, Sendai 980-8578, Japan
Minamitorishima Ryori Yonagunijima (Japan)	Taro KAWASATO	Atmospheric Environment Division, Global Environment and Marine Department,Japan Meteorological Agency (JMA) 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan
Suita (Japan)	Tomohiro Oda	Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka Universiy, Japan Green Engieering Lab Division of Sustainable Energy and Environmental Engineering 2-1 Yamadaoka, Suita, Osaka 565-0871 Japan
Issyk-Kul (Kyrgyzstan)	V. Sinyakov	Laboratory of Geophysics, Institute of Fundamental sciences at the Kyrgyz National University Manas Street 101, Bishkek, 720033, Kyrgyz Republic
Mt. Dodaira Kisai Urawa (Japan)	Yosuke MUTO	Center for Environmental Science in Saitama 914 Kamitanadare, Kisai-machi, Kita-Saitama-gun, Saitama 347-0115, Japan

REGION III (South America)

Station Country/Territory	Name	Address
Arembepe (Brazil)	LuanaăS. Basso	IPEN Atmospheric Chemistry Laboratory Av. Prof. Lineu Prestes, 2242, Cidade Universitaria, Sao Paulo, SP- BRAZIL CEP 05508-900
	Luciana Vanni Gatti	IPEN Atmospheric Chemistry Laboratory Av. Prof. Lineu Prestes, 2242, Cidade Universitaria, Sao Paulo, SP- BRAZIL CEP 05508-900
Ushuaia (Argentina)	Maria Elena Barlasina	National Weather Service Observatorio Central Villa Ortuzar División Radiación Av. de Los Constituyentes 3454 Cp 1427, Argentina
	Manuel Cupeiro	
	Ricardo Sanchez	National Weather Service Observatorio Central Villa Ortuzar División Radiación Av. de Los Constituyentes 3454 Cp 1427, Argentina
La Quiaca Observatorio Pilar Observatorio San Julian Aero (Argentina)	Maria Elena Barlasina	National Weather Service Observatorio Central Villa Ortuzar División Radiación Av. de Los Constituyentes 3454 Cp 1427, Argentina
	Ricardo Sanchez	National Weather Service Observatorio Central Villa Ortuzar División Radiación Av. de Los Constituyentes 3454 Cp 1427, Argentina
Huancayo (Peru)	Mutsumi Ishitsuka	Observatorio de Huancayo, Instituto Geofisico del Peru Apartado 46, Huancayo, Peru
Ushuaia (Argentina)	Sergio Luppo	Servicio Meteorológico Nacional - Gobierno de Tierra del Fuego Estación VAG Ushuaia Subsecretaria de Ciencia y Tecnología, Ministerio de Educación, Cultura, Ciencia y Tecnología Gobierno de Tierra del Fuego 9410 Ushuaia, Tierra del Fuego, Argentina
San Lorenzo (Paraguay)	Victor Ayala	Universidad Nacional de Asuncion, Facultad de Ciencias Exactas y Naturales, Laboratorio de Investigacion Atmosferica y Problemas Ambientales

Carlos Quevedo

Address Station Name Country/Territory **REGION IV** (North and Central America) Candle Lake Doug Worthy Environment Canada (EC) 4905 Dufferin Street, Toronto, Ontario, Canada, M3H Chibougamau Cape St. James 5T4Lac La Biche (Alberta) (Canada) Alert Doug Worthy Environment Canada (EC) Churchill 4905 Dufferin Street, Toronto, Ontario, Canada, M3H Estevan Point 5T4East Trout Lake Fraserdale Sable Island (Canada) Lin Huang Environment Canada 4905 Dufferin Street, Toronto, Ontario, Canada, M3H 5T4Doug Worthy Egbert Environment Canada (EC) (Canada) 4905 Dufferin Street, Toronto, Ontario, Canada, M3H 5T4Peter C. Brickell Environment Canada (EC) 4905 Dufferin Street, Toronto, Ontario, Canada, M5T 1V7Mike Shaw Algoma Environment CanadaMeteorological Service of Bratt's Lake CanadaAir Quality Research Branch Chalk River 4905 Dufferin StreetToronto, Ontario CANADA M3H Egbert 5T4Experimental Lakes Area Esther Kejimkujik Saturna (Canada) La Palma Osvaldo Cuesta Santos Institute of Meteorology, Atmospheric Environment (Cuba) Research Center Aptdo. 17032, Postal Code 11700, Havana 17, Cuba **REGION V** (South-West Pacific) Cape Grim Bruce Forgan Commonwealth Bureau of Meteorology 700 Collins St, Docklands GPO Box 1289K, Melbourne, (Australia) Victoria 3001, Australia

