WORLD METEOROLOGICAL ORGANIZATION

GLOBAL ATMOSPHERE WATCH WORLD DATA CENTRE FOR GREENHOUSE GASES

WMO WDCGG DATA SUMMARY

WDCGG No. 35

GAW DATA

Volume IV-Greenhouse Gases and Other Atmospheric Gases

PUBLISHED BY
JAPAN METEOROLOGICAL AGENCY
IN CO-OPERATION WITH
WORLD METEOROLOGICAL ORGANIZATION

MARCH 2011

Acknowledgements

This issue of *Data Summary* reports the latest status of greenhouse and some reactive gases in the global atmosphere. This Data Summary has been prepared by the World Data Centre for Greenhouse Gases (WDCGG), established under the Global Atmosphere Watch (GAW) programme of the World Meteorological Organization (WMO) and operated by the Japan Meteorological Agency (JMA), using data submitted by many contributors worldwide (Appendix: LIST OF CONTRIBUTORS). These contributors include organizations and individuals involved in observations and research at stations and laboratories that measure greenhouse and some reactive gases within the framework of GAW and other cooperative monitoring and research programmes. The WDCGG thanks all of these organizations and individuals, including those from the global air sampling network of the National Oceanic and Atmospheric Administration (NOAA), for their efforts in maintaining the observation programme and continuing to provide observational data. Not all of the contributors may be explicitly acknowledged in this publication, owing to lack of space, but all the organizations and individuals that have submitted data to the WDCGG are nevertheless here acknowledged as invaluable contributors to this latest issue of Data Summary.

CONTENTS

	Page
SUMMARY	1
1. INTRODUCTION	3
2. ANALYSIS	5
3. CARBON DIOXIDE	7
4. METHANE	15
5. NITROUS OXIDE	21
6. HALOCARBONS AND OTHER HALOGENATED SPECIES	25
7. SURFACE OZONE	31
8. CARBON MONOXIDE	35
9. NITROGEN MONOXIDE AND NITROGEN DIOXIDE	41
10. SULPHUR DIOXIDE	45
REFERENCES	49
APPENDICES	53
CALIBRATION AND STANDARD SCALES	54
LIST OF OBSERVATING STATIONS	66
LIST OF CONTRIBUTORS	77
GLOSSARY	95
LIST OF WMO/WDCCC PURLICATIONS	97

SUMMARY

This *Data Summary* reports the results of basic analyses of greenhouse and some reactive gas data submitted to the WMO World Data Centre for Greenhouse Gases (WDCGG). This issue covers observations from 1968 through 2009, based on data reported to the WDCGG by November 2010. The *Data Summary* includes analyses of global, hemispheric and latitudinal monthly mean mole fractions of greenhouse and some reactive gases, and provides information on the state of mole fractions of these gases.

Although only monthly mean mole fractions were used for the analyses, the WDCGG greatly appreciates those stations that submit daily and hourly mean mole fractions, which are important for analysing variations on shorter time scales. All data submitted to the WDCGG are available on its web site, http://gaw.kishou.go.jp/wdcgg/.

To represent mole fractions, this *Data Summary* uses the units ppm, ppb and ppt, which correspond to the SI units µmol/mol, nmol/mol and pmol/mol, respectively.

Variations in the mole fractions of some gases are presented as combinations of seasonal cycles and deseasonalized long-term trends. Growth rates are presented as time derivatives of the long-term trends. The analytical results are summarized below for each greenhouse and reactive gas.

Carbon Dioxide (CO₂)

The level of carbon dioxide (CO₂), which contributes most to increases in anthropogenic induced radiative forcing, has been increasing since the beginning of the industrial era. The global average mole fraction of CO₂ in 2009 reached a new high of 386.8 ppm, which is 138% of the mole fraction in the pre-industrial period. The increase of 1.6 ppm from 2008 to 2009 was smaller than the average for the last 10 years (1.88 ppm/year) but larger than the average for the 1990s (about 1.5 ppm/year).

The global growth rate of CO₂ has a significant interannual variation caused by natural processes. Growth rates higher than 2 ppm/year in 1987/1988, 1997/1998, 2002/2003 and 2005 resulted from warmer conditions caused by El Niño-Southern Oscillation (ENSO) events. The anomalously strong El Niño event in 1997/1998 resulted in greater annual increases in CO₂ worldwide in 1998 than during any other one-year period. The high growth rates in 2006 may have been related to the global high temperature during the same year. The exceptionally low growth rates in 1992, including negative values in northern high latitudes, may have been due to low global temperatures following the eruption of Mount Pinatubo in 1991. Variations in CO₂ mole fraction can be seen both on

seasonal and long-term scales. The seasonal amplitudes are large in northern high and mid-latitudes and small in the Southern Hemisphere. In southern low latitudes, there is no clear annual cycle, but a semiannual cycle can be determined.

Methane (CH₄)

Methane (CH₄) is the second most significant anthropogenic greenhouse gas, whose level has been increasing since the beginning of the industrial era. The annual average mole fraction was 1803 ppb in 2009, an increase of 5 ppb since 2008. The mole fraction is now 258% of that in the pre-industrial period. This is the third year of strong methane increases after the levelling-off in the beginning of this century.

The latitudinal gradient of CH₄ mole fraction is large from the northern mid-latitudes to the tropics, suggesting that the major sources of CH₄ are located in the Northern Hemisphere.

CH₄ growth rates decreased significantly in some years, including 1992, when negative values were recorded in northern high and mid-latitudes. However, both hemispheres experienced high growth rates in 1998, caused by an exceptionally high global mean temperature. The global growth rates were generally low from 1999 to 2006, except during the El Niño event of 2002/2003. Since 2007, the growth rates have again increased globally.

The global growth rate averaged over the period 1984–1990 was 11.5 ppb/year, but decreased markedly in the 1990s. The average global growth rate for the period 1999–2009 was 2.2 ppb/year, but in the last three years through 2009, the global mole fraction increased by a total of 18 ppb.

CH₄ mole fractions vary seasonally, being relatively high in winter and low in summer. Unlike CO₂, the seasonal amplitudes of CH₄ are large, not only in the Northern Hemisphere but also in southern high and mid-latitudes. In southern low latitudes, a distinct secondary maximum in boreal winter overlies the annual cycle.

Nitrous Oxide (N₂O)

Nitrous oxide (N_2O) is an important greenhouse gas whose level is increasing globally. N_2O data submitted to the WDCGG show that mole fractions are increasing in both hemispheres. The global mean mole fraction reached a new high of 322.5 ppb in 2009, 0.6 ppb higher than during the previous year. This mole fraction corresponds to 119% of that in the pre-industrial period. The mean growth rate of the global mean mole fraction over the period 1999–2009 was 0.77 ppb/year and it experiences substantial interannual variability from (0.6 to 1.0 ppb/year).

Halocarbons and Other Halogenated Species

Halocarbons, most of which are anthropogenic, are potent greenhouse gases, with some also acting as ozone-depleting compounds. Levels of some halocarbons (e.g. CFCs) increased in the 1970s and 1980s, but this increase has almost ceased by now, due to the regulation of the production and emission of halocarbons under the Montreal Protocol on Substances that Deplete the Ozone Layer and its subsequent Adjustments and Amendments. However, some substances targeted by the Kyoto Protocol but not regulated by the Montreal Protocol, such as HFCs and SF₆, are increasing.

The mole fraction of CFC-11 peaked around 1992 and then started decreasing. The growth rate of CFC-12 increased until around 2005 and then started decreasing gradually. The mole fraction of CFC-113 stopped increasing in the 1990s, followed by a slight decrease over the last decade. The mole fractions of HCFCs, used mainly as substitutes for CFCs, have increased significantly during the last decade, but the growth of HCFC-141b decelerated rapidly in the second half of the decade. The mole fractions of Halon-1211 and Halon-1301 are increasing, but their growth rates have decelerated. The mole fraction of CCl₄ was maximal around 1991 and has since decreased slowly. The mole fraction of CH₃CCl₃ peaked around 1992 and decreased thereafter. The mole fractions of HFC-134a, HFC-152a and SF₆ are increasing.

Surface Ozone (O₃)

Ozone (O₃) plays important roles in the atmospheric environment through radiative and chemical processes. It absorbs solar UV radiation in the stratosphere, influencing the vertical temperature profile as well as terrestrial IR radiation, and contributing to the greenhouse effect as a greenhouse gas. Ozone is also involved in the chemical transformations of the primary air pollutants, as its mole fraction in the boundary layer serves as an indicator of air quality.

The mole fraction of O_3 near the surface, so-called surface ozone, reflects various processes. While some of the O_3 in the troposphere comes from the stratosphere, the rest is chemically produced in the troposphere through oxidation of CO or hydrocarbons in the presence of NO_x .

The mole fraction of surface ozone is measured at many locations in various environments. Due to its uneven geographic distribution, however, it is difficult to identify a global long-term trend of surface O₃.

Carbon Monoxide (CO)

Carbon monoxide (CO) is not a greenhouse gas itself but influences the mole fractions of greenhouse gases by affecting hydroxyl radicals (OH). Its mole fractions in northern high latitudes have been increasing since the mid-19th century. In 2009, the global mean mole fraction of CO was about 89 ppb. The mole fraction is high in the Northern Hemisphere and low in the Southern Hemisphere, suggesting substantial anthropogenic emissions in the Northern Hemisphere.

Although the global mole fraction of CO increased until the mid-1980s, this growth ceased or was reversed thereafter (WMO, 1999). There was a large fluctuation in growth rate, however, with high positive rates followed by high negative rates in northern latitudes and southern low latitudes from 1997 to 1999. The growth rates in the Northern Hemisphere again began to increase in 2002.

The monthly mean mole fractions show seasonal variations, with large amplitudes in the Northern Hemisphere and small amplitudes in the Southern Hemisphere.

Nitrogen Monoxide (NO) and Nitrogen Dioxide (NO₂)

Nitrogen oxides (NO_x, i.e., NO and NO₂) are not greenhouse gases, but influence the mole fractions of important greenhouse gases by affecting OH. In the presence of NO_x, CO and hydrocarbons are oxidized to produce ozone (O₃), which affects the Earth's radiative balance as a greenhouse gas and the oxidization capacity of the atmosphere by reproducing OH.

Most of the stations that have so far reported NO_x data to the WDCGG are located in Europe. NO_x has a large temporal and geographic variability, and it is difficult to identify its long-term trend.

Sulphur Dioxide (SO₂)

Sulphur dioxide (SO₂) is not a greenhouse gas but a precursor of atmospheric sulphate aerosols. Sulphate aerosols are produced by SO₂ oxidation through photochemical gas-to-particle conversion. SO₂ has also been a major source of acid rain and deposition throughout the industrial era.

Most of the stations reporting SO₂ data to the WDCGG are located in Europe. Global analysis can not be performed on this data set.

1. INTRODUCTION

Human activities have had major impacts on the global environment. Since the beginning of the industrial era, mankind has increasingly made use of land, water, minerals and other natural resources, and continuous growth of the world human population and economies may further increase our impact on the environment. As the climate, biogeochemical processes and natural ecosystems are closely interlinked, changes in any one of these may affect the others and be detrimental to humans and other organisms. Emissions of man-made gaseous and particulate matters alter the energy balance of the atmosphere, and consequently affect the interactions among the atmosphere, hydrosphere and biosphere. Nevertheless, we do not yet have sufficient understanding of the chemical/physical processes in the atmosphere and the interactions of the atmosphere with the hydrosphere and biosphere, a lack of understanding due primarily to insufficient observations.

The World Meteorological Organization (WMO) launched the Global Atmosphere Watch (GAW) in 1989 to promote systematic and reliable observations of the global environment, including greenhouse gases (e.g., CO₂, CH₄, CFCs, and N₂O) and some reactive gases (e.g., O₃, CO, NO_x, and SO₂) in the atmosphere. In October 1990, WMO designated the Japan Meteorological Agency (JMA) in Tokyo to serve as the World Data Centre for Greenhouse Gases (WDCGG). The WDCGG is responsible for collecting, archiving and providing data on greenhouse and reactive gases in the atmosphere and oceans from a number of observation sites throughout the world that participate in GAW and other scientific (Appendix: LIST programmes monitoring OBSERVING STATIONS). In August 2002, the WDCGG took over the role of the Data Centre for Surface Ozone, which has responsibility for surface ozone data, from the Norwegian Institute for Air Research (NILU).

With regard to the issue of global warming, the Kyoto Protocol to the United Nations Framework Convention on Climate Change entered into force in February 2005. In March 2006, WMO commenced annual publication of the WMO Greenhouse Gas Bulletin, which summarizes the state of greenhouse gases in the atmosphere. The sixth issue of the Bulletin was published in November 2010. The WDCGG contributes to the production of the bulletin through timely and adequate collection and analysis of data in cooperation with the contributors of the data.

Since its establishment, the WDCGG has provided its users with data and other information through its regular publications, including the *Data Summary* and *DVD* (Appendix: LIST OF WMO WDCGG PUBLICATIONS). In accordance with the GAW Strategic Plan: (2008–2015), all data and information have been made available on the WDCGG web site, improving

the accessibility of data, information and products (WMO, 2007a). The WDCGG published the Data Submission and Dissemination Guide in 2007 (WMO, 2007b), which, with its revision in 2009 (WMO, 2009b), is designed to facilitate submission of observational data and access to archived data in the WDCGG.

The GAW Strategic Plan requests that World Data Centres assist data users in providing atmospheric chemical observations. To this end, the WDCGG provides global and integrated diagnostics on the state of greenhouse and some reactive gases as analytical information in the Data Summary. The WDCGG global analysis methods have been described in a GAW technical report (WMO, 2009a). The contents of the Data Summary are revised and improved based on comments from data contributors and scientists. The WDCGG invites comments and suggestions regarding the Data Summary or any other publication. We hope the diagnostic information presented here will promote the use of data on greenhouse and reactive gases and will enhance appreciation of the value of the GAW programme.

All users are required to accept the following statement endorsed by the Commission for Atmospheric Sciences (CAS) at its thirteenth session: "For scientific purposes, access to these data is unlimited and provided without charge. By their use you accept that an offer of co-authorship will be made through personal contact with the data providers or owners whenever substantial use is made of their data. In all cases, an acknowledgement must be made to the data providers or owners and to the data centre when these data are used within a publication." The WDCGG requests data users to make appropriate acknowledgements. The principal investigators and other contacts can be obtained from the WDCGG website, as well as from the GAW Station Information System (GAWSIS) website, http://gaw.empa.ch/gawsis/. information on these websites is updated in cooperation with the data contributors and the WMO Secretariat.

Finally, the WDCGG would like to thank all data contributors worldwide, including those involved in on-site measurements, for their efforts in maintaining the observational programme and for continuously providing data

Mailing address:

WMO World Data Centre for Greenhouse Gases (WDCGG)

c/o Japan Meteorological Agency

1-3-4, Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan

E-mail: wdcgg@met.kishou.go.jp

Telephone: +81-3-3287-3439 Facsimile: +81-3-3211-4640

Web Site: http://gaw.kishou.go.jp/wdcgg/

2. ANALYSIS

The WDCGG collects, archives and provides observational data on the mole fractions of greenhouse and some reactive gases, and publishes diagnostic information on these gases based on the reported data.

The long-term trends and seasonal variations in the mole fractions of CO₂, CH₄ and CO are analyzed for presentation as global and latitudinal means. Only global long-term trends are presented for N₂O, whereas global long-term trends are not analyzed for surface O₃, due to its uneven geographic distribution and its substantial spatial gradients, which are poorly covered by the stations. For halocarbons, NO_x and SO₂, only monthly mean mole fractions over time are presented, due to the small number of reporting sites for each compound.

The units used in our analyses are ppm, ppb, and ppt, rather than the SI units of µmol/mol, nmol/mol, and pmol/mol, respectively.

The methods of analysis for CO₂, CH₄, CO and N₂O are summarized below. The details of the global analysis methods for CO₂, CH₄, and N₂O are provided in the *Technical Report of Global Analysis Method for Major Greenhouse Gases by the World Data Centre for Greenhouse Gases*, published as a GAW technical report (WMO, 2009a). When assessing long-term trends for CO₂, CH₄ and N₂O, the growth rates at both ends of the period were assumed to be simple linear extensions of the adjacent year, thus avoiding end effects. For simplicity, the rates for the rest of the period were approximated by linear expressions.

(1) Site selection

For CO₂, CH₄ and N₂O, the diagnostic analyses, including global, hemispheric and zonal means, were based on data from sites that have adopted a standard scale traceable to the Primary Standard designated under GAW. These analyses also utilize data on other standard scales that are convertible to the WMO/GAW scale through a proven equation. A letter encouraging data submitters to utilize WMO scales has been sent out in 2010.

Selection of observation sites for CO_2 , CH_4 and CO have also been based on whether they provide data representing a reasonably large geographical area, considering the fact that some sites may be susceptible to local sources and sinks. Sites are selected objectively using data submitted to the WDCGG. Only those sites that provide annual mean mole fractions falling within a range of $\pm 3\sigma$ from a curve fitted to the LOESS model curve (Cleveland *et al.*, 1988) have been selected, with outliers rejected in an iterative manner. This procedure does not affect the datasets present in the WDCGG, and these data may be useful for purposes other than global analyis, such as

source identification.

The sites selected according to the above criteria are marked with asterisks in Plate 3.1 for CO_2 , Plate 4.1 for CH_4 , Plate 5.1 for N_2O and Plate 8.1 for CO, which represent 73%, 80%, 78% and 87% of the submitted datasets respectively.

(2) Analysis of long-term trends

The mole fractions of greenhouse and reactive gases over time, measured under unpolluted conditions, represent an integration of variations on different time scales. The two major components are seasonal variation and long-term trend. Various attempts have been made to divide measured data into these two components, including objective curve fitting (Keeling *et al.*, 1989), digital filtering (Thoning *et al.*, 1989; Nakazawa *et al.*, 1991), or both (Conway *et al.*, 1994; Dlugokencky *et al.*, 1994).

In this report, seasonal variations derived from components of Fourier harmonics and long-term trends are extracted by low-pass filtering with a cut-off frequency of 0.48 year⁻¹ for each selected site. Details are described in WDCGG Data Summary No. 22 (WMO, 2000).

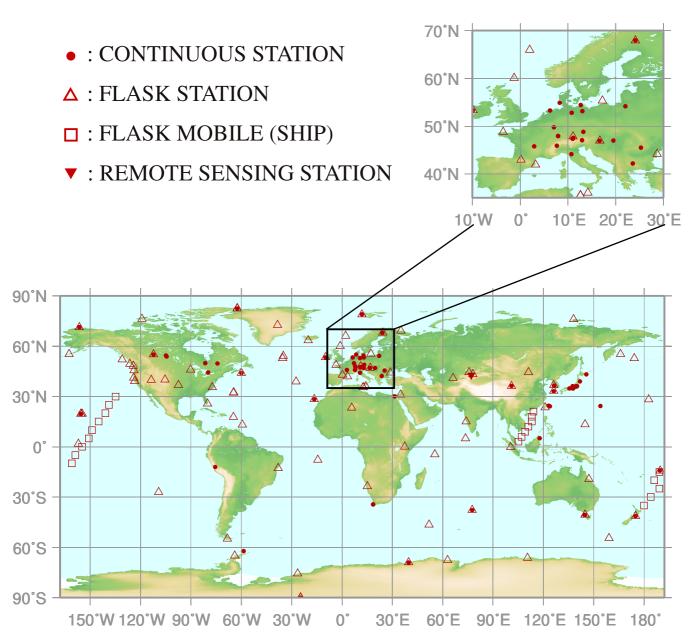
(3) Estimation for missing periods and gaps

The number and distribution of sites used to assess trends during the analysis period should be kept as constant as possible to avoid the effects of changes in the availability of data over time. However, only a small number of sites provided data throughout the entire analysis period; others may have covered shorter periods or had gaps in measurements due to different reasons. To use as many sites as possible, missing values were estimated for the calculation of zonal means, using interpolation and extrapolation as described below.

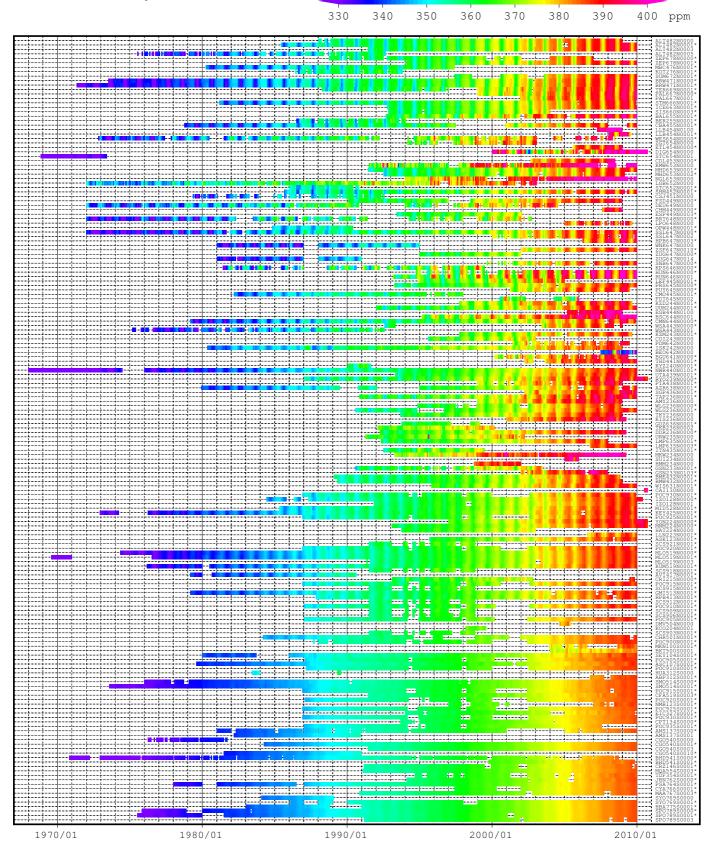
For the former, gaps were interpolated linearly based on the data, by subtracting the seasonal variation calculated from the longest consecutive period of data with Lanczos filters (Duchon, 1979). The subtracted variation was added back to the data to obtain estimated mole fractions in a single sequence.