Station	Name	Address
Country/Territory		
	Ian Galbally	CSIRO Marine and Atmospheric Research CSIRO Marine and Atmospheric Research Private Bag 1, Aspendale Victoria 3195 Australia
Baring Head (New Zealand)	Gordon Brailsford	National Institute of Water & Atmospheric Research Ltd. 301 Evans Bay Parade, Greta Point,Private Bag 14-901, Kilbirnie, Wellington, New Zealand
	Ross Martin	National Institute of Water & Atmospheric Research Ltd. 301 Evans Bay Parade, Greta Point, Private Bag 14-901, Kilbirnie, Wellington, New Zealand
	Sylvia Nichol	National Institute of Water & Atmospheric Research Ltd. 301 Evans Bay Parade, Greta Point, Private Bag 14-901, Kilbirnie, Wellington, New Zealand
Tanah Rata (Malaysia)	Lim Sze Fook	Environmental Studies Division Malaysian Meteorological Department Jalan Sultan, 46667 Petaling Jaya, Selangor, Malaysia
Danum Valley GAW Baseline Station (Malaysia)	Lim Sze Fook	Environmental Studies Division Malaysian Meteorological Department Jalan Sultan, 46667 Petaling Jaya, Selangor, Malaysia
	Maznorizan Mohamad	Environmental Studies Division Malaysian Meteorological Department
Bukit Koto Tabang Jakarta (Indonesia)	Mangasa Naibaho	The Indonesia Agency for Meteorology Climatology and Geophysics (BMKG) Jl.Angkasa 1, No.2, Kemayoran Jakarta 10720, Indonesia
Bukit Koto Tabang (Indonesia)	Mangasa Naibaho	The Indonesia Agency for Meteorology Climatology and Geophysics (BMKG) Jl.Angkasa 1, No.2, Kemayoran Jakarta 10720, Indonesia
	Ilahi, Asep Firman	Global GAW Bukit Kototabang Palupuh, District Agam, West Sumatera, IndonesiaPO BOX 11 Bukittinggi 26100

Station Country/Territory	Name	Address
	Jörg Klausen	Empa, Swiss Federal Laboratories for Materials Testing and Research Ueberlandstrasse 129 8600 Duebendorf, Switzerland
REGION VI (Europe)		
Puszcza Borecka/Diabla Gora (Poland)	Anna Degorska	Institute of Environmental Protection Kolektorska 4 01-692 Warsaw, Poland
Monte Cimone (Italy)	Attilio Di Diodato	Italian Air Force Meteorological Service C.A.M.M. Mt. CIMONE, Via delle Ville 40, 41029-Sestola (MO), Italy
Hohe Warte Stephansplatz (Austria)	August Kaiser	Department for Environmental MeteorologyCentral Institute for Meteorology and Geodynamics Postfach 342, Hohe Warte 38, A-1191 Wien, Austria
Payerne Rigi (Switzerland)	Brigitte Buchmann	Empa, Swiss Federal Laboratories for Materials Testing and Research, Air Pollution / Environmental Technology Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
	Thomas Seitz	Empa, Swiss Federal Laboratories for Materials Testing and Research, Air Pollution / Environmental Technology Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
Jungfraujoch (Switzerland)	Brigitte Buchmann	Empa, Swiss Federal Laboratories for Materials Testing and Research, Air Pollution / Environmental Technology Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
	Thomas Seitz	Empa, Swiss Federal Laboratories for Materials Testing and Research, Air Pollution / Environmental Technology Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
	Martin K. Vollmer	
	Martin Steinbacher	Empa, Swiss Federal Laboratories for Materials Science and Technology, Air Pollution / Environmental Technology Ueberlandstrasse 129, CH-8600 Duebendorf, Switzerland
	Stefan Reimann	

Station Country/Territory	Name	Address
Hohenpeissenberg (Germany)	Christian Plass-Duelmer	Deutscher Wetterdienst (DWD, German Meteorological Service)Meteorologisches Observatorium Hohenpeissenberg Albin-Schwaiger-Weg 10D-82383 Hohenpeissenberg, Germany
	Stefan Gilge	Deutscher Wetterdienst (DWD, German Meteorological Service)Meteorologisches Observatorium Hohenpeissenberg Albin-Schwaiger-Weg 10D-82383 Hohenpeissenberg, Germany
Fundata Semenic Stîna de Vale (Romania)	Daniela ZISU	National Research and Development Institute for Environmental Protection Splaiul Independentei nr. 294, sector 6, 77703 Bucuresti, Romania
Angra do Heroismo Beja Bragança Castelo Branco Lisboa / Gago Coutinho Monte Velho Penhas Douradas Viana do Castelo (Portugal)	Diamantino Henriques	Instituto de Meteorologia,I.P. Observatorio Afonso Chaves, Rua Mae de Deus - Relvao, 9500-321 Ponta Delgada, S. Miguel, Portugal
Kamenicki Vis (Serbia)	Dragan Djordjevic	Republic Hydrometeorological Service, Environmental Control Department Kneza Viseslava 66, 11030 Belgrade, Serbia
Burgas Plovdiv Pleven Sofia Varna (Bulgaria)	Ekaterina Batchvarova	National Institute of Meteorology and Hydrology 66 Tzarigradsko chaussee, 1784 Sofia, Bulgaria
Sonnblick (Austria)	Elisabeth Friedbacher	Federal Environment Agency Austria Spittelauer Lände 5, A-1090 Wien, Austria
	Marina Fröhlich	Federal Environment Agency Austria Spittelauer Lände 5, A-1090 Wien, Austria
	Wolfgang Spangl	Federal Environment Agency Austria Spittelauer Lände 5, A-1090 Wien, Austria
Jarczew Leba Suwalki (Poland)	Eugeniusz Brejnak	Institute of Meteorology and Water Management;Laboratory for Research and Monitoring of Air Pollution 61 Podlesna Street, 01-673 Warszawa, Poland