For the latter, long-term trends calculated from the interpolated series of data were extrapolated based on zonal mean growth rates calculated from other sites in the same latitudinal zone. The seasonal variation was added to the extrapolated long-term trend to obtain estimated mole fractions for the entire period of analysis.

Using these statistical procedures, the future addition of new stations would not affect the consistency in global estimates over time.

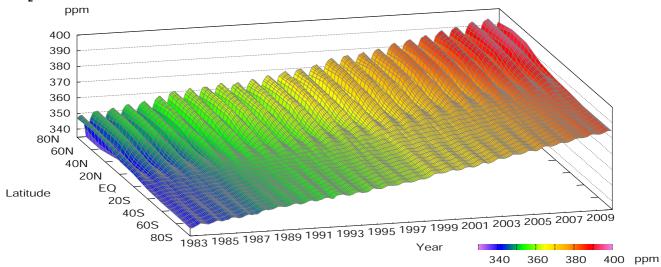

(4) Calculation of global, hemispheric and zonal means

Zonal means were calculated by determining the arithmetic average of the mole fractions in each latitudinal zone, based on consistent datasets derived as above.


Global and hemispheric means were calculated as the weighted averages of the zonal means taking account of the area of each latitudinal zone.

Deseasonalized long-term trends and growth rates for the globe, each hemisphere and each latitudinal zone were calculated from the global, hemispheric and zonal means, respectively, using the low-pass filter mentioned above.

3.
CARBON DIOXIDE
(CO₂)



This map shows locations of the stations that have submitted data for monthly mean mole fraction.

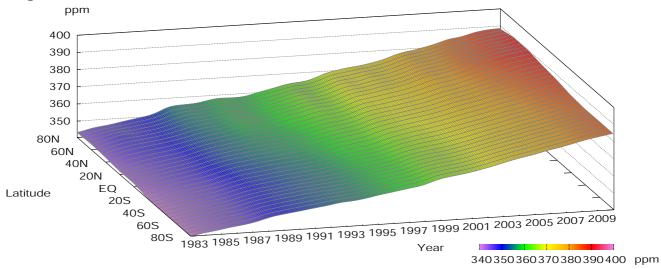
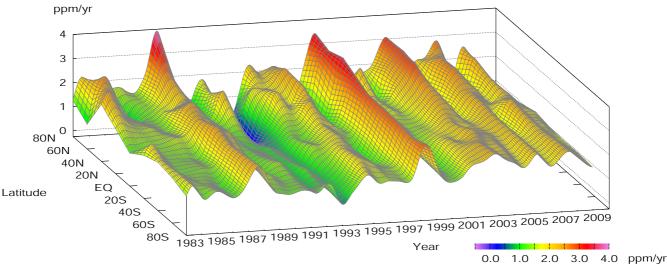


Plate 3.1 Monthly mean CO₂ mole fractions that have been reported to the WDCGG. The mole fractions are illustrated in different colors. The sites are listed in order from north to south. In the case where data are reported for two or three different altitudes, only the data at the highest altitudes are illustrated. In the case where monthly means are not reported, the WDCGG calculates them from hourly or other mole fractions reported to the WDCGG by simple arithmetic mean. The data from the sites with an asterisk at the end of the station index are used for the analysis shown in Plate 3.2. (see Chapter 2)


CO₂ mole fraction

CO₂ deseasonalized mole fraction

CO₂ growth rate

Plate 3.2 Variation of zonally averaged monthly mean CO_2 mole fractions (top), deseasonalized long-term trends (middle), and growth rates (bottom). The zonally averaged mole fractions are calculated for each 20° zone. The deseasonalized trends and growth rates are derived as described in Chapter 2.

3. CARBON DIOXIDE (CO₂)

Basic information on CO₂ with regard to environmental issues

Carbon dioxide (CO₂) has strong absorption bands in the infrared region and is the biggest anthropogenic contributor to the greenhouse effect. CO₂ accounted for 63.54% of the radiative forcing caused by the increase in well-mixed greenhouse gases from 1750 to 2009 (WMO, 2010).

The balance between its emission and absorption over the continents and oceans determines the mole fraction of CO₂ in the atmosphere. About 762 gigatonnes of carbon are present in the atmosphere as CO₂ (IPCC, 2007). Carbon in the atmosphere is exchanged with two other large reservoirs, the terrestrial biosphere and the oceans. CO₂ exchanges between the atmosphere and terrestrial biosphere occur mainly through absorption by photosynthesis and emission from the respiration of plants and the decomposition of organic soils. These biogenic activities vary seasonally, resulting in large seasonal variations in the level of CO₂. CO₂ is transported between the atmosphere and oceans in a direction determined by the relative CO2 mole fraction, and varies in time and space.

The current mole fractions of atmospheric CO₂ far exceed historic records, dating back 650,000 years (Solomon et al., 2007). Based on the results of ice core studies, the mole fraction of atmospheric CO₂ in pre-industrial times was about 280 ppm (IPCC, 2007). The emission of CO₂ due to human activities has increased since the beginning of the industrial era, with the CO₂ emitted into the atmosphere also distributed to the oceans and terrestrial biosphere. The global carbon cycle, which is comprised mainly of CO₂, is not fully understood. About half of anthropogenic CO₂ emissions have remained in the atmosphere, with the remainder removed by sinks, including the terrestrial biosphere and oceans, and non-anthropogenic sources. However, the amount of CO₂ removed from the atmosphere varies greatly over time (Figure 3.1).

Carbon isotopic studies have shown the importance of the terrestrial biosphere and oceans as sources and sinks of CO₂ (Francey *et al.*, 1995; Keeling *et al.*, 1995; and Nakazawa *et al.*, 1993, 1997). In contrast, the atmospheric content of O₂ depends primarily on its removal by the burning of fossil fuels and on its release from the terrestrial biosphere. Therefore, the uptake of carbon by the terrestrial biosphere and oceans can be estimated from the combination of measurements of O₂ (O₂/N₂) and CO₂ (Manning and Keeling, 2006). The oceans and terrestrial biosphere absorbed about 31% (20% to 35%) and 12%, respectively, of the CO₂ emitted by the anthropogenic sources in 2000–2005, with the remaining 57% contributing to annual

increases in atmospheric CO₂ (Solomon et al., 2007).

Large amounts of CO_2 are exchanged among these reservoirs, and the global carbon cycle is coupled with the climate system on seasonal, yearly and decadal time scales. Accurate understanding of the global carbon cycle is essential for estimating future CO_2 mole fractions in the atmosphere.

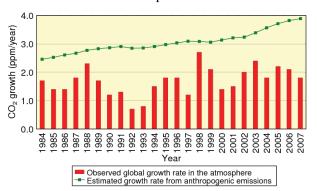


Fig. 3.1. Annual mean growth rates of CO₂ in the atmosphere, calculated from observational data (red columns) and from data for anthropogenic emissions (green curve). The estimated growth rates were calculated from CO₂ emissions (from CDIAC, Boden et al., 2010), expressed as moles divided by the total mass of gas in the atmosphere (5.2 petatonne) converted to moles based on the mean molar weight of air (about 29). The observed growth rates were calculated by the WDCGG. The observational CO₂ abundance is expressed as mole fraction with respect to dry air, while the CO₂ amount calculated from anthropogenic emissions is based on the atmosphere, including water vapor, usually in a mole fraction less than 1%.

Mole fractions of CO₂ can be analyzed utilizing data submitted to the WDCGG from fixed stations and some ships. The observation sites from which data were used for the analysis are shown on the map at the beginning of this chapter. They include fixed stations performing continuous measurements as well as flask-sampling stations, including those in the NOAA/ESRL cooperative air sampling network. In addition, mobile stations on ships and aircraft and other stations observing on an event basis report their data to the WDCGG (see Appendix: LIST OF OBSERVING STATIONS), which are not used for global analysis.

Annual variations of CO₂ mole fraction in the atmosphere

The monthly mean mole fractions of CO₂ used in the analysis are shown in Plate 3.1, with mole fraction levels illustrated in different colours. Global, hemispheric and zonal mean mole fractions were

analysed based on data from selected stations under unpolluted conditions (see the caption to Plate 3.1). Latitudinally averaged mole fractions of atmospheric CO₂, together with their deseasonalized components and growth rates, are shown as three-dimensional representations in Plate 3.2. These findings indicate that the seasonal variations in mole fraction are large in northern high and mid-latitudes, but are indistinct in the Southern Hemisphere precede those in the Southern Hemisphere by one or two years,, and the interannual variation in growth rate is larger in the Northern Hemisphere.

Figure 3.2 shows global monthly mean mole fractions and their growth rates from 1983 to 2009. The global average mole fraction reached a new high in 2009 of 386.8 ppm, 138% of the pre-industrial level of 280 ppm. The increase from 2008 to 2009 was 1.6 ppm, smaller than the average for the last 10 years (1.88 ppm/year) but slightly larger than the average annual increase for the 1990s (about 1.5 ppm/yr).

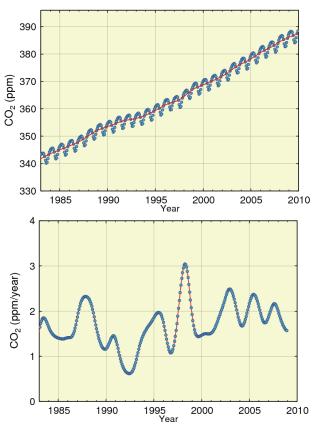


Fig. 3.2 Global monthly mean mole fraction of CO_2 from 1983 to 2009, including deseasonalized long-term trend shown as a red line (top) and annual growth rate (bottom).

The average global growth rate shows large interannual variations, with an instantaneous maximum of about 3 ppm/year in 1998 and a minimum below 1 ppm/year in 1992. These were short periods of high rates in 1987/1988, 1997/1998, 2002/2003, 2005 and

2007.

Figure 3.3 shows monthly mean mole fractions and long-term trends from 1983 to 2009 for each 30° latitudinal zone, indicating that there were clear long-term increases in both hemispheres and seasonal variations in the Northern Hemisphere.

As shown in Figure 3.4, the growth rates for each 30° latitude zone fluctuated between -0.3 and 3.6 ppm/year, with the largest interannual variability in northern high latitudes. High growth rates for all 30° latitude zones were observed in 1987/1988, 1997/1998, 2002/2003, 2005 and 2007, with negative rates recorded in northern high latitudes in 1992.

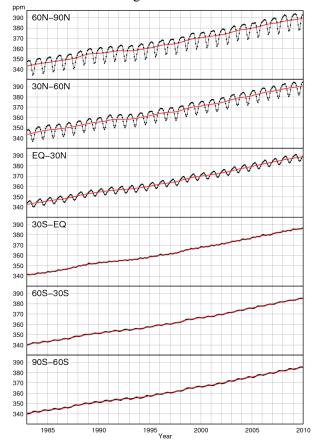


Fig. 3.3 Monthly mean mole fractions of CO₂ from 1983 to 2009 for each 30° latitudinal zone (dots) and their deseasonalized long-term trends (red lines).

Changes in growth rate are partly associated with El Niño-Southern Oscillation (ENSO). The El Niño events in 1982/1983, 1986–1988, 1991/1992, 1997/1998 and 2002/2003 coincided with high growth rates of CO₂, with an exception in 1992. The growth rates of CO₂ observed by aircraft at high altitudes (8–13 km) over the Pacific Ocean were also connected with ENSO (Matsueda *et al.*, 2002).

During El Niño events, the up-welling of CO₂-rich ocean water in the eastern equatorial Pacific is suppressed, resulting in reduced CO₂ emissions from

this area. In contrast, El Niño events induce high temperature anomalies in many areas, particularly in the tropics, resulting in increased CO₂ emissions from the terrestrial biosphere due to the enhanced respiration of plants and activated decomposition of organic matter in soil (Keeling *et al.*, 1995). This effect is enhanced by the suppression of plant photosynthesis in areas of anomalously low precipitation, particularly in the tropics. These oceanic and terrestrial processes during El Niño events have opposing effects, but Heimann and Reichstein (2008) suggested that the latter was the main cause of the variation in the CO₂ growth rate.

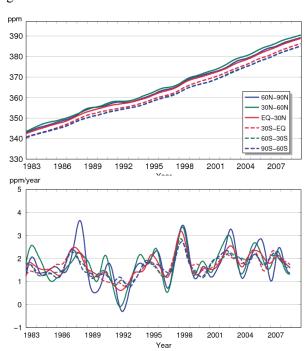


Fig. 3.4 Long-term trends in the mole fraction of CO_2 for each 30° latitudinal zone (top) and their growth rates (bottom).

However, an exceptionally low CO₂ growth rate occurred during the El Niño event in 1991/1992. The injection of 14–20 Mt of SO₂ aerosols into the stratosphere by the Mount Pinatubo eruption in June 1991 affected the radiation budget and atmospheric circulation (Hansen et al., 1992; Stenchikov et al., 2002), resulting in a drop in global temperature. Angert et al. (2004) suggested that the low CO₂ growth rate observed during this El Niño event was due to reduced CO₂ emissions caused by consequent changes in the respiration of terrestrial vegetation and the decomposition of organic matter (Conway et al., 1994; Lambert et al., 1995; Rayner et al., 1999), and by enhanced CO₂ absorption due to intensive photosynthesis caused by an increase in diffuse radiation (Gu et al., 2003).

Seasonal cycle of CO₂ mole fraction in the atmosphere

Figure 3.5 shows average seasonal cycles in the mole fraction of CO_2 for each 30° latitudinal zone. The seasonal cycles are clearly large in amplitude in northern high and mid-latitudes and small in the Southern Hemisphere. The seasonal cycle in the Northern Hemisphere is mainly dominated by the land biosphere (Nevison et al., 2008), which are characterized by rapid decreases from June to August and large returns from September to December.

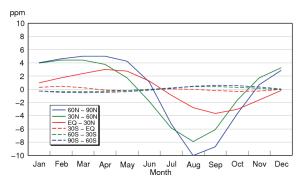


Fig. 3.5 Average seasonal cycles in the mole fraction of CO_2 for each 30° latitudinal zone obtained by subtracting long-term trends from the zonal mean mole fractions.

The mole fractions of CO_2 in northern low latitudes lagged behind that in high latitudes by one or two months. Minimum values appeared in August in northern high and mid-latitudes and in September in northern low latitudes.

In the Southern Hemisphere, seasonal variations showed small amplitudes with a half-year delay due to small amounts of net emission and absorption by the terrestrial biosphere. Seasonal variations in both northern and southern mid-latitudes were apparently superimposed in southern low latitudes (0–30°S). The direct influence of sources and sinks in the Southern Hemisphere may be partially cancelled by the propagation of an antiphase variation from the Northern Hemisphere.

Figure 3.6 shows latitudinal distributions of the mole fractions of CO₂ in January, April, July and October 2009, from sites marked with an asterisk in Plate 3.1. In latitudes north of 30°N, the mole fractions increased towards higher latitudes in January and April, and decreased towards higher latitudes in July, corresponding to the large seasonal variations in northern high and mid-latitudes, variations associated with activities of the terrestrial biosphere.

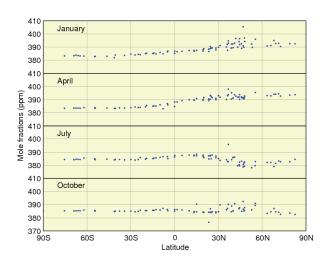
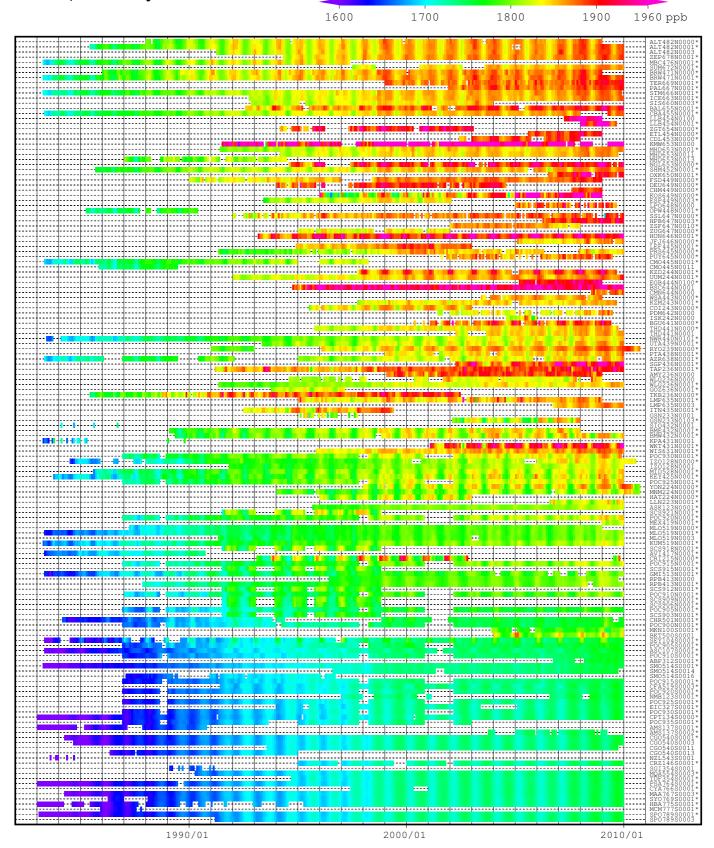


Fig. 3.6 Latitudinal distributions of the monthly mean mole fractions of CO_2 in January, April, July and October 2009.

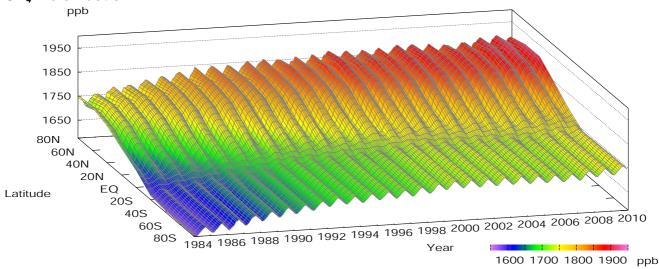
4. METHANE (CH₄)

• : CONTINUOUS STATION


△ : FLASK STATION

□ : FLASK MOBILE (SHIP)

▼ : REMOTE SENSING STATION



This map shows locations of the stations that have submitted data for monthly mean mole fraction.

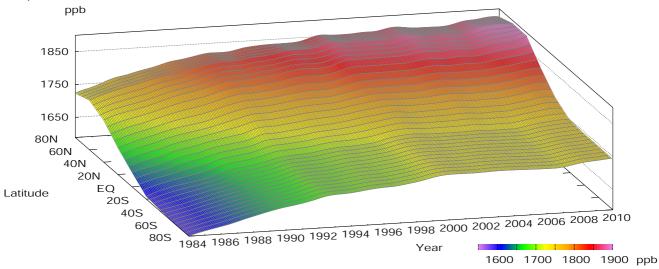
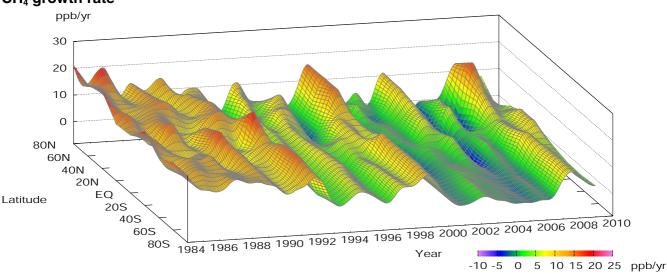


Plate 4.1 Monthly mean CH₄ mole fractions that have been reported to the WDCGG. The mole fractions are illustrated in different colors. The sites are listed in order from north to south. In the case where data are reported for two or three different altitudes, only the data at the highest altitudes are illustrated. In the case where monthly means are not reported, the WDCGG calculates them from hourly or other mole fractions reported to the WDCGG by simple arithmetic mean. The data from the sites with an asterisk at the end of the station index are used for the analysis shown in Plate 4.2. (see Chapter 2)


CH₄ mole fraction

CH₄ deseasonalized mole fraction

Plate 4.2 Variation of zonally averaged monthly mean CH_4 mole fractions (top), deseasonalized long-term trends (middle), and growth rates (bottom). The zonally averaged mole fractions are calculated for each 20° zone. The deseasonalized trends and growth rates are derived as described in Chapter 2.

4. METHANE (CH₄)

Basic information on CH₄ with regard to environmental issues

Methane (CH₄) is the second most important anthropogenic greenhouse gas, with an estimated global warming potential per molecule 25 times greater over a 100 year horizon and 72 times greater over a 20 years horizon than CO₂. Between 1750 and 2009, CH₄ accounted for 18.1% of the radiative forcing caused by the increase in well-mixed greenhouse gases (WMO, 2010).

Analyses of air trapped in ice cores from Antarctica and the Arctic revealed that the current atmospheric CH₄ mole fraction is the highest it has been over the last 650,000 years (Solomon et al., 2007). The mole fraction of CH₄ remained steady at 700 ppb from 1000 A.D. until the start of the industrial era (Etheridge *et al.*, 1998). after which it began to increase. Measurements in ice cores from Antarctica and Greenland have shown that the differences in CH₄ mole fractions between the Northern and Southern Hemispheres ranged from 24 to 58 ppb between 1000 and 1800 A.D. (Etheridge et al., 1998), but is now as high as about 150 ppb (see Fig. 4.3), reflecting more emissions in the Northern Hemisphere, where major anthropogenic and natural sources are situated.

CH₄ is emitted by both natural and anthropogenic sources, including natural wetlands, oceans, landfills, rice paddies, enteric fermentation, fossil fuel production and consumption and biomass burning. Denman et al. (2007) estimated the global emission of CH₄ is 582 teragrams (Tg) CH₄ per year, with more than 60% related to anthropogenic activities. CH₄ is destroyed by reaction with hydroxyl radicals (OH) in both the troposphere and stratosphere, and by reaction with chlorine atoms and O(1D), an excited state of oxygen, in the stratosphere. CH₄ is one of the most important sources of water vapour in the stratosphere and has an atmospheric lifetime of about 10 years. More information regarding sources and sinks of CH₄ must be collected to better understand the budget of atmospheric CH₄.

Mole fractions of CH₄ are analyzed by using data submitted to the WDCGG from fixed stations and some ships. These observational sites are shown on the map at the beginning of this chapter.

Annual variation of CH₄ mole fraction in the atmosphere

The monthly mean mole fractions of CH₄ used in this analysis are shown in Plate 4.1, with the mole fraction levels illustrated in different colours. Global, hemispheric and zonal mean mole fractions have been analysed based on data from selected stations under unpolluted conditions (see the caption for Plate 4.1).

Latitudinally averaged atmospheric CH_4 mole fractions, together with their deseasonalized components and growth rates, are shown as three-dimensional representations in Plate 4.2. These plots indicate that the seasonal variations in CH_4 mole fractions are larger in the Northern than in the Southern Hemisphere and that the increase in the Northern Hemisphere propagates to the Southern Hemisphere. The growth rates vary on a global scale. These features are similar to those for CO_2 (see Section 3). There is a large latitudinal gradient in CH_4 mole fraction from the northern mid-latitudes to the tropics, suggesting major sources in high and middle northern latitudes and sinks in the tropics, where the mole fraction of OH radicals is higher.

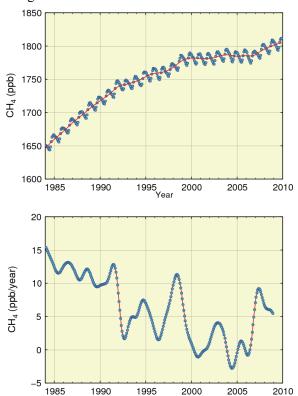


Fig. 4.1 Global monthly mean mole fraction of CH₄ from 1984 to 2009, including deseasonalized long-term trend in red line (top) and annual growth rate (bottom).

Figure 4.1 shows global monthly mean mole fractions and the global growth rates for CH₄ from 1984 to 2009. The mean mole fraction was 1803 ppb in 2009, an increase of 5 ppb since 2008. The average growth rate over the period 1999–2009 was 2.2 ppb/year. The current mole fraction is 258% of its pre-industrial level, 700 ppb.

Figure 4.2 shows monthly mean mole fractions from

1984 to 2009 for each 30° latitudinal zone. The smallest magnitude of the seasonal variations is registered in the latitudinal zone between the equator and 30° S.

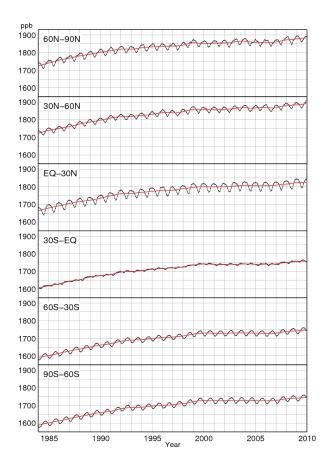


Fig. 4.2 Monthly mean mole fractions of CH_4 from 1984 to 2009 for each 30° latitudinal zone (dots) and their deseasonalized long-term trends (red lines).

Figure 4.3 summarizes deseasonalized long-term trends for each 30° latitudinal zone and their growth rates. As is the most distinctly seen in the deseasonalized long-term trends, there is a latitudinal gradient between the northern high and mid-latitudes with higher mole fractions and the southern latitudes with lower mole fractions, while they both have similarly changing trends In the 1990s, the growth rates clearly decreased in all latitudinal zones, while remaining positive nevertheless. The declined growth rate was especially evident during the second half of 1992 and in 1996, when the growth rates were less than 5 ppb/year in all latitudes. In 1998, the global growth rate increased to about 11 ppb/year (Fig. 4.1). Maximum increases occurred in northern high and mid-latitudes, where the growth rates were over 15 ppb/year. In 2000 and 2001, the global growth rate decreased to around -1 ppb/year. Around 2002/2003, the growth rates increased in the Northern Hemisphere, especially in northern high and mid-latitudes where they reached about 10 ppb/year. The global growth rate was -3 ppb/year in 2004 and 1 ppb/year in 2005. Despite the large growth rates in 1998 and 2002/2003, during El Niño events, the global mean mole fraction was relatively stable between 1999 and 2006. However, the global mean mole fraction increased again by a total of 18 ppb in the three years ending in 2009.

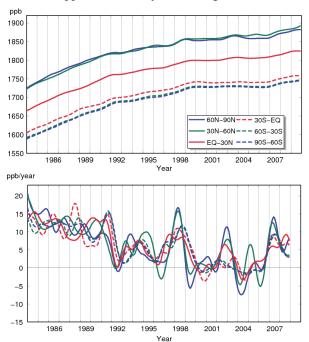


Fig. 4.3 Long-term trends in the mole fraction of CH_4 for each 30° latitudinal zone (top) and their growth rates (bottom).

The large increase in CH₄ growth rate in 1991 may have been caused by decreased levels of OH radicals in the atmosphere due to reduced UV radiation resulting from the eruption of Mount Pinatubo in 1991 (Dlugokencky *et al.*, 1996), and the subsequent decrease in 1992 may have been due to an increase in OH radicals resulting from the depletion of stratospheric ozone following this eruption (Bekki *et al.*, 1994).

In 1998, the growth rates were high in all latitudes, which may have been due to increased emissions in northern high latitudes and tropical wetlands caused by high temperatures and increased precipitation, as well as by biomass burning in boreal forests, mainly in Siberia (Dlugokencky *et al.*, 2001). In contrast, Morimoto *et al.* (2006) estimated from isotope observations that the contribution of biomass burning to the increase in 1998 was about half that of wetlands. The growth rates were low from 1999 to 2006, with an exception during the El Niño event of 2002/2003. The causes of these decreases in CH₄ growth rates remain unresolved.

Since 2007, atmospheric CH₄ has increased significantly throughout the entire monitoring network (Rigby *et al.*, 2008; Dlugokencky *et al.*, 2009).

Although these increases may have been caused by emissions from natural sources in northern latitudes and the tropics, the reasons for these increases are not fully understood and it is not certain if the increasing tendency will continue in the future or not (WMO, 2010). The WMO/GAW observational network includes the observation of carbon stable isotopes in methane, with 19 datasets submitted to the WDCGG Such observations can be useful for the identification of primary methane sources.

Seasonal cycle of CH₄ mole fraction in the atmosphere

Figure 4.4 shows seasonal cycles in the mole fraction of CH₄ for each 30° latitudinal zone. The seasonal cycles are driven mainly by reaction with OH radicals, a major CH₄ sink in the atmosphere. These cycles are also affected by the magnitude and timing of CH₄ emissions from sources such as wetlands and biomass burning as well as by its atmospheric transport. The seasonal cycles are large in amplitude in the Northern Hemisphere. Unlike CO₂, amplitudes were also large in southern high and mid-latitudes. Seasonally, the Northern Hemisphere shows minima in summer and maxima in winter, while the Southern Hemisphere shows a seasonal cycle lagging two-thirds to three-quarter years behind The seasonal variations in the mole fraction of CH₄ were almost consistent with those of the OH radical that reacts with CH₄. Southern low latitudes have a distinct antiphase annual component superimposed on the annual component of the seasonal cycle arising from southern mid-latitudes. The maximum in the former component occurs in boreal winter due to the interhemisphere transportation of CH₄ from the Northern Hemisphere.

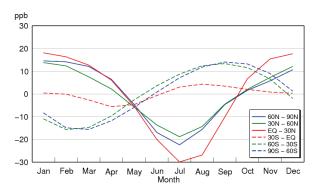
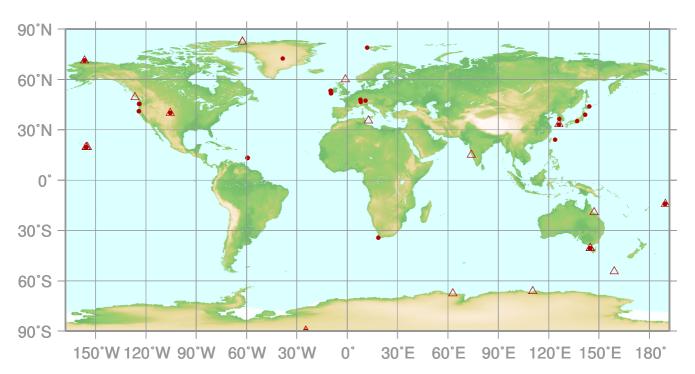
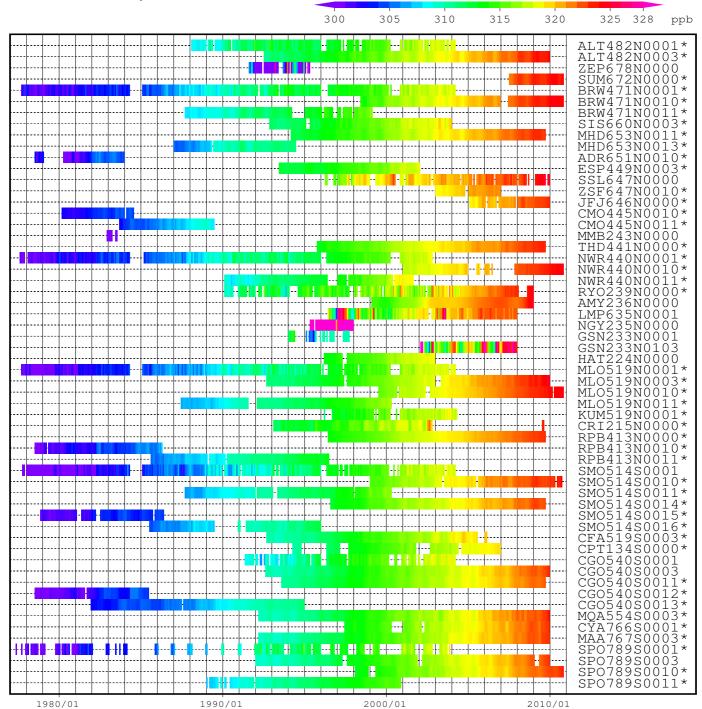



Fig. 4.4 Average seasonal cycles in the mole fraction of CH_4 for each 30° latitudinal zone obtained by subtracting long-term trends from original data sets.

5. NITROUS OXIDE (N₂O)


• : CONTINUOUS STATION

△ : FLASK STATION

This map shows locations of the stations that have submitted data for monthly mean mole fraction.

N₂O Monthly Data

Plate 5.1 Monthly mean N_2O mole fractions that have been reported to the WDCGG. The mole fractions are illustrated in different colors. The sites are listed in order from north to south. The data from the sites with an asterisk at the end of the station index are used for the analysis shown in Fig.5.1. (see Chapter 2)

5. NITROUS OXIDE (N₂O)

Basic information on N₂O with regard to environmental issues

Nitrous oxide (N_2O) is a relatively stable greenhouse gas in the troposphere with an "adjustment-time" of 114 years. Between 1750 and 2009, N_2O accounted for 6.24% of the radiative forcing caused by the increase in well-mixed greenhouse gases (WMO, 2010). The mole fraction of N_2O in the atmosphere has increased steadily from about 270 ppb in pre-industrial times to its current value, which is 19% higher.

 N_2O is emitted into the atmosphere from natural and anthropogenic sources, including the oceans, soil, combustion of fuels, biomass burning, use of fertiliser and various industrial processes. N_2O supplied to the atmosphere by human activities is approximately equal to N_2O supplied by natural systems (oceans, chemical oxidation of ammonia in the atmosphere, and soils). Most of the anthropogenic N_2O found in the atmosphere comes from the transformation of fertilizer nitrogen into N_2O and its subsequent emission from agricultural soils. N_2O is removed from the atmosphere mainly by photo-dissociation in the stratosphere. However, the estimated amounts from sources and sinks have not yet been well defined.

325

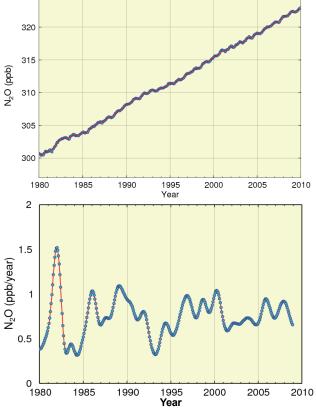


Fig. 5.1 Global monthly mean mole fraction of N_2O from 1980 to 2009, including deseasonalized long-term trend shown as a red line (top) and annual growth rate (bottom).

Annual variation of N₂O mole fraction in the atmosphere

Mole fractions of N₂O are analyzed by using the data submitted to the WDCGG from fixed stations and some ships. The observational sites that supplied data used for this analysis are shown on the map at the beginning of this chapter. The monthly mean mole fractions of N₂O used in the global analysis are shown in Plate 5.1, with the various mole fraction levels illustrated in different colours. The data submitted to the WDCGG show that N2O mole fractions have increased at almost all stations. Figure 5.1 shows global monthly mean mole fraction from 1980 to 2009 The global mean mole and its long-term trend. fraction reached a new high of 322.5 ppb in 2009, an increase of 0.6 ppb over the previous. The mean growth rate of the global mean mole fraction during the period 1999-2009 was 0.77 ppb/year. Atmospheric growth rate experiences substantial variability (from 0.6 to 1.0 ppb/year). There is an inter-hemispheric gradient in the mole fraction of N₂O (Figure 5.2).

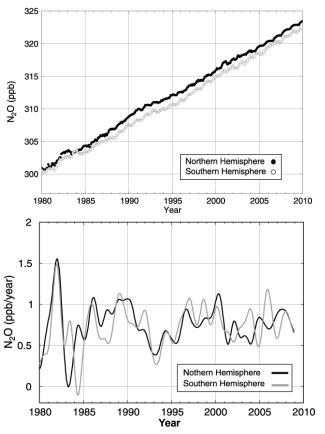
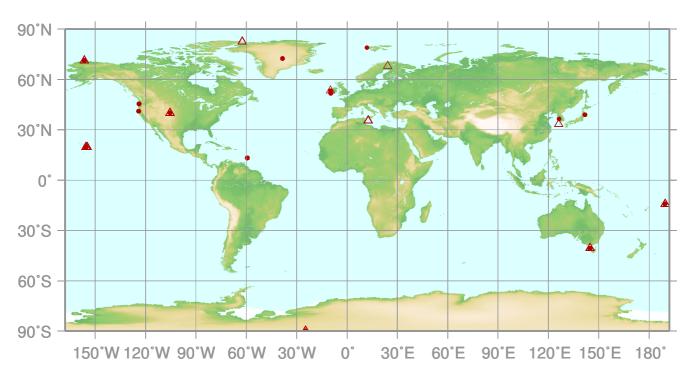
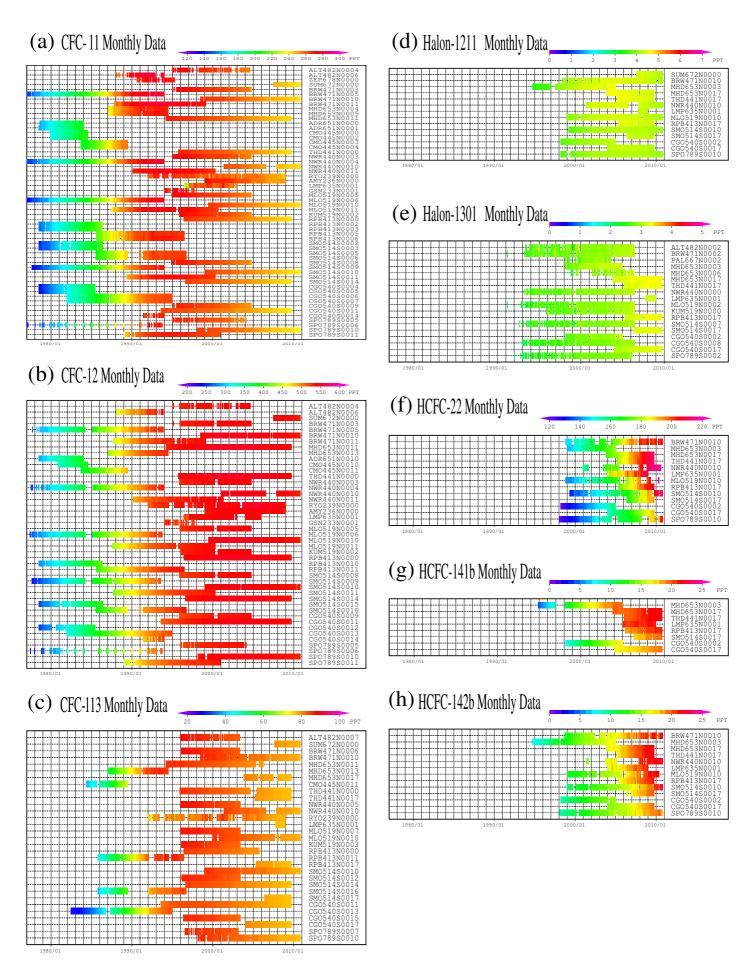
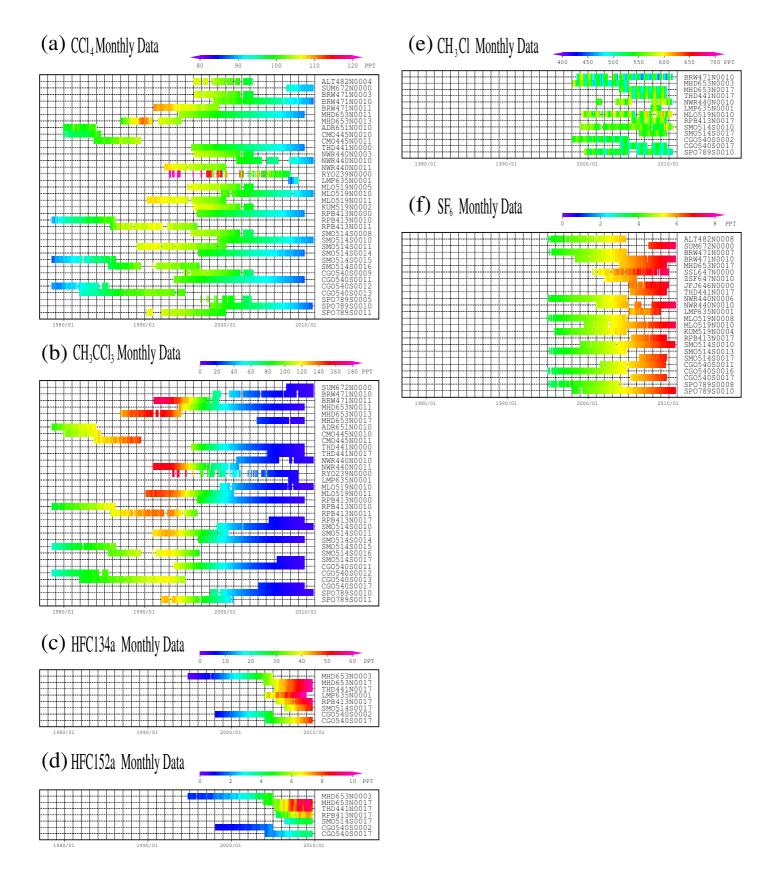



Fig. 5.2 Monthly mean mole fractions of N_2O from 1980 to 2009 (top) and annual growth rates (bottom), averaged over the Northern and Southern Hemispheres.


HALOCARBONS AND OTHER HALOGENATED SPECIES

• : CONTINUOUS STATION


△: FLASK STATION

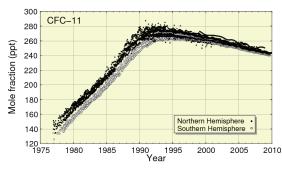
This map shows locations of the stations that have submitted data for monthly mean mole fraction.