Station Country/Territory	Name	Address
Country/Territory		
Fundata (Romania)	Florin Nicodim	National Meteorological Administration Sos. Bucuresti-Ploiesti nr. 97, 71552 Bucharest, Romania
Lampedusa (Italy)	Florinda Artuso	Italian National Agency for New Technology, Energy and the Environment (ENEA) ENEA ACS-CLIMOSS, Via Anguillarese 301, 00060 S.Maria di Galeria, Rome, Italy.
	Salvatore Chiavarini	Italian National Agency for New Technology, Energy and the Environment (ENEA) ENEA CLIM-OSS, Via Anguillarese 301, 00060 S.Maria di Galeria, Rome, Italy.ENEA-Station for Climate Observations, Capo Grecale, 92010 Lampedusa (AG), Italy
	Salvatore Piacentino	Italian National Agency for New Technology, Energy and the Environment (ENEA) ENEA ACS-CLIMOSS, Via Catania 2, 90141 Palrmo, Italy.
	Alcide di Sarra	Italian National Agency for New Technology, Energy and the Environment (ENEA) ENEA ACS-CLIMOSS, Via Anguillarese 301, 00060 S.Maria di Galeria, Rome, Italy.
Giordan Lighthouse (Malta)	Francelle Azzopardi	
	Raymond Ellul	Atmospheric Research Unit / Physics Department /University of Malta Msida MSD 06, Malta
	Martin Saliba	
Plateau Rosa (Italy)	Francesco Apadula	Ricerca sul Sistema Energetico - RSE S.p.A. via Rubattino 54, 20134 Milano, Italy
	Daniela Heltai	Ricerca sul Sistema Energetico - RSE S.p.A. via Rubattino 54, 20134 Milano, Italy
	Andrea Lanza	Ricerca sul Sistema Energetico - RSE S.p.A. via Rubattino 54, 20134 Milano, Italy
Site J (Denmark)	Gen Hashida	National Institute of Polar Research Kaga 1-9-10, Itabashi-ku, Tokyo 173-8515, Japan
	Shinji Morimoto	National Institute of Polar Research Kaga 1-9-10, Itabashi-ku, Tokyo 173-8515, Japan
	Shuji Aoki	Center for Atmospheric and Oceanic Studies, Graduate School of Science, Tohoku University Aoba, Sendai 980-8578, Japan

Station	Name	Address
Country/Territory		
Mace Head (Ireland)	Gerard Spain	National University of Ireland, Galway (NUI) Mace Head Research Station Carna, Co. Galway, Ireland
Hohe Warte Stephansplatz (Austria)	Guenther Schermann	Municipal Department 22 - Environmental ProtectionAir quality subdepartment, City of Vienna Ebendorferstrasse 4, A-1082 Vienna, Austria
Vindeln (Sweden)	Hakan Blomgren	IVL Swedish Environmental Research Institute P.O.Box 5302S-400 14 Goteborg, Sweden
Kollumerwaard Kloosterburen (Netherlands (the))	Hans Berkhout	RIVM-Laboratory for Environmental Monitoring PO Box 1 3720 BA Bilthoven the Netherlands
Wank Peak Zugspitze (Germany)	Hans-Eckhart Scheel	Karlsruhe Institute of Technology (KIT), IMK-IFU 82467 Garmisch-Partenkirchen, Germany
Danki Shepelevo (Russian Federation)	Irina Brouskina	
BEO Moussala (Bulgaria)	Ivo Kalapov	INRNE Institute for Nuclear Research and Nuclear Energy Tsarigradsko shose Blvd. 1784 Sofia Bulgaria
	Todor Arsov	
La Cartuja Doñana Logroño Mahón Noia Roquetes San Pablo de los Montes (Spain)	J.M. Saenz	Servicio de Desarrollos Medioambientales, Instituto Nacional de Meteorologia, Ministerio de Medio Ambiente Leonardo Prieto Castro, 8, 28071 Madrid, Spain
Zeppelinfjellet (Ny-Alesund) (Norway)	Johan Strom	Department of Applied Environmental Science (ITM), Stockholm University SE-106 91 Stockholm, Sweden
Pallas-Sammaltunturi (Finland)	Juha Hatakka	Finnish Meteorological Institute P.O.Box 503,FI-00101 Helsinki, Finland
	Timo Salmi	Finnish Meteorological Institute Erik Palmenin aukio 1, P.O.Box 503, FIN-00101 Helsinki, Finland

Station Country/Territory	Name	Address
Brotjacklriegel Deuselbach Waldhof Neuglobsow Schauinsland Westerland Zingst Zugspitze /	Karin Uhse	Umweltbundesamt (UBA, Federal Environmental Agency) Air Monitoring Network Paul-Ehrlich-Strasse 29 D-63225 Langen, Germany
Schneefernerhaus Zugspitze (Germany) Sniezka (Poland)	Krzaczkowski Piotr, MSc	Institute of Meteorology and Water Management - Wroclaw Branch, Meteorological Observatory on Sniezka Mountain
Hegyhatsal K-puszta (Hungary)	Laszlo Haszpra	Hungarian Meteorological Service P.O. Box 39, H-1675 Budapest, Hungary
Iskrba Kovk Krvavec Zavodnje (Slovenia)	Marijana Murovec	Slovenian Environment Agency Agencija RS za okolje / Slovenian Environment Agency Urad za hidrologijo in stanje okolja / Hidrology and State of the Environment Office Sektor za kakovost zraka / Air Quality Division Vojkova 1b, 1001 Ljubljana, p.p. 2608, Slovenia
Dobele Rucava Zoseni (Latvia)	Marina Frolova	Observation Network Department, Latvian Environment, Geology and Meteorology Centre, Ministry of Environmental 165 Maskavas str. LV-1019, Riga, Latvia
Ivan Sedlo (Bosnia and Herzegovina)	Martin Tais	Meteoroloski zavod Bosne i Hercegovine Bardakcije 12, 71000 Sarajevo, Bosnia and Herzegovina
Pic du Midi (France)	Meyerfeld Yves	Laboratoire d'Aérologie
	Gheusi Francois	

Station Country/Territory	Name	Address
Ile Grande Pic du Midi Puy de Dome (France)	Michel Ramonet	LSCE (Laboratoire des Sciences du Climat et de l'Environnement) UMR CEA-CNRS LSCE - CEA Saclay - Orme des Merisiers - Bat.701 91191 Gif-sur-Yvette, France
Finokalia (Greece)		
Mace Head (Ireland)		
Begur (Spain)		
Kosetice (Czech Republic)	Milan Vana	Czech Hydrometeorological Institute, Kosetice Observatory Na Sabatce 17, 143 06 Praha 4 - Komorany, Czech Republic
Ocean Station Charlie Teriberka (Russian Federation)	Nina Paramonova	Main Geophysical Observatory (MGO) Karbyshev Street 7, St. Petersburg, 194021, Russian Federation
Zeppelinfjellet (Ny-Alesund) (Norway)	Ove Hermansen	Norwegian Institute for Air Research (NILU) P. O. Box 100 Instituttveien 18, N-2027 Kjeller, Norway
Monte Cimone (Italy)	Paolo Bonasoni	ISAC-CNR ISAC-CNR, VIa Gobetti 101 - 40129 Bologna -Italy
	jgor arduini	Università degli Studi di Urbino Istituto di Scienze Chimiche, piazza Rinascimento 6, 61029 Urbino - Italy
	Paolo Cristofanelli	ISAC-CNR ISAC-CNR, VIa Gobetti 101 - 40129 Bologna -Italy
Eskdalemuir (United Kingdom of Great Britain and Northern Ireland)	Peter Kuria	Air and Environment Quality Division, DEFRA 4/F15, Ashdown House123 Victoria StreetLondon, SW1E 3DE, United Kingdom
Puy de Dome (France)	Pichon Jean-Marc	Laboratoire de Météorologie Physique
	Meyerfeld Yves	Laboratoire d'Aérologie
Jungfraujoch (Switzerland)	Sander van der Laan	Postdoc, Physics Institute, Climate and Environmental Physics, University of Bern Sidlerstrasse 5 CH-3012 Bern Switzerland

Station	Name	Address
Country/Territory		
Zugspitze / Schneefernerhaus (Germany)	Stefan Gilge	Deutscher Wetterdienst (DWD, German Meteorological Service)Meteorologisches Observatorium Hohenpeissenberg Albin-Schwaiger-Weg 10D-82383 Hohenpeissenberg, Germany
	Christian Plass-Duelmer	Deutscher Wetterdienst (DWD, German Meteorological Service)Meteorologisches Observatorium Hohenpeissenberg Albin-Schwaiger-Weg 10D-82383 Hohenpeissenberg, Germany
Lazaropole (The Former Yugoslav Republic of Macedonia)	Suzana Alcinova Monevska	Hydrometeorological Service Skupi bb, 1000 Skopie,The former Yugoslav Republic of Macedonia
Ähtäri Oulanka Utö Virolahti (Finland)	Timo Salmi	Finnish Meteorological Institute Erik Palmenin aukio 1, P.O.Box 503, FIN-00101 Helsinki, Finland
ANTARCTICA		
Jubany (Italy)	Claudio Rafanelli	ICES (Int.l Center for Earth Sciences) c/o CNR-Istituto di Acustica- Area della Ricerca di Roma Tor Vergata,via Fosso del Cavaliere 100, 00133 Rome, Italy
Arrival Heights (New Zealand)	Gordon Brailsford	National Institute of Water & Atmospheric Research Ltd. 301 Evans Bay Parade, Greta Point,Private Bag 14-901, Kilbirnie, Wellington, New Zealand
	Ross Martin	National Institute of Water & Atmospheric Research Ltd. 301 Evans Bay Parade, Greta Point, Private Bag 14-901, Kilbirnie, Wellington, New Zealand
	Sylvia Nichol	National Institute of Water & Atmospheric Research Ltd. 301 Evans Bay Parade, Greta Point, Private Bag 14-901, Kilbirnie, Wellington, New Zealand
Syowa Station (Japan)	Koji kawashima	Office of Antarctic Observations, Japan Meteorological Agency (JMA) 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan
Concordia, Dôme C (Italy)	Paolo Cristofanelli	ISAC-CNR ISAC-CNR, VIa Gobetti 101 - 40129 Bologna -Italy