Plate 6.1 Monthly mean (a) CFC-11, (b) CFC-12, (c) CFC-113, (d) Halon-1211, (e) Halon-1301, (f) HCFC-22, (g) HCFC-141b, (h) HCFC-142b mole fractions that have been reported to the WDCGG. The mole fractions are illustrated in different colors. The sites are listed in order from north to south.

Plate 6.2 Monthly mean (a) CCl₄, (b) CH₃CCl₃, (c) HFC134a, (d) HFC152a, (e) CH₃Cl, (f) SF₆ mole fractions that have been reported to the WDCGG. The mole fractions are illustrated in different colors. The sites are listed in order from north to south.

6. HALOCARBONS AND OTHER HALOGENATED SPECIES

Basic information on halocarbons with regard to environmental issues


Halocarbons are carbon compounds containing one or more halogens, i.e., fluorine, chlorine, bromine or iodine, with most being industrial products. Among the halocarbons are the chlorofluorocarbons (CFCs), contain fluorine and chlorine: which hydrochlorofluorocarbons (HCFCs), which contain hydrogen in addition to fluorine and chlorine; and the halons, which contain bromine and other halogens. Perfluorocarbons (PFCs) are carbon compounds in which all hydrogen atoms are replaced by fluorine atoms, and hydrofluorocarbons (HFCs) halocarbons that contain hydrogen and fluorine but no chlorine. Sulphur hexafluoride (SF₆), although not a halocarbon, behaves similarly to halocarbons as a potent long-lived greenhouse gas. Carbon tetrachloride (CCl₄) and methyl chloroform (CH₃CCl₃) are produced industrially, whereas methyl chloride (CH₃Cl) has natural sources. Although the mole fractions of the halocarbons are relatively low in the atmosphere, they have high global warming potentials. The halocarbons have been shown to account for 12% of the radiative forcing caused by the increased levels of globally mixed long-lived greenhouse gases from 1750 to 2009 (WMO, 2010).

The halocarbons are colourless, odourless and innocuous substances that can be readily gasified and liquefied and have low surface tension. Thus, they were commonly used as refrigerants, propellants and detergents for semiconductors, resulting in a rapid increase in their mole fractions in the atmosphere until the mid-1980s. Halocarbons containing chlorine and bromine led to the depletion of the ozone layer. Since the mid-1990s, the Montreal Protocol on Substances that Deplete the Ozone Layer and its subsequent Adjustments and Amendments have progressively increased the regulation of the production, consumption and trade of ozone-depleting compounds.

The CFCs are dissociated mainly by ultraviolet radiation in the stratosphere, and their lifetimes are generally long (*e.g.*, about 50 years for CFC-11). However, the HCFCs and CH₃CCl₃, which contain hydrogen, react with hydroxyl radicals (OH) in the troposphere and have relatively short lifetimes (*e.g.*, about 5 years for CH₃CCl₃). As the reaction with OH in the troposphere is a major sink for CH₃CCl₃, global measurements of CH₃CCl₃ provide an accurate estimate of the global mole fraction of OH (Prinn *et al.*, 2001).

The Kyoto Protocol to the United Nations Framework Convention on Climate Change (UNFCCC), which entered into force on 16 February 2005, specifies HFCs, PFCs and SF_6 as targets for

quantified emission limitation and reduction commitments.

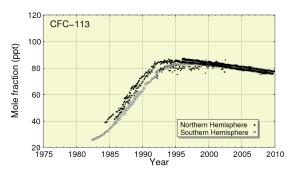


Fig. 6.1 Time series of the monthly mean mole fractions of CFC-11, CFC-12 and CFC-113. Solid circles show mole fractions measured in the Northern Hemisphere and open circles show mole fractions in the Southern Hemisphere.

Annual changes in the levels of halocarbons in the atmosphere

The map at the beginning of this chapter shows observational sites that have submitted data on halocarbons and other halogenated species to the WDCGG. Plates 6.1 and 6.2 show all the monthly mean mole fractions of these gases submitted to the WDCGG. The figures (6.1-6.7) in this chapter plot the monthly data reported to the WDCGG without spatial averaging. Some discrepancies in the absolute mole fractions were observed for several stations, suggesting that these stations may have adopted different standard scales. Observational data based

on identical standard scales revealed that the differences in the mole fractions between the two hemispheres were large in the 1980s for CFCs, CCl₄ and CH₃CCl₃ but have since narrowed as the emissions have been suppressed and the existing constituents have been mixed across the hemispheres.

Figure 6.1 shows monthly mean mole fractions of CFC-11 (CCl₃F), CFC-12 (CCl₂F₂) and CFC-113 (CCl₂FCClF₂) over time. The mole fractions of CFC-11 were maximal around 1992 in the Northern Hemisphere, followed by a maximum about one year later in the Southern Hemisphere. The mole fractions of CFC-113 were maximal around 1992 in the Northern Hemisphere and around 1997 in the Southern Hemisphere. The mole fractions of these gases have since been decreasing slowly in both hemispheres. The mole fraction of CFC-12 increased until around 2005 and then started decreasing gradually.

Figure 6.2 shows time series of the monthly mean mole fractions of Halon-1211 (CBrClF₂) and Halon-1301 (CBrF₃). The mole fraction of Halon-1211 has not increased since 2005, whereas the mole fraction of Halon-1301 is increasing.

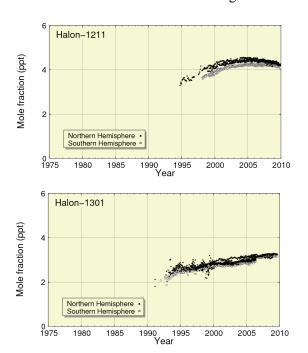


Fig. 6.2 Time series of the monthly mean mole fractions of Halon-1211 and Halon-1301. Solid circles show mole fractions measured in the Northern Hemisphere and open circles show mole fractions in the Southern Hemisphere.

Figure 6.3 shows time series of the mole fractions of HCFC-22 (CHClF₂), HCFC-141b (CH₃CCl₂F) and HCFC-142b (CH₃CClF₂). The mole fractions of these gases increased significantly during the last decade as a result of their continued use as substitutes

for CFCs. However, the growth of HCFC-141b decelerated rapidly in the second half of the decade.

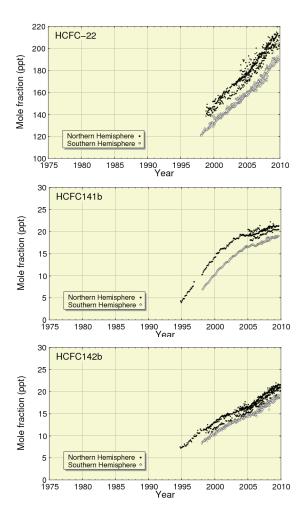


Fig. 6.3 Time series of the monthly mean mole fractions of HCFC-22, HCFC-141b, and HCFC-142b. Solid circles show mole fractions measured in the Northern Hemisphere and open circles show mole fractions in the Southern Hemisphere.

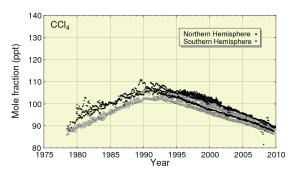

Figure 6.4 shows time series of the mole fractions of CCl₄ and CH₃CCl₃. The mole fractions of CCl₄ in both hemispheres were at a maximum around 1991. The mole fractions of CH₃CCl₃ were at a maximum around 1992 in the Northern Hemisphere and around 1993 in the Southern Hemisphere. The mole fractions of these gases have since been decreasing.

Figure 6.5 shows time series of the monthly mean mole fractions of HFC-134a (CH₂FCF₃) and HFC-152a (CH₃CHF₂). The mole fractions of HFC-134a and HFC-152a have increased by 4-5 times over the last 10 years. These increases have been larger in the Northern than in the Southern Hemisphere, suggesting that their predominant sources are located in the Northern Hemisphere.

Figure 6.6 shows a time series of the monthly mean

mole fractions of methyl chloride (CH₃Cl). The mole fraction of CH₃Cl has remained steady although there is large interannual variability.

Figure 6.7 shows a time series of the monthly mean mole fractions of SF_6 . The mole fraction of SF_6 in 2009 was double that in the mid-1990s increasing nearly linearly with a rate of 0.24 ppt/year (WMO, 2010).

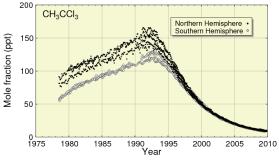


Fig. 6.4 Time series of the monthly mean mole fractions of CCl₄ and CH₃CCl₃. Solid circles show mole fractions measured in the Northern Hemisphere and open circles show mole fractions in the Southern Hemisphere.

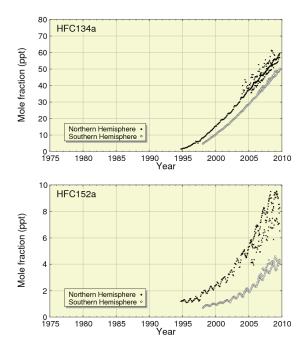


Fig. 6.5 Time series of the monthly mean mole fractions of HFC-134a and HFC-152a. Solid circles show mole fractions measured in the Northern Hemisphere and open circles show mole fractions in the Southern Hemisphere.

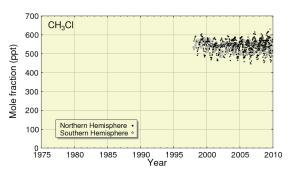
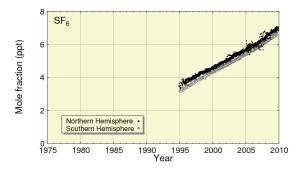
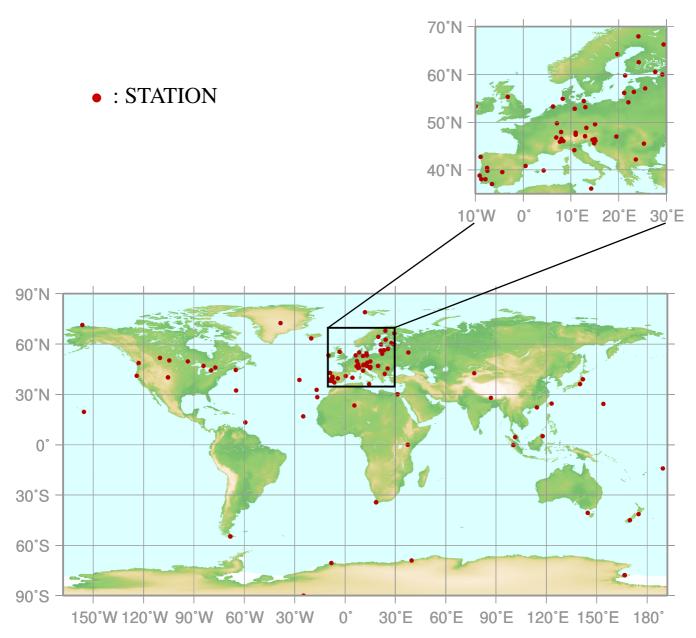
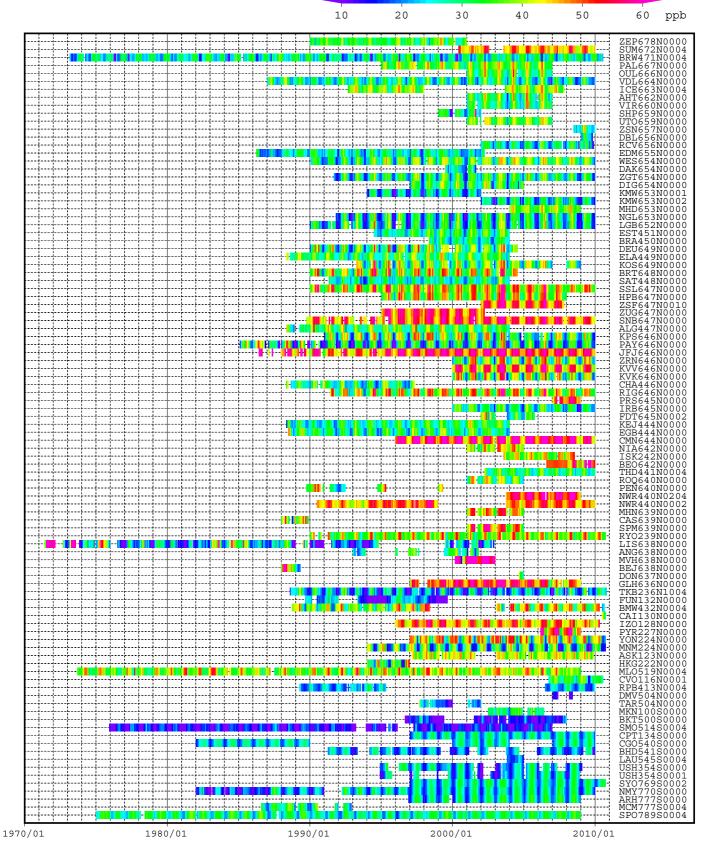


Fig. 6.6 Time series of the monthly mean mole fractions of CH_3Cl . Solid circles show mole fractions measured in the Northern Hemisphere and open circles show mole fractions in the Southern Hemisphere.


Fig. 6.7 Time series of the monthly mean mole fractions of SF_6 . Solid circles show mole fractions measured in the Northern Hemisphere and open circles show mole fractions in the Southern Hemisphere.

7.
SURFACE OZONE
(O₃)

This map shows locations of the stations that have submitted data for monthly mean mole fraction.

O₃ Monthly Data

Plate 7.1 Monthly mean O₃ mole fractions that have been reported to the WDCGG. The mole fractions are illustrated in different colors. The sites are listed in order from north to south.

7. SURFACE OZONE (O₃)

Basic information on surface ozone (O₃) with regard to environmental issues

Ozone (O₃) in the atmosphere exists mostly in the stratosphere, with less than 10% in the troposphere. However, O₃ in the troposphere plays an important role in the atmospheric environment through radiative and chemical processes. O₃ absorbs UV radiation in the stratosphere, thus influencing the vertical profile of temperature and circulation in the stratosphere. Moreover, as a greenhouse gas in the troposphere, O₃ absorbs IR radiation. The latter effect is more significant in the upper troposphere, and tropospheric O₃ is the third most important anthropogenic greenhouse gas after CO₂ and CH₄ (Denman *et al.*, 2007; IPCC, 2007). Tropospheric O₃ in the northern extratropics was the greatest contributor to global warming during the 20th century, and increases in tropospheric O₃ from industrialization in developing countries was found to contribute to accelerated warming in the tropics during the latter half of the century (Shindell et al., 2006). Furthermore, by reacting with water vapour in the presence of UV radiation, O₃ produces OH radicals, which control atmospheric mole fractions of many greenhouse gases, such as CH₄, through chemical reactions.

The observational results at high altitudes around 1990, compared with those from the end of the 19th century to the first half of 20th century, show increases in tropospheric O₃ in urban areas (Staehelin *et al.*, 1994). However, ozonesonde measurements in the troposphere show stable or decreasing trends in northern mid-latitudes (Oltmans *et al.*, 2006). There is as yet no consensus on the global trend of tropospheric O₃. Its non uniform and highly variable concentration does not allow estimation of global trends.

Tropospheric O₃ originates from flux/mixing from the stratosphere and in-situ photochemical production. O₃ is destroyed in various processes, including chemical reactions with NO, the hydroperoxyl radical (HO₂) and OH, and deposition at the Earth's surface. The lifetime of tropospheric ozone varies from one or a few days in the boundary layer to a few tens of days or even a few months in the free troposphere.

In the middle troposphere, the mole fractions of O₃ are high in high and mid-latitudes in both hemispheres, and low in the Tropics over the Atlantic (Marenco and Said, 1989) and Pacific (Tsutsumi *et al.*, 2003) Oceans. The localised sources and generally short lifetime of surface O₃ make its distribution spatially non-uniform and time-variant.

Annual variation of surface O₃ mole fraction

The observational sites that have submitted data for

surface O_3 to the WDCGG are shown on the map at the beginning of this chapter. The monthly mean mole fractions of O_3 that have been reported from these observational sites are shown in Plate 7.1, with different mole fraction levels illustrated in different colours. Data for the mole fractions of surface O_3 are reported in two different units, *i.e.*, mole fraction (ppb) and weight per volume ($\mu g/m^3$) at 25°C. The latter is converted to the former using the formula:

$$X_p[ppb] = (R \times T / M / P_0) \times 10 \times X_g[\mu g/m^3]$$

where R is the molar gas constant (8.31451 [J/K/mol]),

T is the absolute temperature reported from each station,

M is the molecular weight of O_3 (47.9982), and

 P_0 is the standard pressure (1013.25 [hPa]).

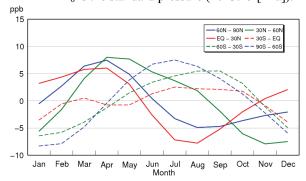
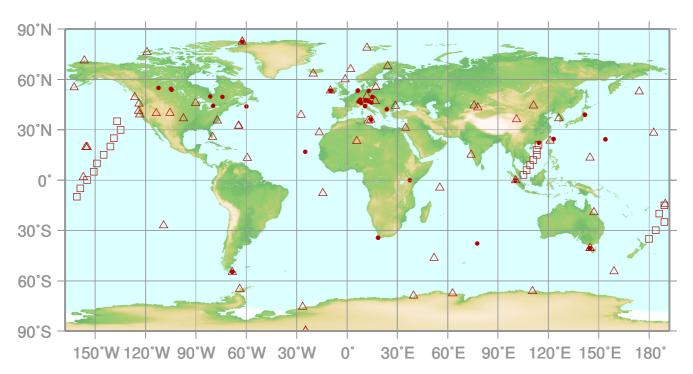
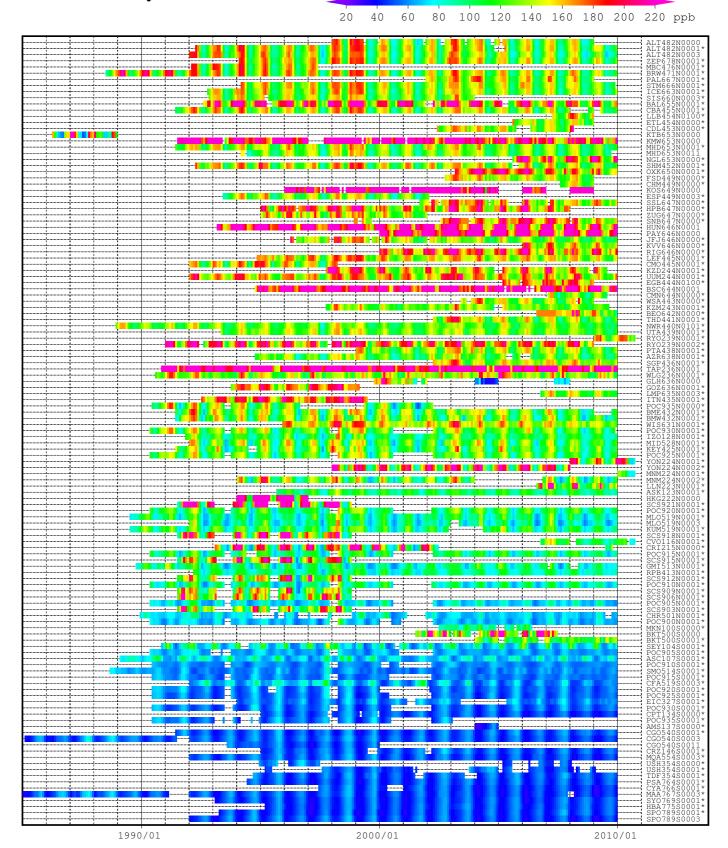


Fig. 7.1 Average seasonal cycles in the mole fraction of O_3 for each 30° latitudinal zone obtained by subtracting long-term trends from latitudinally averaged mole fractions.

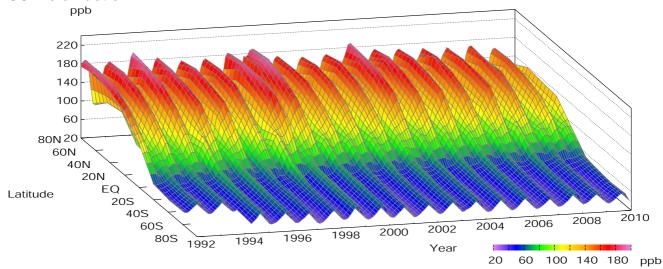

The mole fraction of surface O_3 was found to vary from station to station, although many of these stations are located in Europe. Moreover, the seasonal and interannual variations were found to be relatively large at most stations, making it difficult to identify a global long-term trend in the mole fraction of surface O_3 .

As for other species in this Data Summary, the seasonal cycles of monthly mean mole fraction of surface O₃ averaged for each 30° latitudinal zone are shown in Figure 7.1. The latitudinal mean mole fractions were found to be elevated in spring in most latitudinal zones. However, several patterns of seasonal-diurnal cycles were observed at different locations, including a pronounced spring maximum, a spring maximum at night and a summer maximum during the day, a wide spring-summer maximum, and a pronounced winter maximum (Tarasova *et al.*, 2007).