Station Country/Territory	Name	Address
	Paolo Bonasoni	ISAC-CNR ISAC-CNR, VIa Gobetti 101 - 40129 Bologna -Italy
Neumayer (Germany)	Rolf Weller	Alfred Wegener Institute Am Handelshafen 12, 27570 Bremerhaven, Germany
King Sejong (Republic of Korea)	Sang-Hoon Kim	Korea Global Atmosphere Watch Center, Korea Meteorology Administration 1764-6, Seungen-Ri, Anmyeon-Eup, Taean-Kun, ChungNam, 357-961, Republic of Korea
	Haeyoung Lee	Korea Global Atmosphere Watch Center, Korea Meteorology Administration 1764-6, Seungen-Ri, Anmyeon-Eup, Taean-Kun, ChungNam, 357-961, Republic of Korea
	Taejin Choi	Division of Polar Climate Research, KOPRI Get-Pearl Tower, 12 Gaetbeol-ro, Yeonsu-gu, Incheon, 406-840, Republic of Korea
Mizuho (Japan)	Takakiyo Nakazawa	Center for Atmospheric and Oceanic Studies, Graduate School of Science, Tohoku University Aoba, Sendai 980-8578, Japan
Syowa Station (Japan)	Takakiyo Nakazawa	Center for Atmospheric and Oceanic Studies, Graduate School of Science, Tohoku University Aoba, Sendai 980-8578, Japan
	Gen Hashida	National Institute of Polar Research Kaga 1-9-10, Itabashi-ku, Tokyo 173-8515, Japan
	Shinji Morimoto	National Institute of Polar Research Kaga 1-9-10, Itabashi-ku, Tokyo 173-8515, Japan
MOBILE STATION		
NOPACCS - Hakurei Maru - WEST COSMIC - Hakurei Maru No.2 - (Japan)	General Environmental Texhnos	The General Environmental Technos Co., Ltd. (Old:Kansai Environmental Engineering Center, Co., Ltd.) 1-3-5, Azuchi machi, Chuo-ku, Osaka 541-0052, Japan
INSTAC-I (International Strato/Tropospheric Air Chemistry Project) (Japan)	Hidekazu Matsueda	Geochemical Research Department, Meteorological Research Institute Nagamine 1-1, Tsukuba, Ibaraki 305-0052, Japan
Comprehensive Observation Network for TRace gases by AIrLiner (CONTRAIL) (Japan)	Hidekazu Matsueda	Geochemical Research Department, Meteorological Research Institute Nagamine 1-1, Tsukuba, Ibaraki 305-0052, Japan

Station Country/Territory	Name	Address
	Toshinobu Machida	National Institute for Environmental Studies 16-2 Onogawa, Tsukuba 305-8506, Japan
MRI Research, Mirai, R/V (Japan)	Hisayuki Yoshikawa-Inoue	Laboratory of Marine and Atmospheric GeochemistryGraduate School of Environmental Earth ScienceHokkaido University N10W5, Kita-ku, Sapporo 060-0810, Japan
northern and western Pacific (Japan)	Kentaro Ishijima	Japan Agency for Marine-earth Science and Technology (JAMSTEC) 3173-25 Showamachi, Kanazawa-ku, Yokohama, 236-0001, Japan
	Shuji Aoki	Center for Atmospheric and Oceanic Studies, Graduate School of Science, Tohoku University Aoba, Sendai 980-8578, Japan
	Takakiyo Nakazawa	Center for Atmospheric and Oceanic Studies, Graduate School of Science, Tohoku University Aoba, Sendai 980-8578, Japan
Santarem (Brazil)	Luciana Vanni Gatti	IPEN Atmospheric Chemistry Laboratory Av. Prof. Lineu Prestes, 2242, Cidade Universitaria, Sao Paulo, SP- BRAZIL CEP 05508-900
	LuanaăS. Basso	IPEN Atmospheric Chemistry Laboratory Av. Prof. Lineu Prestes, 2242, Cidade Universitaria, Sao Paulo, SP- BRAZIL CEP 05508-900
	Alexandre Martinewski	
MRI Research, Hakuho Maru, R/V MRI Research, Kaiyo Maru, R/V MRI Research, 1978-1986, R/V MRI Research, Natushima, R/V MRI Research, Ryofu Maru, R/V MRI Research, Wellington Maru, R/V	Masao Ishii	Geochemical Research Department, Meteorological Research Institute Nagamine 1-1, Tsukuba, Ibaraki 305-0052, Japan

Station	Name	Address
Country/Territory		
Aircraft: Orleans (France)	Michel Ramonet	LSCE (Laboratoire des Sciences du Climat et de l'Environnement) UMR CEA-CNRS LSCE - CEA Saclay - Orme des Merisiers - Bat.701 91191 Gif-sur-Yvette, France
Observation of Atmospheric Chemistry Over Japan The Observation of Atmospheric Methane Over Japan The Observation of Atmospheric Sulfur Hexafluoride Over Japan (Japan)	Michio Hirota	Geochemical Research Department, Meteorological Research Institute 1-1, Nagamine, Tsukuba, Ibaraki 305-0052, Japan
Pacific Ocean (New Zealand)	Sylvia Nichol	National Institute of Water & Atmospheric Research Ltd. 301 Evans Bay Parade, Greta Point, Private Bag 14-901, Kilbirnie, Wellington, New Zealand
	Gordon Brailsford	National Institute of Water & Atmospheric Research Ltd. 301 Evans Bay Parade, Greta Point, Private Bag 14-901, Kilbirnie, Wellington, New Zealand
Alligator liberty, M/V Keifu Maru, R/V Kofu Maru, R/V Ryofu Maru, R/V (Japan)	Takayuki Tokieda	Pollutants Chemical Analysis Center, Marine Division, Climate and Marine Department, Japan Meteorological Agency (JMA) 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan
Comprehensive Observation Network for TRace gases by AIrLiner (CONTRAIL) (Japan)	Taku Umezawa	Max Planck Institute for Chemistry Atmospheric Chemistry Department
	Shuji Aoki	Center for Atmospheric and Oceanic Studies, Graduate School of Science, Tohoku University
Aircraft Observation of Atmospheric trace gases by JMA (Japan)	Taro KAWASATO	Atmospheric Environment Division, Global Environment and Marine Department,Japan Meteorological Agency (JMA) 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan
Soyo Maru, R/V Wakataka-Maru (Japan)	Tsuneo Ono	Hokkaido National Fisheries Research Institute 116 Katsurakoi, Kushiro 085-0802, Japan

Station Country/Territory	Name	Address
Country/ Territory		
NOAA/ESRL Flask	Network	
Assekrem	Bruce Vaughn ^{**}	(*)NOAA/ESRL Global Monitoring Division
(Algeria)	James White** $(^{13}CH_4, ^{13}CO_2 \text{ and } C^{18}O_2)$	325 Broadway R/GMD1 Boulder, CO 80305-3328, U.S.A.
Tierra del Fuego		
(Argentina)	Edward J.Dlugokencky* (CH ₄)	(**)Institute of Arctic and Alpine Research (INSTAAR) INSTAAR, Univ. of Colorado
Cape Grim		1560, 30th Street
(Australia)	Paul C. Novelli [*] (CO and H ₂)	UCB 450 Boulder, CO 80309
Ragged Point		U.S.A.
(Barbados)	Thomas J. Conway [*] (CO ₂)	
Arembepe		
(Brazil)	Bruce Vaughn** $(N_2O \text{ and } SF_6)$	
Alert		
Lac La Biche	Detlev Helmig ^{**}	
Mould Bay	Jacques Hueber**	
(Canada)	(VOCs)	
Easter Island		
(Chile)		
Lulin		
Shangdianzi		
Mt. Waliguan		
(China)		
Summit		
(Denmark)		
Pallas-Sammaltunturi		
(Finland)		
Amsterdam Island		
Crozet		
(France)		
Hohenpeissenberg		
Ochsenkopf		
(Germany)		
Hegyhatsal		
(Hungary)		
Heimaey		
(Iceland)		
Bukit Koto Tabang		
(Indonesia)		

Station Country/Territory	Name	Address
Mace Head (Ireland)		
Sede Boker (Israel)		
Lampedusa (Italy)		
Syowa Station (Japan)		
Sary Taukum Plateau Assy (Kazakhstan)		
Mt. Kenya (Kenya)		
Christmas Island (Kiribati)		
Kaashidhoo (Maldives)		
Dwejra Point (Malta)		
Mex High Altitude Global Climate Observation Center, Mexico (Mexico)		
Ulaan Uul (Mongolia)		
Gobabeb (Namibia)		
Arrival Heights Baring Head Lauder Kaitorete Spit (New Zealand)		
Ocean Station "M" Zeppelinfjellet (Ny-Alesund) (Norway)		
Baltic Sea (Poland)		