• : CONTINUOUS STATION

△ : FLASK STATION

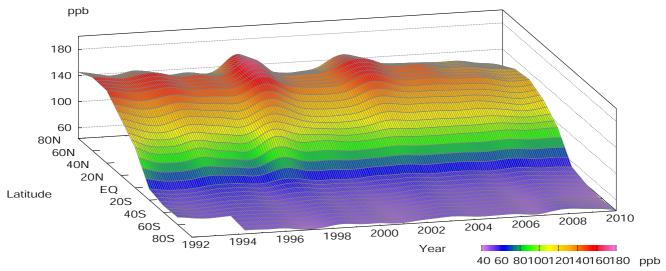
□ : FLASK MOBILE (SHIP)

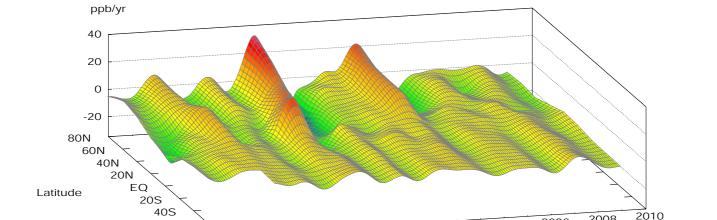


This map shows locations of the stations that have submitted data for monthly mean mole fraction.

Plate 8.1 Monthly mean CO mole fractions that have been reported to the WDCGG. The mole fractions are illustrated in different colors. The sites are listed in order from north to south. The data from the sites with an asterisk at the end of the station index are used for the analysis shown in Plate 8.2. (see Chapter 2)

CO mole fraction




CO deseasonalized mole fraction

60S

80S 1992

CO growth rate

1998

2010

2008

2006

-40-30-20-10 0 10 20 30 40

2004

2002

Year

2000

Plate 8.2 Variation of zonally averaged monthly mean CO mole fractions (top), deseasonalized long-term trends (middle), and growth rates (bottom). The zonally averaged mole fractions are calculated for each 20° zone. The deseasonalized trends and growth rates are derived as described in Chapter 2.

1996

1994

8. CARBON MONOXIDE (CO)

Basic information on CO with regard to environmental issues

Carbon monoxide (CO) is not a greenhouse gas; it absorbs hardly any infrared radiation from the Earth. However, CO influences the oxidation capacity of the atmosphere through its interaction with hydroxyl radicals (OH), which react with methane, halocarbons and tropospheric ozone. CO has been monitored due to its indirect influence on greenhouse gases through such reactions.

Sources of atmospheric CO include fossil fuel combustion and biomass burning, along with the oxidation of methane and non-methane hydrocarbons (NMHC). Major sinks include reactions with OH and surface deposition; the reaction of CO and OH accounts for all of the chemical loss of CO in much of the background troposphere (Seinfeld and Pandis, 1998). CO has a relatively long atmospheric lifetime, ranging from 10 days in summer in the tropics to more than a year over polar regions in winter. Thus, unlike CO₂, anthropogenic CO emission does not lead to CO accumulation in the atmosphere. Furthermore, the uneven distribution of sources causes large spatial and temporal variations in the CO mole fraction.

Measurements of trapped air in ice cores have shown that the CO mole fraction over central Antarctica during the last two millennia was about 50 ppb, increasing to 110 ppb by 1950 in Greenland (Haan and Raynaud, 1998). Beginning in 1950, the CO mole fraction increased at a rate of 1% per year but started to decrease in the late 1980s (WMO, 1999). Between 1991 and 2001, the global average mole fraction of CO decreased at an annual rate of about 0.5 ppb, excluding temporal enhancements from large biomass burning events (Novelli *et al.*, 2003).

Annual variation of CO mole fraction in the atmosphere

The monthly mean mole fractions of CO that have been reported from fixed stations and some ships to the WDCGG are shown in Plate 8.1, in which different mole fraction levels are illustrated in different colours. The observational sites that supplied data for this analysis are shown on the map at the beginning of this chapter.

Latitudinally averaged mole fractions of CO in the atmosphere, together with their deseasonalized mole fractions and growth rates, are shown in Plate 8.2 as three-dimensional representations.

Data for the mole fractions of CO are reported in various units, *i.e.*, ppb, $\mu g/m^3-25^{\circ}C$, $\mu g/m^3-20^{\circ}C$ and $mg/m^3-25^{\circ}C$. Units other than ppb were converted to ppb using the formulas:

$$\begin{split} X_p \, [ppb] &= (R \times T \, / \, M \, / \, P_0) \times 10 \times X_g \, [\mu g/m^3] \\ X_p \, [ppb] &= (R \times T \, / \, M \, / \, P_0) \times 10^4 \times X_g \, [mg/m^3] \end{split}$$

where R is the molar gas constant (8.31451 [J/K/mol]),

T is the absolute temperature reported from each station.

M is the molecular weight of CO (28.0101), and

 P_0 is the standard pressure (1013.25 [hPa]).

Plate 8.2 shows that the seasonal variations of CO were larger in the Northern Hemisphere and smaller in the Southern Hemisphere, and that the deseasonalized mole fractions were the highest in northern mid-latitudes and the lowest in the Southern Hemisphere, having a large latitudinal gradient from northern mid- to southern low latitudes. This was likely due to the presence of numerous CO anthropogenic sources in the northern mid-latitudes, combined with the destruction of CO in the tropics, where OH radicals are abundant.

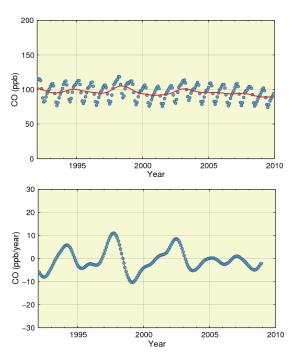


Fig. 8.1 Global monthly mean mole fraction of CO from 1992 to 2009, including deseasonalized long-term trend in red line (top) and annual growth rate (bottom).

Figure 8.1 shows global monthly mean CO mole fractions and their growth rates. Growth rates were high in 1993/1994, 1997/1998 and 2002, and low in 1992 and 1998/1999. The global annual mean mole

fraction was about 89 ppb in 2009, which was calculated irrespective of the difference in observation scales..

Figure 8.2 shows monthly mean mole fractions of CO for each 30° latitudinal zone. Seasonal variations were observed in both hemispheres, with mole fractions being higher in winter. Amplitudes of the seasonal cycle were larger in the Northern Hemisphere than in the Southern Hemisphere.

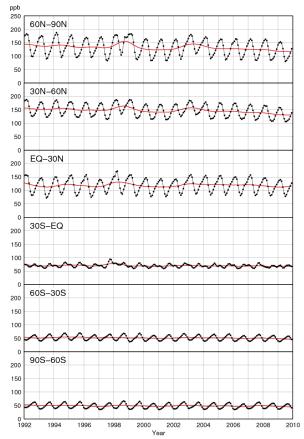


Fig. 8.2 Monthly mean mole fractions of CO from 1992 to 2009 for each 30° latitudinal zone (dots) and their deseasonalized long-term trends (red lines).

Figure 8.3 summarizes deseasonalized long-term trends for each 30° latitudinal zone and their growth rates. The CO mole fractions were highest in northern mid-latitudes. There was a decline in CO mole fractions around 1992, almost coinciding with the decrease in the growth rate of CH₄ mole fractions, most likely due to variations in their common sinks. The enhanced stratospheric ozone depletion due to increased volcanic aerosols following the eruption of Mount Pinatubo in 1991 may have increased atmospheric OH radicals, which react with both CO and CH₄ (Dlugokencky *et al.*, 1996).

Increases in CO mole fractions were observed from 1997 to 1998 in northern latitudes and in southern low latitudes. These increases were attributed to large biomass burnings around Indonesia in late 1997 and

around Siberia in the summer and autumn of 1998 (Novelli *et al.*, 1998).

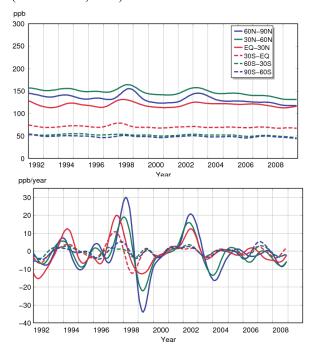


Fig. 8.3 Deseasonalized long-term trends of CO for each 30° latitudinal zone (top) and their growth rates (bottom).

The CO mole fractions returned to normal after 1999, but the growth rates in the Northern Hemisphere increased substantially again in 2002. The latter may also have been due to large biomass burning. Large-scale boreal forest fires occurred in Siberia and North America from 2002 to 2003.

Fig. 8.4 Average seasonal cycles in the mole fraction of CO for each 30° latitudinal zone obtained by subtracting long-term trends.

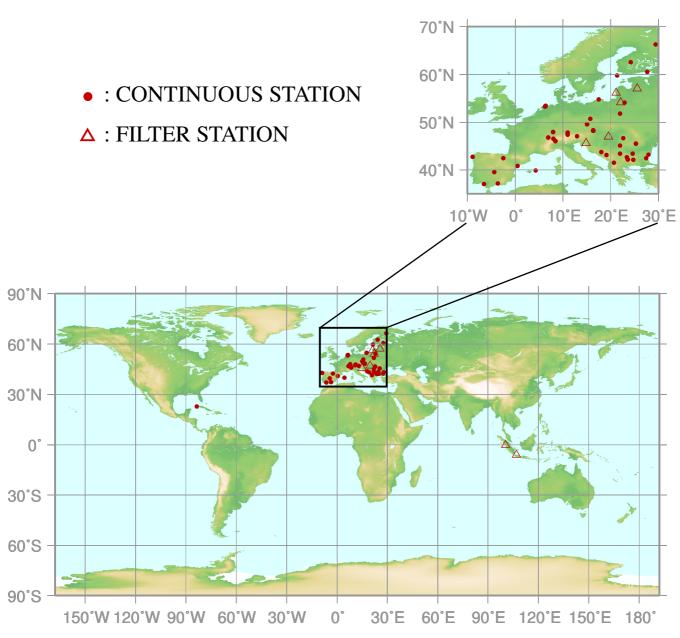
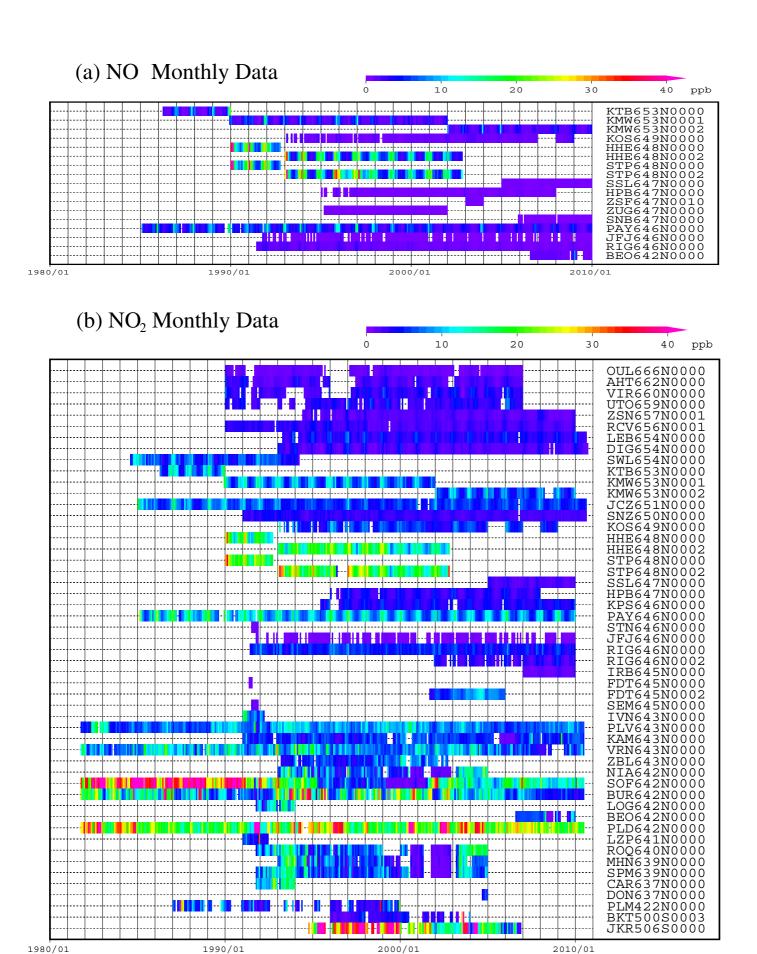

Seasonal cycle of CO mole fraction in the atmosphere

Figure 8.4 shows average seasonal cycles in the mole fraction of CO for each 30° latitudinal zone. The seasonal cycle was driven mainly by seasonal variations in OH abundance as a CO sink. Additional factors include emission and oxidation from CO sources and large-scale transport of CO, despite a


relatively weak seasonality in emission and oxidation compared with OH abundance. This seasonality and a short lifetime of about a few months resulted in a sharp decrease in early summer followed by a relatively slow increase in autumn. The levelling-off in the beginning of the year seen in the southern low latitudes may be attributed to the transport of CO from the Northern Hemisphere.

9.

NITROGEN MONOXIDE (NO) AND NITROGEN DIOXIDE (NO₂)

This map shows locations of the stations that have submitted data for monthly mean mole fraction.

Plate 9.1 Monthly mean (a) NO and (b) NO₂ mole fractions that have been reported to the WDCGG. The mole fractions are illustrated in different colors. The sites are listed in order from north to south.

9. NITROGEN MONOXIDE (NO) AND NITROGEN DIOXIDE (NO₂)

Basic information on NO and NO₂ with regard to environmental issues

Nitrogen oxides (NO_x , *i.e.*, NO and NO_2) are not greenhouse gases. Nevertheless, these compounds have a central regulatory role in the free radical and oxidizing photochemistry of the troposphere. This photochemistry regulates the lifetime of methane and the production of tropospheric O_3 and secondary aerosols, all of which have important roles in the natural and anthropogenic greenhouse effect. The O_3 produced in the atmosphere as a result of these nitrogen oxides can affect vegetation growth and human health.

Sources of NO_x include energy production, transport, lightning, soils and biomass burning (Reis et al., 2009). They constitute major causes of acid rain and deposition. The dominant sink of NO_x in the atmosphere is its conversion into nitric acid (HNO₃) and peroxyacetylnitrate (PAN), which are eventually removed by dry or wet deposition. In some cases, NO_x is removed from the atmosphere directly by dry deposition. NO_x abundance varies in both space and time because of their short lifetimes and uneven source distribution. Some regional assessments are done based on satellite information to clarify such variations and trends.

Annual variation of NO and NO₂ mole fractions in the atmosphere

The observational stations that have submitted data for NO and NO₂ to the WDCGG are shown on the map at the beginning of this chapter. Most of these stations are located in Europe.

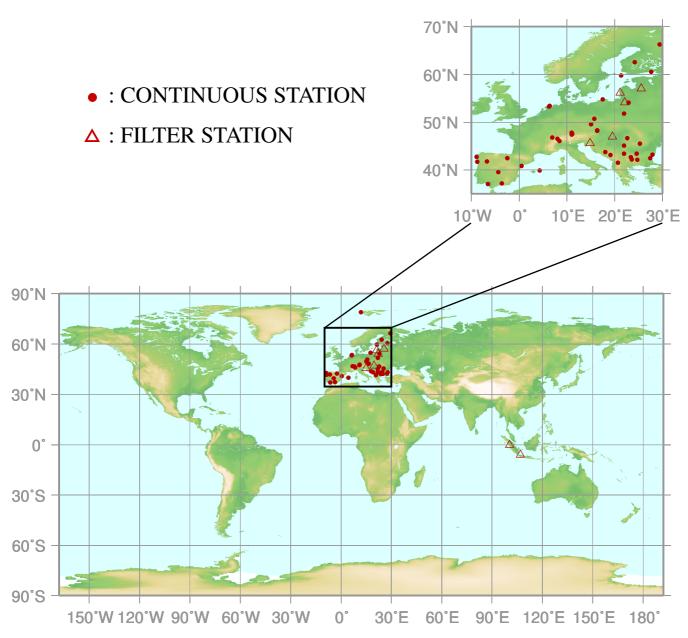
The monthly mean mole fractions of NO and NO₂ reported to the WDCGG are shown in Plate 9.1, in which different mole fraction levels are illustrated in different colours. Data for NO_x are reported in various units, *i.e.*, ppb, μg/m³-25°C, μg/m³-20°C, μgN/m³-25°C and mg/m³-25°C. Units other than ppb were converted to ppb using the formulas:

$$\begin{split} X_{p} \, [ppb] &= (R \times T \, / \, M \, / \, P_{0}) \times 10 \times X_{g} \, [\mu g/m^{3}] \\ X_{p} \, [ppb] &= (R \times T \, / \, M \, / \, P_{0}) \times 10^{4} \times X_{g} \, [mg/m^{3}] \\ X_{p} \, [ppb] &= (R \times T \, / \, M_{N} \, / \, P_{0}) \times 10 \times X_{g} \, [\mu gN/m^{3}] \end{split}$$

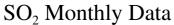
where R is the molar gas constant (8.31451 [J/K/mol]),

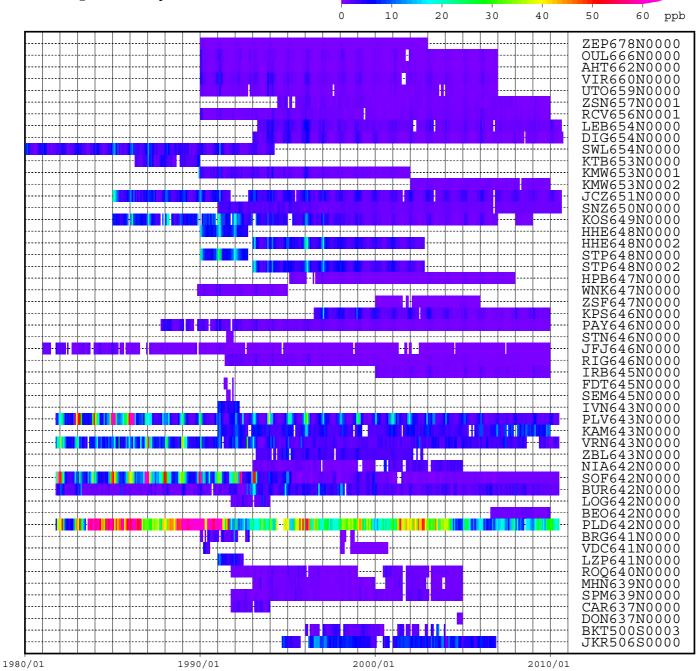
T is the absolute temperature reported from each station,

M is the molecular weight of NO (30.00614) or NO₂ (46.00554),


 M_N is the atomic weight of N (14.00674), and

 P_0 is the standard pressure (1013.25 [hPa]).


The distributions of NO and NO_2 are spatially non-uniform and variable over time. Due to the high temporal variability in the mole fraction of NO_2 at each observation site, it was difficult to identify a long-term trend. A number of stations located in southern Europe showed higher mole fractions, and some stations reported increased NO_2 in winter.


As there are few observational sites for NO, it was difficult to identify whether the global average NO mole fraction increases or decreases.

10.
SULPHUR DIOXIDE
(SO₂)

This map shows locations of the stations that have submitted data for monthly mean mole fraction.

Plate 10.1 Monthly mean SO₂ mole fractions that have been reported to the WDCGG. The mole fractions are illustrated in different colors. The sites are listed in order from north to south.

10. SULPHUR DIOXIDE (SO₂)

Basic information on SO₂ with regard to environmental issues

Sulphur dioxide (SO₂) is not a greenhouse gas, but it is a precursor of atmospheric sulphuric acid (H₂SO₄) and sulphate aerosol. SO₂ is oxidised by hydroxyl radicals (OH) to form sulphuric acid, which then becomes aerosols through photochemical gas-to-particle conversion. While SO₂ reacts much more slowly with OH than does NO₂, SO₂ dissolves readily in suspended liquid droplets in the atmosphere. The global sulphur cycle affects atmospheric chemistry, including tropospheric ozone (Berglen *et al.*, 2004).

Sources of SO_2 include fossil fuel combustion by industry, biomass burning, volcanic release and the oxidation of dimethylsulphide (DMS) from the oceans (IPCC, 2007). Major SO_2 sinks are oxidation by OH and deposition onto wet surfaces. Anthropogenic SO_2 has caused acid rain and deposition throughout the industrial era. The mole fractions of SO_2 have shown large variations in both space and time because of the short lifetime and uneven anthropogenic source distribution of SO_2 .

Annual variation of SO₂ mole fraction in the atmosphere

The observational sites that have submitted data for SO₂ to the WDCGG are shown on the map at the beginning of this chapter. Most of these stations are located in Europe.

The monthly mean mole fractions of SO_2 that have been reported to the WDCGG are shown in Plate 10.1, with different mole fraction levels illustrated in different colours. Data for SO_2 are reported in various units, *i.e.*, ppb, $\mu g/m^3$, mg/m^3 and $\mu gS/m^3$. Units other than ppb were converted to ppb using the formulas:

where R is the molar gas constant (8.31451 [J/K/mol]),

T is the absolute temperature reported from each station,

M is the molecular weight of SO_2 (64.0648), M_S is the atomic weight of S (32.066), and P_0 is the standard pressure (1013.25 [hPa]).

Although some stations in southern Europe have reported higher mole fractions, it has been difficult to identify an increasing or decreasing trend for SO₂.

REFERENCES

References

- Angert A., S. Biraud, C. Bonfils, W. Buermann, I. Fung, CO₂ seasonality indicates origins of post-Pinatubo sink, *Geophys. Res. Lett.*, **31**, L11103, doi:10.1029/2004GL019760, 2004.
- Bekki, S., K. S. Law, and J. A. Pyle, Effects of ozone depletion on atmospheric CH₄ and CO concentrations, *Nature*, **371**, 595–597, 1994.
- Berglen, T. F., T. K. Berntsen, I. S. A. Isaksen, and J. K. Sundet, A global model of the coupled sulfur/oxidant chemistry in the troposphere: The sulfur cycle, *J. Geophys. Res.*, **109**, D19310, doi:10.1029/2003JD003948, 2004.
- Boden, T. A., G. Marland, and R. J. Andres, Global, Regional, and National Fossil-Fuel CO₂ Emissions. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., U.S.A., doi: 10.3334/CDIAC/00001, 2009.
- Cleveland, W. S., S. J. Devlin, Locally weighted regression: an approach to regression analysis by local fitting, *J. Amer. Statist. Assn.*, **83**, 596–610, 1988.
- Conway, T. J., P. P. Tans, L. S. Waterman, K. W. Thoning, D. R. Kitzis, K. A. Masarie, and N. Zhang, Evidence for interannual variability of the carbon cycle from the National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostics Laboratory global air sampling network, J. Geophys. Res., 99, 22831–22855, 1994.
- Denman, K. L., G. Brasseur, A. Chidthaisong, P. Ciais, P. M. Cox, R. E. Dickinson, D. Hauglustaine, C. Heinze, E. Holland, D. Jacob, U. Lohmann, S. Ramachandran, P. L. da Silva Dias, S. C. Wofsy and X. Zhang, 2007: Couplings Between Changes in the Climate System and Biogeochemistry. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor and H. L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
- Dlugokencky, E. J., L. P. Steele, P. M. Lang, and K. A. Masarie, The grouth rate and distribution of atmospheric methane, *J. Geophys. Res.*, 99, 17021–17043, 1994.
- Dlugokencky, E. J., E. G. Dutton, P. C. Novelli, P. P. Tans, K. A. Masarie, K. O. Lantz, and S. Mardronich, Changes in CH₄ and CO growth rates after the eruption of Mt. Pinatubo and their link with changes in tropical tropospheric UV flux, *Geophys. Res. Lett.*, 23, 2761–2764, 1996.
- Dlugokencky, E. J., B. P. Walter, K. A. Masarie, P. M.

- Lang and E. S. Kasischke, Measurements of an anomalous global methane increase during 1998, *Geophys. Res. Lett.*, **28**, 499–502, 2001.
- Dlugokencky, E. J., L. Bruhwiler, J. W. C. White, L. K. Emmons, P. C. Novelli, S. A. Montzka, K. A. Masarie, P. M. Lang, A. M. Crotwell, J. B. Miller, and L. V. Gatti Observational constraints on recent increases in the atmospheric CH₄ burden, *Geophys. Res. Lett.*, 36, L18803, 2009.
- Duchon, C. E., Lanczos filtering in one and two dimensions, *J. Appl. Meteor.*, **18**, 1016-1022, 1979.
- Etherridge, D. M., L. P. Steele, R. J. Francey, and R. L. Langenfelds, Atmospheric methane between 1000 A.D. and present: Evidence of anthropogenic emissions and climatic variability, *J. Geophys. Res.*, **103**, 15979–15993, 1998.
- Francey, R. J., P. P. Tans, C. E. Allison, I. G. Enting, J. W. C. White, and M. Trolier, Changes in oceanic and terrestrial carbon uptake since 1982, *Nature*, **373**, 326–330, 1995.
- Gu, L., D. D. Baldocchi, S. C. Wofsy, J. W. Munger, J. J. Michalsky, S. P. Urbanski, and T. A. Bonden, Response of a deciduous forest to the Mount Pinatubo eruption enhanced photosysthesis, *Science*, 299, 2035–2038, 2003.
- Haan, D. and D. Raynaud, Ice core record of CO variations during the last two millennia: atmospheric implications and chemical interactions within the Greenland ice, *Tellus*, **50B**, 253–262, 1998.
- Hansen, J., A.Lacis, R. Ruedy, and M. Sato, Potential Clim. Impact of Mount-Pinatubo Eruption, *Geophys. Res. Lett.*, **19(2)**, 215–218, 1992.
- Heimann, M. and M Reichstein, Terrestrial ecosystem carbon dynamics and climate feedbacks, *Nature*, **451**, 289–292, 2008.
- IPCC, Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M.Manning, Z.Chen, M.Marquis, K.B.Averyt, M.Tignor and H.L.Miller(eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2007.
- Keeling, C. D., R. B. Bacastow, A. F. Carter, S. C. Piper, T. P. Whorf, M. Heimann, W. G. Mook, and H. Roeloffzen, A three-dimensional model of atmospheric CO₂ transport based on observed winds: 1. Analysis of observational data, in aspects of climate variability in the Pacific and the Western Americas, edited by D. H. Peterson, *Geophysical Monograph* 55, 165–236, American Geophysical Union, Washington, D.C, 1989.
- Keeling, C. D., T. P. Whorf, M. Wahlen, and J. van der

- Plicht, Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980, *Nature*, **375**, 666–670, 1995.
- Lambert, G., P. Monfray, B. Ardouin, G. Bonsang, A.Gaudry, V. Kazan and G. Polian, Year-to-year changes in atmospheric CO₂, *Tellus*, **47B**, 35–55, 1995.
- Manning, A. C., and R. F. Keeling, Global oceanic and land biotic carbon sinks from the Scripps atmospheric oxygen flask sampling network, *Tellus*, **58B**, 95–116, 2006.
- Marenco, A, and F. Said: Meridional and vertical ozone distribution in the background troposphere from Scientific aircraft measurements during the STRATOZ III experiment. *Atmos. Env.*, **23**, 201–214, 1989.
- Matsueda, H., S. Taguchi, H.Y. Inoue, and M. Ishii, A large impact of tropical biomass burning on CO and CO₂ in the upper troposphere. *Science in China (Series C)*, **45**, 116–125, 2002.
- Morimoto, S., S. Aoki, T. Nakazawa, and T. Yamanouchi, Temporal variations of the carbon isotopic ratio of atmospheric methane observed at Ny Alesund, Svalbard from 1996 to 2004, *Geophys. Res. Lett.*, 33, L01807, doi:10.1029/2005GL024648, 2006.
- Nakazawa, T., K. Miyashita, S. Aoki, and M. Tanaka, Temporal and spatial variations of upper tropospheric and lower stratospheric carbon dioxide, *Tellus*, **43B**, 106–117, 1991.
- Nakazawa, T., S. Morimoto, S. Aoki and M. Tanaka, Time and space variations of the carbon isotopic ratio of tropospheric carbon dioxide over Japan, *Tellus*, **45B**, 258–274, 1993.
- Nakazawa, T., S. Morimoto, S. Aoki and M. Tanaka, Temporal and spatial variations of the carbon isotopic ratio of atmospheric carbon dioxide in the western Pacific region, *J. Geophys. Res.*, **102**, 1271–1285, 1997.
- Nevison, C. D. N. M. Mahowald, S. C. Doney, I. D. Lima, G. R. van der Werf, J. T. Randerson, D. F. Baker, P. Kasibhatla, and G. A. McKinley, Contribution of ocean, fossil fuel, land biosphere, and biomass burning carbon fluxes to seasonal and interannual variability in atmospheric CO₂, *J. Geophys. Res.*, **113**, doi:10.1029/2007JG000408, 2008.
- Novelli, P. C., K. A. Masarie, and P. M. Lang, Distributions and recent changes of carbon monoxide in the lower troposphere, *J. Geophys. Res.*, **103**, 19015–19033, 1998.
- Novelli, P. C., K. A. Masarie, P. M. Lang, B. D. Hall, R. C. Myers, and J. W. Elkins, Reanalysis of tropospheric CO trends: Effects of the 1997–1998 wildfires. *J. Geophys. Res.*, 108(D15), 4464, doi:10.1029/2002JD003031, 2003.
- Oltmans et al., Long-term changes in tropospheric

- ozone, Atmos. Env., 40, 3156-3173, 2006.
- Onogi, J. K., Tsutsui, H. Koide, M. Sakamoto, S. Kobayashi, H. Hatsushika, T. Matsumoto, N. Yamazaki, H. Kamahori, K. Takahashi, S. Kadokura, K. Wada, K. Kato, R. Oyama, T. Ose, N. Mannoji, and R. Taira, The JRA-25 Reanalysis. *Journal of the Meteorological Society of Japan*, 85, No.3, 369–432, 2007.
- Prinn, R. G., J. Huang, R. F. Weiss, D. M. Cunnold, P. J. Fraser, P. G. Simmonds, A. McCulloch, C. Harth, P. Salameh, S. O'Doherty, R. H. J. Wang, L. Porter and B. R. Miller, Evidence for substantial variations of atmospheric hydroxyl radicals in the past two decades, *Science*, 292, 1882–1888, 2001.
- Rayner, P. J., I. G. Enting, R. J. Francey and R. Langenfelds, Reconstructing the recent carbon cycle from atmospheric CO₂,δ¹³C and O₂/N₂ observations, *Tellus*, **51B**, 213–232, 1999.
- Reis, S., R. W. Pinder, M. Zhang, G. Lijie, and M. A. Sutton, Reactive nitrogen in atmospheric emission inventories, *Atmos. Chem. Phys.*, 9, 7657–7677, 2009.
- Rigby, M., R. G. Prinn, P. J. Fraser, P. G. Simmonds, R.
 L. Langenfelds, J. Huang, D. M. Cunnold, L. P.
 Steele, P. B. Krummel, R. F. Weiss, S. O'Doherty, P.
 K. Salameh, H. J. Wang, C. M. Harth, J. Mühle, and L. W. Porter, Renewed growth of atmospheric methane, *Geophys. Res. Lett.*, 35, L22805, doi:10.1029/2008GL036037, 2008.
- Seinfeld, J. H., and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, *John Wiley & Sons, Inc., New York*, 1326 pp., 1998.
- Shindell, D., G. Faluvegi, A. Lacis, J. Hansen, R. Ruedy, and E. Aguilar, Role of tropospheric ozone increases in 20th-century climate change, *J. Geophys. Res.*, 111, D08302, doi:10.1029/2005JD006348, 2006.
- Solomon, S., D. Oin, M. Manning, R.B. Alley, T. Berntsen, N.L. Bindoff, Z. Chen, A. Chidthaisong, J.M. Gregory, G.C. Hegerl, M. Heimann, B. Hewitson, B.J. Hoskins, F. Joos, J. Jouzel, V. Kattsov, U. Lohmann, T. Matsuno, M. Molina, N. Nicholls, J. Overpeck, G. Raga, V. Ramaswamy, J. Ren, M. Rusticucci, R. Somerville, T.F. Stocker, P. Whetton, R.A. Wood and D. Wratt, Technical Summary. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to Fourth Assessment Report Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA., 2007.
- Staehelin, J., J. Thudium, R.Buehler, A. Voltz-Thomas, and W. Graber, Trends in surface ozone concentrations at Arosa (Switzerland), *Atmos. Env.*,

- 28, 75-87, 1994.
- Stenchikov, G., A.Robock, V. Ramaswamy, M. D. Schwarzkopf, K. Hamilton, and S. Ramachandran, Arctic Oscillation response to the 1991 Mount Pinatubo eruption: Effects of volcanic aerosols and ozone depletion, *J. Geophys. Res.*, 107(D24), 4803, doi:10.1029/2002JD002090., 2002.
- Tarasova, O. A., C.A. M. Brenninkmeijer, P. Jöckel, A. M. Zvyagintsev, and G.I. Kuznetsov: A climatology of surface ozone in the extra tropics: cluster analysis of observations and model resolts. *Atmos. Chem. Phys.*, 7, 6099-6117, 2007.
- Tsutsumi, Y, Y. Makino, and J. B. Jensen: Vertical and latitudinal distributions of tropospheric ozone over the western Pacific: Case studies from the PACE aircraft missions. *J. Geophys. Res.*, **108(D8)**, 4251, doi:10.1029/2001JD001374, 2003.
- Thoning, K. W., P. P. Tans, and W. D. Komhyr, Atmospheric carbon dioxide at Mauna Loa observatory, 2. Analysis of the NOAA GMCC data, 1974-1985, *J. Geophys. Res.*, **94**, 8549–8565, 1989.
- WMO, Scientific assessment of ozone depletion: 1998.
 WMO global ozone research and monitoring project—Report No. 44, World Meteorological Organization, Geneva, 1999.
- WMO, World Data Centre for Greenhouse Gases (WDCGG) Data Summary, WDCGG No. 22, 84pp, 2000.
- WMO, Global Amospheric Watch (GAW) Strategic Plan: 2008–2015, GAW Report No. 172, WMO TD No. 1384, 2007a.
- WMO, World Data Centre for Greenhouse Gases Data Submission and Disseminatin Guide, GAW Report No. 174, WMO TD No. 1416, 2007b.
- WMO, Technical Report of Global Analysis Method for Major Greenhouse Gases by the World Data Center for Greenhouse Gases, GAW Report No. 184, WMO/TD No. 1473, 2009a.
- WMO, Revision of the World Data Centre for Greenhouse Gases Data Submission and Dissemination Guide, GAW Report No. 188,2009b.
 - (http://www.wmo.int/pages/prog/arep/gaw/do cuments/GAW_188_web_20100128.pdf, accessed 1 Mar. 2010)
- WMO, WMO Greenhouse Gas Bulletine No.6, 2010. (http://www.wmo.int/pages/prog/arep/gaw/ghg/GH Gbulletin.html, accessed 24 Nov. 2010)

APPENDICES

CALIBRATION AND STANDARD SCALES

1. Calibration System in the GAW programme

Under the Global Atmosphere Watch (GAW) programme, the World Calibration Centres (WCCs) are responsible for maintaining calibration standards for certain compounds, establishing instrument calibrations and providing training to the stations. A Reference Standard is designated for each variable to be used for all GAW measurements of that variable at

the Central Calibration Laboratories. Table 1 lists the organizations that serve as WCCs and CCLs for GAW [WMO, 2007]. For CFCs and SO₂, no central facilities or quality control systems have so far been established within the GAW programme, while central facilities for NOx have only recently been formulated.

Table 1. Overview of the GAW Central Calibration Laboratories (GAW-CCL, Reference Standard) and World Calibration Centres for greenhouse and other related gases. The World Calibration Centres have assumed global responsibilities, except where indicated (Am, Americas; E/A, Europe and Africa; A/O, Asia and the South-West Pacific)

Compounds	Central Calibration Laboratory (Host of Primary Standard)	World Calibration Centre
Carbon Dioxide (CO ₂)	NOAA/ESRL	NOAA/ESRL
Methane (CH ₄)	NOAA/ESRL	Empa (Am, E/A)
Wethane (CH ₄)	NOAA/ESKL	JMA (A/O)
Nitrous Oxide (N ₂ O)	NOAA/ESRL	IMK-IFU
Chlorofluorocarbons (CFCs)		
Surface Ozone (O ₃)	NIST	Empa
Carbon Monoxide (CO)	NOAA/ESRL	Empa
Volatile Organic Compounds (VOCs)		IMK-IFU
Sulphur Dioxide (SO ₂)		
Nitrogen Oxides (NO _x)		

2. Carbon Dioxide (CO₂)

In 1995, the National Oceanic and Atmospheric Administration's Earth System Research Laboratory (NOAA/ESRL, formerly CMDL; Climate Monitoring and Diagnostics Laboratory) in Boulder, Colorado, USA, took over the role of the Central Calibration Laboratory (CCL) from the Scripps Institution of Oceanography (SIO) in San Diego, California, USA. Since then, NOAA/ESRL has served as the CCL responsible for the maintenance of the GAW Primary Standard for CO₂. As the World Calibration Centre for CO₂, NOAA/ESRL maintains a (WCC) high-precision manometric system for absolute calibration of CO₂ as the reference for GAW measurements throughout the world [Zhao et al., 1997]. It has been recommended that the standards of the GAW measurement laboratories be calibrated every two years at the CCL (WMO, 2003).

Under the WMO calibration system, there have been several calibration scales for CO₂, *e.g.*, SIO-based X74, X85, X87, X93 and X2002 scales and the

NOAA/ESRL-based WMO Mole Fraction Scale partially based on previous SIO scales. The NOAA/ESRL and SIO are working to resolve the possible small differences between their scales. The CCL adopted the WMO X2005 scale, reflecting historical manometric calibrations of the CCL's set of cylinders and the possible small differences between SIO and NOAA/ESRL calibrations. The most current WMO Mole Fraction Scale is the WMO-X2007 scale.

To assess the differences in standard scales among measuring laboratories, NOAA/ESRL organizes intercomparisons or Round Robin experiments endorsed by WMO every few years. Many laboratories participated in the experiments organized in 1991–1992, 1995–1997, 1999–2000, and 2002–2006. Table 2 shows the results of the experiments performed in 2002–2006, in which the mole fractions measured by various laboratories are compared with the mole fractions measured by NOAA/ESRL [Zhou et al., 2009]. In addition, many laboratories compare their standards

bilaterally or multilaterally.

Table 3 lists laboratories and sites used in the present issue of the *Data Summary* with standard scales of

reported data and history of participation in WMO intercomparison experiments.

Table 2. Round robin results for the mole fraction of carbon dioxide. Differences between the mole fractions measured by various laboratories and the mole fractions measured by NOAA (Laboratory minus NOAA, ppm).

Laboratory	Analysis Date	Mole fraction Difference (ppm)		
		Low	Medium	High
		340–350 ppm	350–360 ppm	370–380 ppm
Tohoku Univ.	Jan-03	-0.11	-0.19	-0.29
NIES	Apr-03	-0.10	-0.15	-0.14
MRI	Jul-03	-0.16	-0.16	-0.08
AIST	Sep/Dec-03	-0.11	-0.22	-0.29
JMA	Jan-04	0.13	0.00	-0.02
KMA	Mar/Jun-04	-0.44	-0.12	-0.08
CMA (WLG)	Jul-04	-0.05	-0.19	-0.10
CMA (BJ)	Aug-04	-0.03	-0.20	0.02
Scripps (CMM)	Jun-05	0.23	0.17	0.20
Scripps (ECM II)		0.10	0.02	0.02
LSCE	Oct/Nov-05	-0.05	-0.11	-0.09
Monte Cimone	Oct-02	0.08	0.02	-0.03
Lampedusa	Nov-02	0.05	-0.15	-0.26
Plateau Rosa	Dec-02	-0.02	0.00	-0.05
HMS	Feb-03	0.06	-0.21	-0.06
EC	May-05	0.06	-0.05	-0.06
Penn State Univ.	Sep-05	0.09	-0.07	-0.05
Univ. Heidelberg	Sep/Oct-02	-0.01	-0.06	-0.06
UBA	Oct-02	0.05	-0.11	-0.21
LSCE	Nov/Dec-02	0.10	0.03	0.05
FMI	Jan-03	-0.02	-0.04	-0.14
Univ. Groningen	Oct/Nov-03	0.01	0.02	0.04
MPI-BGC	Nov/Dec-03	0.04	0.02	-0.02
HMS	Mar-04	-0.19	-0.36	-0.59
NIWA	May-05	-0.08	-0.08	-0.09
CSIRO	Sep/Oct-05	-0.01	-0.03	-0.08
Cape Point	Dec-05	-0.02	-0.09	-0.18
NCAR	May/Jun-06	0.07	-0.04	-0.04

Table 3. Status of standard scales and calibration/intercomparison for CO₂ at laboratories.