Station	Name	Address
Country/Territory		
Terceira Island (Portugal)		
Tae-ahn Peninsula (Republic of Korea)		
Black Sea (Romania)		
Mahe Island (Seychelles)		
Cape Point (South Africa)		
Izaña (Tenerife) (Spain)		
Ascension Island St. David's Head Tudor Hill Halley Bay Bird Island (United Kingdom of Great Britain and Northern Ireland)		
Akademik Korolev, R/V		
Argyle		
Atlantic Ocean		
St. Croix		
Barrow		
Cold Bay		
Cape Meares		
Discoverer 1983 & 1984, $\rm R/V$		
Drake Passage		
Discoverer 1985, R/V		
Guam		
Grifton		
John Biscoe, R/V		

Station Country/Territory	Name	Address
Jounny/ Territory		
Key Biscayne		
Korolev, R/V		
Kitt Peak		
Cape Kumukahi		
Park Falls		
Long Lines Expedition, R/V		
McMurdo Station		
Sand Island		
Mauna Loa		
Mexico Naval H-02, $\mathrm{R/V}$		
Niwot Ridge (T-van)		
Niwot Ridge (Saddle)		
Oceanographer, R/V		
Olympic Peninsula		
Pacific-Atlantic Ocean		
Polar Star, R/V		
Pacific Ocean		
Palmer Station		
Point Arena		
South China Sea		
Southern Great Plains		
Shemya Island		
La Jolla		
Tutuila (Cape Matatula)		
South Pole		
Ocean Station Charlie		

Station Country/Territory	Name	Address
., .		
Surveyor, R/V		
Trinidad Head		
Wendover		
West Branch		
Moody		
Western Pacific		
(United States of Amer	rica)	
NOAA/ESRL/HA	TS Network	
Tierra del Fuego (Argentina)	Geoffrey S. Dutton James W. Elkins Stephen A. Montzka	Halocarbons and Other Atmosphere Trace Species Group (HATS)/NOAA/ESRL Global Monitoring Division
Cape Grim (Australia)		Division 325 Broadway R/GMD1 Boulder, CO 80305-3328, U.S.A
Alert (Canada)		
Summit (Denmark)		
Mace Head (Ireland)		
BACPAC 99		
BLAST1		
BLAST2		
BLAST3		
Barrow		
CLIVAR 01		
Gas Change Experimer	ıt	

Harvard Forest

Grifton

HATS Ocean Projects

Station Country/Territory	Name	Address	
Cape Kumukahi			
Park Falls			
Mauna Loa			
Niwot Ridge (C-1)			
PHASE I-04			
Palmer Station			
Tutuila (Cape Matatula))		
South Pole			
Trinidad Head			
(United States of Americ	ca)		
NOAA/ESRL Surfa	ce Ozone Network		

Ragged Point (Barbados)

Audra McClure-Begley Irina Petropavlovskikh

NOAA/ESRL Global Monitoring Division 325 Broadway, R/GMD1, Boulder, CO 80305, U.S.A

Summit (Denmark)

Heimaey (Iceland)

Arrival Heights Lauder (New Zealand)

Tudor Hill (United Kingdom of Great Britain and Northern Ireland)

Barrow McMurdo Station Mauna Loa Niwot Ridge (C-1) Niwot Ridge (Saddle) Tutuila (Cape Matatula) South Pole Trinidad Head (United States of America)

Station Country/Territory	Name	Address
CSIRO Flask Network	:	
Aircraft (over Bass Strait and Cape Grim) Cape Ferguson Cape Grim Casey Station Mawson Macquarie Island (Australia)	Ray Langenfelds Paul Krummel Marcel van der Schoot Paul Steele Colin Allison	Commonwealth Scientific and Industrial Research Organisation (CSIRO) CSIRO Marine and Atmospheric Research Private Bag 1 Aspendale, Vic, Australia 3195
Alert Estevan Point (Canada) Cape Rama		
(India) Shetland (United Kingdom of Great		

Mauna Loa South Pole (United States of America)

Britain and Northern

Ireland)

ALE/GAGE/AGAGE Network

Cape Grim (Australia)	Ray Wang	School of Earth and Atmospheric Sciences, Georgia Institute of Technology 311 Ferst Drive
Ragged Point		School of Earth and Atmospheric Sciences
(Barbados)		Georgia Institute of Technology Atlanta, GA 30332-0340, U.S.A
Adrigole		
Mace Head		
(Ireland)		
Zeppelinfjellet (Ny-Alesund) (Norway)		

Jungfraujoch (Switzerland)

Cape Meares Tutuila (Cape Matatula) Trinidad Head (United States of America)

GLOSSARY

ATMOSPHERIC SPECIES:

CCl ₄	tetrachloromethane (carbon tetrachloride)
CFC-11	chlorofluorocarbon-11 (trichlorofluoromethane, CCl ₃ F)
CFC-12	chlorofluorocarbon-12 (dichlorodifluoromethane, CCl_2F_2)
CFC-113	chlorofluorocarbon-113 (1,1,2-trichlorotrifluoroethane, CCl ₂ FCClF ₂)
CFCs	chlorofluorocarbons
CH ₃ Cl	chloromethane (methyl chloride)
Halon-1211	chlorodifluorobromomethane (CBrClF ₂)
Halon-1211 Halon-1301	bromotrifluoromethane (CBrF ₃)
HCFC-141b	hydrochlorofluorocarbon-141b (1,1-dichloro-1-fluoroethane, CH ₃ CCl ₂ F)
HCFC-141b	hydrochlorofluorocarbon-142b (1,1-difluoro-1-fluoroethane, CH ₃ CClF ₂)
HCFC-1420 HCFC-22	hydrochlorofluorocarbon-22 (chlorodifluoromethane, CHClF ₂)
HCFC-22 HCFCs	hydrochlorofluorocarbons
HFC-134a	hydrofluorocarbon-134a (1,1,1,2-tetrafluoroethane, CH ₂ FCF ₃)
HFC-152a	
	hydrofluorocarbon-152a (1,1-difluoroethane, CHF ₂ CH ₃)
HFCs	hydrofluorocarbons
CH ₄	methane
CH ₃ CCl ₃	trichloroethane (methyl chloroform)
CO	carbon monoxide
CO_2	carbon dioxide
N ₂ O	nitrous oxide
NO	nitrogen monoxide
NO_2	nitrogen dioxide
NO _X	nitrogen oxides
O ₃	ozone
SF ₆	sulphur hexafluoride
SO_2	sulphur dioxide
VOCs	volatile organic compounds

UNITS:

ppb	parts per billion
ppm	parts per million
ppt	parts per trillion

Others:

ENSO	El Niño-Southern Oscillation
M/V	merchant vessel
R/V	research vessel

LIST OF WMO WDCGG PUBLICATIONS

October

July

DATA REPORTING MANUAL:

WDCGG No. 1 1991 January

WMO WDCGG DATA REPORT:

WDCGG No. 2 Part A	October	1992
WDCGG No. 2 Part B	October	1992
WDCGG No. 3	October	1993
WDCGG No. 5	March	1994
WDCGG No. 6	September	1994
WDCGG No. 7	March	1995
WDCGG No. 9	September	1995
WDCGG No.10	March	1996
WDCGG No.11	September	1996
WDCGG No.12	March	1997
WDCGG No.14	September	1997
WDCGG No.16	March	1998
WDCGG No.17	September	1998
WDCGG No.18	March	1999
WDCGG No.20	September	1999
WDCGG No.21	March	2000
WDCGG No.23	September	2000
WDCGG No.25	March	2001

~ ~ 1990 October August 1992 September 1992 March 1993 \sim 1993 1993 April September \sim September 1993 March 1994 \sim April 1994 \sim December 1994 January 1995 \sim June 1995 1995 December 1995 July \sim January 1996 June 1996 \sim 1996 July \sim November 1996 December 1996 \sim June 1997 1997 December 1997 July \sim January 1998 1998 \sim June July 1998 \sim December 1998 1999 January \sim June 1999 1999 December 1999 July \sim 2000 January \sim June 2000

2000

 \sim

(period of data accepted)

August

December

1992

2000

1990

WMO WDCGG DATA CATALOGUE:

December	1993
March	1997
March	1999
March	2001
	March March

WMO WDCGG DATA SUMMARY:

WDCGG No. 8 WDCGG No.15	October March	1995 1998
WDCGG No.22	March	2000
WDCGG No.26	March	2002
WDCGG No.27	March	2003
WDCGG No.28	March	2004
WDCGG No.29	March	2005
WDCGG No.30	March	2006
WDCGG No.31	March	2007
WDCGG No.32	March	2008
WDCGG No.33	March	2009
WDCGG No.34	March	2010
WDCGG No.35	March	2011
WDCGG No.36	March	2012

WMO WDCGG CD-ROM:

CD-ROM No. 1	March	1995
CD-ROM No. 2	March	1996
CD-ROM No. 3	March	1997
CD-ROM No. 4	March	1998
CD-ROM No. 5	March	1999
CD-ROM No. 6	March	2000
CD-ROM No. 7	March	2001
CD-ROM No. 8	March	2002

(period of data accepted)

October	1990	\sim	December	1994
October	1990	\sim	June	1995
October	1990	\sim	June	1996
October	1990	\sim	December	1997
October	1990	\sim	December	1998
October	1990	\sim	December	1999
October	1990	\sim	December	2000
October	1990	\sim	January	2002

CD-ROM No. 9	March	2003	October	1990	\sim	December	2002
CD-ROM No.10	March	2004	October	1990	\sim	December	2003
CD-ROM No.11	March	2005	October	1990	\sim	December	2004
CD-ROM No.12	March	2006	October	1990	\sim	December	2005
CD-ROM No.13	March	2007	October	1990	\sim	November	2006
CD-ROM No.14	March	2008	October	1990	\sim	November	2007

WMO WDCGG DVD:

DVD No. 1	March	2009
DVD No. 2	March	2010
DVD No. 3	March	2011
DVD No. 4	March	2012
DVD No. 5	March	2013

(period of data accepted)

October	1990	\sim	November	2008
October	1990	\sim	November	2009
October	1990	\sim	November	2010
October	1990	\sim	November	2011
October	1990	\sim	November	2012