Laboratory	WDCGG Filename Code	Calibration Scale	WMO Inter- comparison
AEMET	IZO128N0000	WMO	91/92, 96/97, 99/00
Aichi	MKW234N0000	WMO	

AIST	TKY236N0000	AIST	96/97, 99/ 02/06
BoM & CSIRO	CGO540S0010,CGO540S0000	WMO	
CMA	WLG236N0000	WMO	96/97, 99/ 02/06
CNR-ICES & DNA-IAA	JBN762S0000	WMO	
CSIRO	ALT482N0003, CFA519S0003, CGO540S0003, CRI215N0000, CYA766S0001, ESP449N0003, MAA767S0003, MLO519N0003, MQA554S0003, SIS660N0003, SPO789S0003	WMO	91/92, 96/ 99/00, 02/
EC	ALT482N0000, ALT482N0005, CDL453N0000, CHM449N0000, CSJ451N0000, EGB444N0100, ETL454N0000, FSD449N0000, LLB454N0100, WSA443N0000, WSA443N0001	WMO	91/92, 96/ 99/00, 02/
EMA	CAI130N0000		
ENEA	LMP635N0001	WMO	91/92, 96/
FMI	PAL667N0000	WMO	02/06
HMS	HUN646N0000, KPS646N0000	WMO	91/92, 96, 99/00, 02,
IAFMS	CMN644N0000	WMO	91/92, 96 02/06
IGP	HUA312S0000	WMO	
IMK-IFU	WNK647N0000, ZUG647N0014	WMO	99/00
INMH	FDT645N0002		
INRNE	BEO642N0000	WMO	
IOEP	DIG654N0000		
ITM	ZEP678N0000	WMO	96/97, 99
JMA	MNM224N0000, RYO239N0000, YON224N0000	WMO	91/92, 96, 99/00, 02
KMA	AMY236N0000	KRISS	02/06
KSNU	ISK242N0000		
LSCE	AMS137S0000, BGU641N0000, LPO648N0000, MHD653N0002, PDM642N0000, PUY645N0000	WMO	91/92, 96 99/00, 02
NIMR	GSN233N0001	WMO	96/97
MGO	BER255N0001, KOT276N0001, KYZ240N0001, STC652N0001, TER669N0001	WMO	
MMD	DMV504N0000	WMO	
MRI	TKB236N0002		91/92, 96, 99/00, 02,
NIER	GSN233N0103	WMO	
NIES	COI243N0000, HAT224N0000	NIES	96/97, 99 02/06
NIPR & Tohoku Univ.	SYO769S0000		Tohoku Univ.:91/ 96/97, 99/ 02/06
NIWA	BHD541S0000	WMO	91/92, 96, 99/00, 02

NOAA/ESRL	BRW471N0000, MLO519N0000, SMO514S0000, SPO789S0000, NOAA/ESRL flask network*	WMO	91/92, 96/97, 99/00, 02/06
Osaka Univ.	SUI234N0000		
RIVM	KMW653N0000	NIST	
Saitama	DDR236N0000, KIS236N0000, URW235N0000	WMO	
RSE	PRS645N0000	WMO	99/00, 02/06
SAWS	CPT134S0000	WMO	99/00, 02/06
Shizuoka Univ.	HMM234N0000		
UBA	BRT648N0000, DEU649N0000, LGB652N0000, NGL653N0000 SNB647N0000, SSL647N0000, SSL647N0002, WES654N0000, ZGT654N0000, ZSF647N0010, ZUG647N0000	WMO	91/92, 96/97, 99/00, 02/06

NOAA/ESRL flask network:

ABP312S0001, ALT482N0001, AMS137S0001, ASC107S0001, ASK123N0001, AVI417N0001, AZR638N0001, BAL655N0001, BHD541S0001, BKT500S0001, BME432N0001, BMW432N0001, BRW471N0001, BSC644N0001, CBA455N0001, CGO540S0001, CHR501N0001, CMO445N0001, CRZ146S0001, EIC327S0001, GMI513N0001, GOZ636N0001, HBA775S0001, HPB647N0003, HUN646N0001, ICE663N0001, ITN435N0001, IZO128N0001, KCO204N0001, KEY425N0001, KUM519N0001, KZD244N0001, KZM243N0001, LEF445N0001, LLB454N0001, LLN223N0001, LMP635N0003, MBC476N0001, MHD653N0001, MID528N0001, MKN100S0001, MLO519N0001, NMB123S0001, NWR440N0101, OPW448N0001, PAL667N0001, POC905N0001, POC905N0001, POC905N0001, POC910N0001, POC915N0001, POC915N0001, POC915N0001, POC920N0001, POC920N0001, POC925N0001, POC925N0001, POC925N0001, POC930N0001, POC935S0001, POC935S001, POC935S0001, POC935S001, POC935S001, POC935S001, POC935S001, POC935S0

3. Methane (CH₄)

The GAW programmes have established two WCCs for CH₄, the Swiss Federal Laboratory for Materials Testing and Research (Empa), Dübendorf, Switzerland; and the Japan Meteorological Agency (JMA), Tokyo, Japan [WMO, 2007]. In addition, the Central Calibration Laboratory for CH₄ has been established at NOAA/ESRL [Dlugokencky, et. al., 2005; WMO, 2007].

The NOAA04 scale has been designated as the Primary Standard of the GAW programme. This scale results in CH₄ mole fractions that are a factor of 1.0124 higher than the previous NOAA scale [*Dlugokencky et al.*, 2005].

Table 4 summarizes the methane standard scales used by laboratories contributing to the WDCGG and lists tentative multiplying conversion factors applied for analysis in this issue of the *Data Summary*. The

standard is the NOAA04 scale, and conversion factors were calculated from the results of comparisons with other laboratories performed bilaterally or multilaterally before the establishment of the GAW Standard.

The former CMDL scale is lower than an absolute gravimetric scale [Aoki et al., 1992] by ~1.5% [Dlugokencky et al., 1994] and lower than the AES (Atmospheric Environment Service, currently EC) scale by a factor of 1.0151 [Worthy et al., 1998]. The former CMDL scale can be converted to the Tohoku University standard by multiplying by 1.0121 [Dlugokencky et al., 2005]. The conversion factors 1.0124 / 1.0151 = 0.9973 and 1.0124 / 1.0121 = 1.0003 have been adopted for comparisons with the NOAA04 scale.

Table 4. Status of the standard scales of CH₄ at laboratories with conversion factors.

Laboratory	WDCGG Filename Code	Calibration Scale	Conversion Factor
AEMET	IZO128N0000	NOAA04	1
AGAGE	CGO540S0011, CGO540S0013, CMO445N0011, MHD653N0011, MHD653N0013, RPB413N0000, RPB413N0011, SMO514S0014, SMO514S0016, THD441N0000	Tohoku Univ.	1.0003
CHMI	KOS649N0000	CHMI	0.9973
CMA	WLG236N0000	NOAA04	1

CSIRO	ALT482N0003, CFA519S0003, CGO540S0003, CRI215N0000, CYA766S0001, ESP449N0003, MAA767S0003, MLO519N0003, MQA554S0003, SIS660N0003,SPO789S0003	NOAA04	1
EC	ALT482N0000, CDL453N0000, CHM449N0000, EGB444N0100, ETL454N0000, FSD449N0000, LLB454N0100, WSA443N0000	NOAA04	1
Empa	JFJ646N0000	NOAA04	1
ENEA	LMP635N0000	NOAA04	1
ISAC	CMN644N0000	NOAA04	1
JMA	MNM224N0000, RYO239N0000, YON224N0000	NOAA04	1
KMA	AMY236N0000	KRISS	
KSNU	ISK242N0000		
LSCE	AMS137S0002, BGU641N0000, LPO648N0000, PDM642N0000, PUY645N0000	NOAA83	1.0124
NIER	GSN233N0103	NOAA04	1
NIMR	GSN233N0001	SIO X97	
MGO	TER669N0001	NOAA04	1
MRI	TKB236N0000		0.9973
NIES	COI243N0000, HAT224N0000	NIES	0.9973
RSE	PRS645N0000	NOAA04	1
RIVM	KMW653N0000	NIST	0.9973
SAWS	CPT134S0000	NOAA04	1
UBA	DEU649N0000, NGL653N0000, SSL647N0000, ZGT654N0000, ZSF647N0010, ZUG647N0000	NOAA04	1
	BRW471N0000, MLO519N0000, NOAA/ESRL flask network*	NOAA04	1
NOAA/ESRL	KPA431N0001, LEF445N0001, MCM777S0001, NZL543S0001, POC935S0001, SGI354S0001, SIO432N0001	NOAA/CMDL	1.0124

NOAA/ESRL flask network:

ABP312S0001,ALT482N0001,AMS137S0001,ASC107S0001,ASK123N0001,AVI417N0001,AZR638N0001,BAL655N0001,BKT500S0001, BME432N0001,BMW432N0001,BRW471N0001,BSC644N0001,CBA455N0001,CGO540S0001,CHR501N0001,CMO445N0001,CRZ146S0001, EIC327S0001,GMI513N0001,GOZ636N0001,HBA775S0001,HPB647N0003,HUN646N0001,ICE663N0001,ITN435N0001,IZO128N0001, KEY425N0001,KUM519N0001,KZD244N0001,KZM243N0001,LLB454N0001,LLN223N0001,LMP635N0003,MBC476N0001,MEX419N0001,MHD653N0001,MID528N0001,MKN100S0001,MLO519N0001,NWR440N0101,OPW448N0001,OXK650N0001,PAL667N0001, POC900N0001,POC905N0001,POC905N0001,POC910N0001,POC915N0001,POC915N0001,POC920N0001,POC920N0001,POC920N0001,POC920N0001,POC920N0001,POC920N0001,POC920N0001,POC920N0001,SCS915N0001,SCS915N0001,SCS915N0001,SCS915N0001,SCS915N0001,SCS915N0001,SCS915N0001,SCS915N0001,SCS915N0001,SCS915N0001,SCS915N0001,SCS915N0001,SCS915N0001,SCS915N0001,SCS915N0001,SCS915N0001,SCS903N0001,SCS915N0001,SC

4. Nitrous Oxide (N₂O)

The Halocarbons and other Atmospheric Trace Species (HATS) Group of NOAA/ESRL maintains a set of standards for N₂O [Hall et al., 2001]. The NOAA-2006 N₂O scale [Hall et al., 2007] has been designated as the Primary Standard of the GAW programme. This group analyses the standards of laboratories, including those of Environment Canada (EC) and the Australian Commonwealth Scientific and Industrial Research Organisation (CSIRO). The Fraunhofer Institut für Atmosphärische Umweltforschung (IFU) in Garmisch-Partenkirchen,

Germany, serves as the GAW WCC.

The SIO-98 scale is essentially equivalent to the NOAA-2006 scale, with an average difference of 0.01% over the range of 299–319 ppb; the NOAA-2000 scale can be converted to the 2006 scale by using the factor 0.99402 [Hall et al., 2007]. A constant ratio of 1.0017 between CSIRO and AGAGE data was used by Huang et al. (2008), and a factor of 1 / 1.0017 = 0.9983 has been used in this report to convert CSIRO scale to the NOAA-2006 scale.

Table 5. Status of the standard scales of N₂O at laboratories.

Submitter	WDCGG Filename Code	Calibration Scale	Conversion Factor
AGAGE	ADR652N0010, CGO540S0011, CGO540S0012, CGO540S0013, CMO445N0010, CMO445N0011, MHD653N0011, MHD653N0011, MHD653N0013, RPB413N0000, RPB413N0010, RPB413N0011, SMO514S0014, SMO514S0015, SMO514S0016, THD441N0000	SIO 1998	1
CSIRO	ALT482N0003, CFA519S0003, CGO540S0003, CRI215N0000, CYA766S0001, ESP449N0003, MAA767S0003, MLO519N0003, MQA554S0003, SIS660N0003, SPO789S0003	CSIRO	0.9983
Empa	JFJ646N0000	SIO 1998	1
ENEA	LMP635N0001	NOAA/CMDL	0.999402
JMA	RYO239N0000	NOAA-2006	1
KMA	AMY236N0000	KRISS	
NIER	GSN233N0103	NOAA-2006	1
NIMR	GSN233N0001	WMO X97	
MRI	MMB243N0000		
Nagoya Univ.	NGY235N0000		
NIES	HAT224N0000		
NILU	ZEP678N0000		
NOAA/ESRL	ALT482N0001, BRW471N0001, BRW471N0011, CGO540S0001, KUM519N0001, MLO519N0001, MLO519N0001, NWR440N0001, NWR440N0011, SMO514S0001, SPO789S0001, SPO789S0011	NOAA/CMDL	0.999402
	BRW471N0010, MLO519N0010, NWR440N0010, SMO514S0010, SPO789S0010, SUM672N0000	NOAA-2006	1
SAWS	CPT134S0000	NOAA/CMDL	0.999402
UBA	SSL647N0000, ZSF647N0010	SIO 1998	1

5. Surface Ozone (O₃)

The National Institute of Standards and Technology (NIST) has developed and deployed Standard Reference Photometers (SRPs) in the USA and other countries. The GAW has designated SRP #2 maintained by NIST as the Primary Standard for the GAW programme, making NIST the CCL for O₃. The Swiss Federal Laboratory for Materials Testing and Research (Empa) maintains NIST SRP #15 as the reference and is the GAW WCC for surface ozone

[Hoferetal., 1998]. The traceability and uncertainty of O₃ within the GAW network were reported by Klausen *et al.*, (2003). Regional Calibration Centres have been established at the Solar and Ozone Observatory, Hradec Kralove, Czech Republic, and Observatorio Central Buenos Aires, Argentina [WMO, 2007]. The former maintains SRP #17 directly purchased from NIST.

Table 6. Status of surface ozone standard scales at laboratories

Laboratory	WDCGG Filename Code	Calibration Scale	Audit Empa-WCC
AEMET	IZO128N0000	WMO (NIST & Empa)	96, 98, 00, 04
AEMET	DON637N0000,MHN639N0000,NIA642N0000, ROQ640N0000,SPM639N0000	NPL (U. K.)	

AQRB	ALG447N0000, BRA450N0000, CHA446N0000, EGB444N0000, ELA449N0000, EST451N0000, KEJ444N0000, SAT448N0000		
AWI	NMY770S0000		
BMKG & Empa	BKT500S0000	WMO (NIST & Empa)	99,01,04,07,08
BoM & CSIRO	CGO540S0000	WMO (NIST & Empa)	02
СНМІ	KOS649N0000	WMO (NIST & Empa)	
DEFRA	EDM655N0000		
DWD	HPB647N0000	WMO (NIST & Empa)	97,06
EARS	IRB645N0000, KVK646N0000, KVV646N0000, ZRN646N0000	WMO (NIST & Empa)	
EMA	CAI130N0000		
Empa	JFJ646N0000, PAY646N0000, RIG646N0000	WMO (NIST & Empa)	Jungfraujoch: 99, 0
Empa & KMD	MKN100S0000	WMO (NIST & Empa)	
FMI	AHT662N0000, OUL666N0000, PAL667N0000, UTO659N0000, VIR660N0000		Pallas-Sammaltunturi: 97, 03, 07
HMS	KPS646N0000	WMO (NIST & Empa)	
IM	ANG638N0000, BEJ638N0000, CAS639N0000, FUN132N0000, LIS638N0000, MVH638N0000, PEN640N0000		
INMH	FDT645N0002		
INRNE	BEO642N0000	WMO (NIST & Empa)	
IOEP	DIG654N0000	WMO (NIST & Empa)	
ISAC	CMN644N0000, PYR227N0000	WMO (NIST & Empa)	
IVL	VDL664N0000	Stockholm Univ. (Sweden)	
JMA	MNM224N0000, RYO239N0000, SYO769S0002, YON224N0000, TKB236N1004	WMO (NIST & Empa)	Ryori: 05
KSNU	ISK242N0000		
LEGMA	DBL656N0000, RCV656N0000, ZSN657N0000	WMO (NIST & Empa)	
MMD	DMV504N0000, TAR504N0000		
NILU	ZEP678N0000	WMO (NIST & Empa)	97, 01, 05
NIWA	BHD541S0000	WMO (NIST & Empa)	

NOAA/ESRL	ARH777S0000, BMW432N0004, BRW471N0004,	WMO	Mauna Loa: 03
	ICE663N0004, LAU545S0004, MCM777S0004,	(NIST & Empa)	Barrow: 08
	MLO519N0004, NWR440N0002, NWR440N0204,		
	RPB413N0004, SMO514S0004, SPO789S0004,		
	SUM672N0004, THD441N0004		
NUI	MHD653N0000	WMO	96, 98, 02, 05
		(NIST & Empa)	
ONM	ASK123N0000	WMO	03, 07
		(NIST & Empa)	
PolyU	HKG222N0000		
RIVM	KMW653N0001,KMW653N0002		
Roshydromet	DAK654N0000, SHP659N0000		
RSE	PRS645N0000		
SAWS	CPT134S0000	WMO	97, 98, 02, 06
		(NIST & Empa)	
SMN	USH354S0000,USH354S0001	WMO	98, 03
		(NIST & Empa)	
UBA	BRT648N0000, DEU649N0000, LGB652N0000,	WMO	Zugspitze: 96, 97, 01
	NGL653N0000, SNB647N0000, SSL647N0000,	(NIST & Empa)	Sonnblick: 98
	WES654N0000, ZGT654N0000, ZSF647N0010,		Zugspitze/Schneefern
	ZUG647N0000		erhaus: 06
Univ. Malta	GLH636N0000	UMEG	
Univ. York	CVO116N0001	NPL	

6. Carbon Monoxide (CO)

The Swiss Federal Laboratory for Materials Testing and Research (Empa) serves as the WCC under GAW based on its secondary standards calibrated against the

standard at NOAA/ESRL designated as the Primary Standard for GAW.

Table 7. Status of carbon monoxide standard scales at laboratories

Laboratory	WDCGG Filename Code	Calibration Scale	Audit Empa-WCC
AGAGE	CGO540S0011, MHD653N0011	SIO 1998	
BMKG & Empa	BKT500S0000	WMO 2000 (NOAA/ESRL & Empa)	
CHMI	KOS649N0000	CHMI	
CSIRO	ALT482N0003, CFA519S0003, CGO540S0003, CRI215N0000, CYA766S0001, ESP449N0003, MAA767S0003, MLO519N0003, MQA554S0003, SIS660N0003, SPO789S0003	CSIRO	Cape Grim: 02
DWD	HPB647N0000	WMO (NOAA/ESRL & Empa)	06
EARS	KVV646N0000	СНМІ	
EC	ALT482N0000,CDL453N0000, CHM449N0000, EGB444N0100, ETL454N0000, FSD449N0000, LLB454N0100, WSA443N0000	WMO (NOAA/ESRL & Empa)	
Empa	JFJ646N0000, PAY646N0000, RIG646N0000	WMO 2000 (NOAA/ESRL & Empa)	Jungfraujoch: 99,06

Empa &KMD	MKN100S0000	WMO 2000	
		(NOAA/ESRL & Empa)	
INRNE	BEO642N0000	WMO	
		(NOAA/ESRL & Empa)	
ISAC	CMN644N0000	WMO 2004	
		(NOAA/ESRL & Empa)	
JMA	RYO239N0001, RYO239N0002, MNM224N0001,	WMO 2000	Ryori:05
	MNM224N0002, YON224N0001, YON224N0002	(NOAA/ESRL)	
LSCE	AMS137S0000	WMO 2004	
		(NOAA/ESRL & Empa)	
NOAA/ESRL	NOAA/ESRL flask network*	WMO	Mauna Loa: 03
		(NOAA/ESRL & Empa)	Barrow: 08
PolyU	HKG222N0000		
RIVM	KMW653N0000, KTB653N0000		
SAWS	CPT134S0000	WMO	98, 02, 06
		(NOAA/CMDL)	
SMN	USH354S0000, USH354S0001	WMO	98, 03
		(NOAA/ESRL & Empa)	
UBA	NGL653N0000, SNB647N0000, SSL647N0000,	WMO	Zugspitze: 01
	ZUG647N0000	(NOAA/CMDL)	Sonnblick: 98
Univ. Malta	GLH636N0000		
Univ. York	CVO116N0001	WMO 2000	
		(NOAA/ESRL & Empa)	

NOAA/ESRL flask network:

ALT482N0001, ASC107S0001, ASK123N0001, AZR638N0001, BAL655N0001, BKT500S0001, BME432N0001, BMW432N0001, BRW471N0001, BSC644N0001, CBA455N0001, CGO540S0001, CHR501N0001, CMO445N0001, CRZ146S0001, EIC327S0001, GMI513N0001, GOZ636N0001, HBA775S0001, HUN646N0001, ICE663N0001, ITN435N0001, IZO128N0001, KEY425N0001, KUM519N0001, KZD244N0001, KZM243N0001, LEF445N0001, LLN233N0001, LMP635N0001, MBC476N0001, MHD653N0001, MID528N0001, MLO519N0001, NWR440N0101, OXK650N0001, PAL667N0001, POC900N0001, POC905S0001, POC910N0001, POC910S0001, POC915N0001, POC910S0001, POC920S0001, POC925N0001, POC920S0001, POC925N0001, POC930S0001, POC930S0001, POC935S0001, POC935S0001, PSA764S0001, PTA438N0001, RPB413N0001, SCS903N0001, SCS905N0001, SCS905N0001, SCS901SN0001, S

References

- Aoki, S., T. Nakazawa, S. Murayama and S. Kawaguchi, Measurements of atmospheric methane at the Japanese Antarctic station, Syowa, *Tellus, Ser. B*, **44**, 273–281, 1992.
- CMDL, Climate Monitoring and Diagnostics Laboratory Summary Report No.26 2000-2001, 2002.
- Cunnold, D. M., L. P. Steele, P. J. Fraser, P. G. Simmonds, R. G. Prinn, R. F. Weiss, L. W. Porter, S. O'Doherty, R. L. Langenfelds, P. B. Krummel, H. J. Wang, L. Emmons, X. X. Tie, and E. J. Dlugokencky, In situ measurements of atmospheric methane at GAGE/AGAGE sites during 1985–2000 and resulting source inferences, *J. Geophys, Res,* 107(D14), 10.1029/2001JD001226, 2002.
- Dlugokencky, E. J., L. P. Steele, P. M. Lang, and K. A. Masarie, The growth rate and distribution of atmospheric methane, *J. Geophys. Res.*, **99**, 17021-17043, 1994.
- Dlugokencky, E. J., R. C. Myers, P. M. Lang, K. A. Masarie, A. M. Crotwell, K. W. Thoning, B. D. Hall, J. W. Elkins, and L. P. Steele, Conversion of NOAA atmospheirc dry air CH4 mole fractions to a gravimetrically prepared standard scale, *J. Geophys. Res.*, 110, D18306, doi: 10.1029/2005JD006035, 2005.
- Hall, B. D. (ed.), J. W. Elkins, J. H. Butler, S. A. Montzka, T. M. Thompson, L. Del Negro, G. S. Dutton, D. F. Hurst, D. B. King, E. S. Kline, L. Lock, D. Mactaggart, D. Mondeel, F. L. Moore, J. D. Nance, E. A. Ray, and P. A. Romashkin, Halocarbons and Other Atmospheric Gases, Section 5 in Climate Monitoring and Diagnostics Laboratory, Summary Report N. 25, 1998–1999, R. S. Schnell, D. B. King, R. M. Rosson (eds.), NOAA-CMDL, Boulder, CO., USA, 2001.
- Hall, B. D., G. S. Dutton, and J. W. Elkins, The NOAA nitrous oxide standard scale for atmospheric observations, *J. Geophys. Res.*, 112, D09305, doi:10.1029/2006JD007954, 2007.
- Hofer, P., B. Buchmann and A. Herzog, Traceability, Uncertainty and Assessment Criteria of Surface Ozone Measurements, *EMPA-WCC Report* 98/5, 20 pp, 1998.
- Huang, J., A. Golombek, R. Prinn, R. Weiss, P. Fraser,
 P. Simmonds, E. J. Dlugokencky, B. Hall, J. Elkins, P. Steele, R. Langenfelds, P. Krummel,
 G. Dutton, and L. Porter, Estimation of regional emissions of nitrous oxide from 1997 to 2005 using multinetowrk measurements, a chemical transport model, and an inverse method, *J. Geophys. Res.*, 113, D17313, doi:10.1029/2007JD009381, 2008.

- Klausen, J., C. Zellweger, B. Buchmann, and P. Hofer, Uncertainty and bias of surface ozone measurements at selected Global Atmosphere Watch sites, *J. Geophys. Res.*, **108(D19)**, 4622, doi:10.1029/2003JD003710, 2003.
- WMO, Report of the Eleventh WMO/IAEA Meeting of Experts on Carbon Dioxide Concentration and Related Tracer Measurement Techniques, Global Atmosphere Watch Report Series No.148, 2003.
- WMO, WMO Global Atmosphere Watch (GAW) Strategic Plan: 2008–2015, WMO/GAW Report No. 172, 104pp, 2007.
- Worthy, D. E. J., I. Levin, N. B. A. Trivett, A. J. Kuhlmann, J. F. Hopper and M. K. Ernst, Seven years of continuous methane observations at a remote boreal site in Ontario, Canada, *J. Geophys. Res.*, **103**, 15995–16007, 1998.
- Zhao, C. L., P. P. Tans, and K. W. Thoning, A high precision manometric system for absolute calibrations of CO₂ in dry air, *J. Geophys. Res.*, **102**, 5885–5894, 1997.
- Zhou, L. X., D. Kitzis, P. P. Tans, "Report of the Fourth WMO Round-Robin Reference Gas Intercomparison, 2002–2007" in the report of the 14th WMO/IAEA Meeting of Experts on Carbon Dioxide, Other Greenhouse Gases and Related Tracers Measurement Techniques, Helsinki, Finland, 10–13 September 2007, edited by T. Laurila, WMO/GAW Report No. 186, 2009

LIST OF ABBREVIATIONS

AGENCIES AND PROGRAMMES:

AEMET Agencia Estatal de Meteorología (Spain)

AGAGE Advanced Global Atmospheric Gases Experiment

Aichi Aichi Prefecture (Japan)

AIST National Institute of Advanced Industrial Science and Technology (Japan)
AQRB Air Quality Research Branch, Meteorological Service of Canada (Canada)

AWI Alfred Wegener Institute for Polar and Marine Research (Germany) **BMKG** Agency for Meteorology, Climatology and Geophysics (Indonesia)

BoM Commonwealth Bureau of Meteorology (Australia) **CHMI** Czech Hydrometeorological Institute (Czech Republic)

CMA China Meteorological Administration (China)

CNR-ICES

CSIRO

DEFRA

DNA-IAA

International Center for Earth Sciences, Consiglio Nazionale delle Ricerche (Italy)
Commonwealth Scientific and Industrial Research Organisation (Australia)
Department for Environment, Food and Rural Affairs (United Kingdom)
Direccion Nacional del Antartico-Instituto Antartico Argentino (Argentina)

DWD Deutscher Wetterdienst (German Meteorological Service, Germany)

EARS Environmental Agency of the Republic of Slovenia

EC Environment Canada (Canada)

EMA Egyptian Meteorological Authority (Egypt)

Empa Swiss Federal Laboratories for Material Testing and Research (Switzerland)
ENEA Italian National Agency for New Technology, Energy and the Environment

(Italy)

FMI Finnish Meteorological Institute

GAGE Global Atmospheric Gases Experiment GAW Global Atmosphere Watch (WMO)

HATS Halocarbons and other Atmospheric Trace Species Group, NOAA/ESRL

HMS Hungarian Meteorological Service (Hungary)IAFMS Italian Air Force Meteorological Service (Italy)

IGP Instituto Geofísico del Perú (Peru)IM Instituto de Meteorologia (Portugal)

IMK-IFU Institut für Meteorologie und Klimatologie, Atmosphärische

Umweltforschung, Forschungszentrum Karlsruhe (Germany)

INMH National Meteorological Administration (Romania)

INRNE Institute for Nuclear Research and Nuclear Energy (Bulgaria)

IOEP Institute of Environmental Protection (Poland)

ISAC Istituto di Scienze dell'Atmosfera e del Clima, Consiglio Nazionale delle

Ricerche (Italy)

ITM Department of Applied Environmental Science, Stockholm University,

(Sweden)

IVL Swedish Environmental Research Institute, Göteborg (Sweden)

JMA Japan Meteorological Agency (Japan)

KMA Korea Meteorological Administration (Republic of Korea)

KMD Kenya Meteorological Department (Kenya)KSNU Kyrgyz State National University (Kyrgyzstan)

LEGMA Latvian Environment, Geology and Meteorology Agency (Latvia)

LSCE Laboratoire des Sciences du Climat et de l'Environnement (France)

MGO Main Geophysical Observatory, Roshydromet (Russian Federation)

MMD Malaysian Meteorological Department

MRI Meteorological Research Institute, JMA (Japan)

Nagoya Univ. Nagoya University (Japan)

NIER National Institute of Environmental Resaearch (Republic of Korea)

NIES National Institute for Environmental Studies (Japan)
NILU Norwegian Institute for Air Research (Norway)

NIMR National Institute of Meteorologocal Reserch, KMA (Republic of Korea)

NIPR National Institute of Polar Research (Japan)

NIST National Institute of Standards and Technology (USA)

NIWA National Institute of Water & Atmospheric Research (New Zealand)

NOAA/ESRL Earth System Research Laboratory, NOAA (USA)
NUI National University of Ireland, Galway (Ireland)
ONM Office National de la Météorologie (Algeria)

Osaka Univ. Osaka University (Japan)

PolyU Hong Kong Polytechnic University (Hong Kong, China) **RIVM** National Institute for Health and Environment (Netherlands)

Roshydromet Federal Service for Hydrometeorology and Environmental Monitoring

(Russian Federation)

RSE Ricerca sul Sistema Elettrico (Italy)

Saitama Saitama Prefecture (Japan)

SAWS South African Weather Service (South Africa)

Shizuoka Univ. Shizuoka University (Japan)

SMN Servicio Meteorológico Nacional (Argentina)

Tohoku Univ. Tohoku University (Japan)
UBA Umweltbundesamt (Germany)
Univ. Malta University of Malta (Malta)

Univ. YorkUniversity of York (United Kingdom of Great Britain and Northern Ireland)WDCGGWorld Data Centre for Greenhouse Gases, operated by JMA, Japan (WMO)

WMO World Meteorological Organization

LIST OF OBSERVING STATIONS

Amsterdam Island France AMS 137800 37 47 8 77 31 E 55 CH4, CO2 Amsterdam Island France AMS 137800 37 47 8 77 31 E 55 CH4, CO2 Amsterdam Island France AMS 137800 74 8 77 31 E 55 CH4, CO2 Amsterdam Island France AMS 137800 75 8 14 25 W 54 H2CH4, H2CO2, CHO2, CH4, CO2 CO2, H2 CO2, H2 CO2, H2 CO2, H2 CO2, H2 CO2, H2 CO2, H3 CO2, H4 CO2, CH4, CO2 CO2, H2 CO2, H3 CO2, H4 CO2, CH4, CO2 CO2, H2 CO2, H3 CO2, H4 CO3, CH4, CO2 CO2, H3 CO2, H4 CO3, CH4, CO2 CO2, H3 CO2, H4 CO3, CH4, CO2 CO2, H3 CO3, H4 CO3, CH4 CO	Station	Country/Territory	Index Number	Latitude (° ')	Location Longitude (°')	Altitude (m)	e Parameter
Amsterdam Island France AMS137800 37 47 8 77 31 E 55 CH ₄ , CO, CO ₂ , O ₅ , VoCs Ascension Island United Kingdom of Great Britain and Northern Ireland Assekrem Algeria ASK123N00 23 16 N 5 37 E 2710 IO ₂ , CtBO ₂ , C	REGION I (Africa)						
Asseckrem Algeria ASKL23N00 23 16 N 5 37 E 2710 O3 Assekrem Algeria ASKL23N00 23 16 N 5 37 E 2710 PCO ₂ , C ¹⁸ O ₂ , C ¹¹ A, CO, CO ₂ , H Assekrem Algeria ASKL23N00 23 16 N 5 37 E 2710 PCO ₂ , C ¹⁸ O ₂ , C ¹¹ A, CO, CO ₂ , H Assekrem Algeria ASKL23N00 23 16 N 5 37 E 2710 PCO ₂ , C ¹⁸ O ₂ , C ¹¹ A, CO, CO ₂ , H Cape Point South Africa CPT134S00 34 21 S H 28 E 230 CH4, CO, CO ₂ , No. O3 Cape Verde Observatory Cape Verde CV0116N00 16 50 N 24 52 W 10 CO, NOx, O3, VOCs Crozet France (RZ146S00 46 27 S 51 51 F 120 PCO ₂ , C ¹⁸ O ₂ , C ¹¹ A, CO, CO ₂ , H Cape Algeria ASKL23N00 23 18 N 16 52 W 58 O3 Cape Verde Namibia NBB123S00 23 18 N 16 52 W 58 O3 Capata (Tenerife) Spain IZO128N00 28 18 N 16 30 W 2367 CH4, CO ₂ , O ₃ , C ¹¹ A, CO, CO ₂ , H Mahe Island Seychelles SEY104S00 44 OS 55 10 E 7 PCO ₂ , C ¹⁸ O ₂ , C ¹¹ A, CO, CO ₂ , H MK Kenya Kenya MKN100S00 00 38 37 17 F 3678 PCO ₂ , C ¹⁰ O ₂ , C ¹¹ A, CO ₂ MK Kenya Kenya MKN100S00 00 38 37 17 F 3678 PCO ₂ , C ¹⁰ O ₂ , C ¹¹ A, CO Anmycon-do Republic of Korea AMY236N00 43 08 N 184 30 B 45 CH4, CO Cape Odeni-sih Japan CO1243N00 43 08 N 184 30 B 45 CH4, CO Cape Amma India CR215N00 15 04 N 73 49 E 60 PCO ₂ , C ¹¹ A, CO, CO ₂ , H Cape Cama India CR215N00 15 04 N 73 49 E 60 PCO ₂ , C ¹¹ A, CO, CO ₂ , H Cape Cama Republic of Korea GSN233N00 33 08 N 126 07 E 72 CFCs, CH4, CO ₂ , N ₂ O Cape Cabi-sih Japan HA1224N00 24 03 N 123 47 E 10 CH4, CO ₂ , N ₂ O Cape Cabi-sih Magan HA1224N00 24 03 N 123 47 E 10 CH4, CO ₂ , N ₂ O Cape Cabi-sih Magan HA1224N00 24 03 N 123 47 E 10 CH4, CO ₂ , N ₂ O Cape Cabi-sih Magan HA1224N00 24 03 N 123 47 E 10 CH4, CO ₂ , N ₂ O Cape Cabi-sih Magan HA1224N00 24 03 N 123 47 E 10 CH4, CO ₂ , N ₂ O Cape Cabi-sih Magan HA1224N00 24 03 N 123 47 E 10 CH4, CO ₂ , N ₂ O Cape Cabi-sih Magan HA1224N00 24 03 N 123 47 E 10 CH4, CO ₂ , N ₂ O Cape Cabi-sih Magan HA1224N00 24 18 N 13 14 15 E 60 CO ₂ , C ₁ O ₂ , C ₁	Amsterdam Island	France	AMS137S00	37 47 S	77 31 E		
Great Pritain and Northern Ireland Northern Ireland Northern Ireland Northern Ireland Northern Ireland Northern Ireland Assekrem Algeria ASK123N00 23 16 N 5 37 E 2710 9CO ₂ , CNO ₂ , CH ₄ , CO, CO ₂ , H	Amsterdam Island	France	AMS137S00	37 47 S	77 31 E		
Assekrem Algeria ASK123N00 23 16 N 5 37 E 2710 WCO2, C18O2, C18A, CO, CO2, H Egypt CA1130N00 30 04 N 31 16 E 35 CO2, O3 C18A, CO, CO2, H Egypt CA1130N00 30 04 N 31 16 E 35 CO2, O3 C18A, CO, CO2, N3O, O3 C18P C19P C19P C19P C19P C19P C19P C19P C19	Ascension Island	Great Britain and	ASC107S00	7 55 S	14 25 W	54	
Cairo Egypt South Africa CA1130N00 30 04 N 31 16 E 35 CO2, O3 Cape Point South Africa CPT134800 34 21 S 18 28 E 230 CH4, CO, CO2, N2O, O3 Cape Verde Observatory France CV0116000 16 50 N 24 52 W 10 CO, NOX, O3, VOCs Crozet France CRZ146800 46 27 S 51 51 E 120 ¹³ CO2, C ¹⁸ O2, CH4, CO, CO2, H Globabeb Namibia NMB123800 23 34 S 15 01 E 46 1 ¹³ CO2, C ¹⁸ O2, CH4, CO, CO2, H Zapā (Tenerife) Spain IZO128N00 28 18 N 16 30 W 2367 1 ¹³ CO2, C ¹⁸ O2, CH4, CO, CO2, H Mdh. Esland Seychelles SEY104S00 48 18 N 16 30 W 2367 1 ¹³ CO2, C ¹⁸ O2, CH4, CO, CO2, H Mt. Kenya Kenya MKN100S00 0 03 S 37 17 E 3678 1 ¹³ CO2, C ¹⁸ O2, CH4, CO, CO2, H Mt. Kenya Kenya MKN100S00 36 31 N 126 19 E 47 CFCs, CH4, CO2, N2O Ammyeon-do Republic of Korea AMY236N00 36 31 N 126 19 E 47 CFCs, CH4, CO2, N2O Cape Rama <td>Assekrem</td> <td>Algeria</td> <td>ASK123N00</td> <td>23 16 N</td> <td>5 37 E</td> <td>2710</td> <td>O_3</td>	Assekrem	Algeria	ASK123N00	23 16 N	5 37 E	2710	O_3
Cape Point	Assekrem	Algeria	ASK123N00	23 16 N	5 37 E	2710	¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
Cape Verde Observatory	Cairo	Egypt	CAI130N00	30 04 N	31 16 E	35	CO_2, O_3
Prance	Cape Point		CPT134S00	34 21 S	18 28 E		
Funchal Portugal Funl32N00 32 38 N 16 52 W 58 03	Cape Verde Observatory			16 50 N	24 52 W	10	CO, NOx, O ₃ , VOCs
Sobabe	Crozet	France	CRZ146S00				
	Funchal	_	FUN132N00	32 38 N	16 52 W		
	Gobabeb	Namibia	NMB123S00		15 01 E	461	¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO ₂
Mahe Island Seychelles SEY104S00 4 40 S 55 10 E 7 I3CO2, CI8O2, CH4, CO, CO2, H4, CO, CO2, H4, CO2 CO2, CH4, CO2 CO2, CH4, CO2 CO2, CH4, CO2, CH4, CO2 CO3 Ammyeon-do Republic of Korea AMY236N00 36 31 N 126 19 E 47 CFCs, CH4, CO2, N2O CB2	Izaña (Tenerife)	Spain	IZO128N00	28 18 N	16 30 W		
Mt. Kenya Kenya Kenya MKN100S00 0 03 S 37 17 E 3678 13CO ₂ , C18O ₂ , CH ₄ , CO ₂ Mt. Kenya Kenya MKN100S00 0 03 S 37 17 E 3678 CO, O ₃ REGION II (Asia) Anmyeon-do Republic of Korea BER255N00 36 31 N 126 19 E 47 CFCs, CH ₄ , CO ₂ , N ₂ O Bering Island Russian Federation BER255N00 55 12 N 165 58 E 13 CO ₂ Cape Ochi-ishi Japan CO1243N00 43 08 N 145 30 E 45 CH ₄ , CO ₂ CO ₂ , H ₂ , N ₂ O Everest - Pyramid Nepal PYR227N00 27 57 N 86 48 E 5079 O ₃ Cape Rama Republic of Korea GSN233N01 33 16 N 126 10 E 72 CFCs, CH ₄ , CO ₂ , N ₂ O Gosan Republic of Korea GSN233N01 33 16 N 126 10 E 72 CFCs, CH ₄ , CO ₂ , N ₂ O Hateruma Japan HAT224N00 24 03 N 123 47 E 10 CH ₄ , CO ₂ , N ₂ O Hateruma Japan HAT224N00 22 13 N 114 15 E 60 CO, O ₃ Hok Tsui Hong Kong, China HKG222N00 22 13 N 114 15 E 60 CO, O ₃ Kisai Japan KIS236N00 36 04 N 139 33 E 13 CO ₂ Kisai Japan KIS236N00 36 04 N 139 33 E 13 CO ₂ Kisai Japan KIS236N00 36 04 N 139 33 E 13 CO ₂ Kisai Japan KIS236N00 40 52 N 66 09 E 34 O CO ₂ Lulin China LLN223N00 23 28 N 120 52 E 5 CO ₂ Kyzylcha Uzbekistan KYZ240N00 43 51 N 137 52 E 5 CO ₂ Mitawar-Ichinomiya Japan MMB243N00 43 51 N 137 25 E 5 CO ₂ Mitawar-Ichinomiya Japan MNB243N00 34 51 N 137 25 E 5 CO ₂ Mitawar-Ichinomiya Japan MNB243N00 36 16 N 100 54 E 3810 GH ₄ , CO ₂ , C18O ₂ , C1H ₄ , CO ₂ Mt. Waliguan China WLG236N00 36 16 N 100 54 E 3810 GH ₄ , CO ₂ , C18O ₂ , CH ₄ , CO ₂ Mt. Waliguan China WLG236N00 36 16 N 100 54 E 3810 GH ₄ , CO ₂ CO ₂ , N ₂ O, O ₃ Palteau Assy Kazakhstan KZM243N00 43 15 N 77 52 E 2519 12CO ₂ , C18O ₂ , CH ₄ , CO, CO ₂ , N ₂ O, O ₃ CO ₂ , N ₂ O ₃	Izaña (Tenerife)	_					
Mt. Kenya Kenya MKN100S00 0 03 S 37 17 E 3678 CO, O3 REGION II (Asia) Anmyeon-do Republic of Korea AMY236N00 36 31 N 126 19 E 47 CFCs, CH4, CO2, N2O Bering Island Russian Federation BER255N00 55 12 N 165 58 E 13 CO2 Cape Rama India CR1215N00 15 04 N 73 49 E 60 13 CO2, CH4, CO, CO2, H2, N2O Everest - Pyramid Nepal PYR227N00 27 57 N 86 48 E 5079 O3 Gosan Republic of Korea GSN233N01 33 08 N 126 07 E 72 CFCs, CH4, CO2, N2O Gosan Republic of Korea GSN233N01 33 08 N 126 07 E 72 CFCs, CH4, CO2, N2O Hamamatsu Japan HMM234N00 34 43 N 137 43 E 35 CO2 Hong Kong Observatory Hong Kong, China HKC222N00 22 13 N 114 15 E 60 CO2, O3 Kasahidhoo Maldives KCO204N00 4 58 N 73 28 E	Mahe Island	=					
Anmyeon-do Republic of Korea BER255N00 36 31 N 126 19 E 47 CFCs, CH4, CO2, N2O Bering Island Russian Federation BER255N00 43 08 N 145 30 E 45 CH4, CO2 CO2, CA2 CO2, CA2 CO2, CA2 CO2, CA2 CO2, CA2 CO3, CA2 CO3, CA2 CO3, CA2 CO3, CA3, CA3, CA3, CA3, CA3, CA3, CA3, CA	Mt. Kenya	•					
Amyyeon-do Republic of Korea AMY236N00 36 31 N 126 19 E 47 CFCs, CH4, CO2, N2O Bering Island Russian Federation BER255N00 55 12 N 165 58 E 13 CO2 CI243N00 43 08 N 145 30 E 45 CH4, CO2 CI243N00 43 08 N 145 30 E 45 CH4, CO2 CI243N00 15 04 N 73 49 E 60 13CO2, CH4, CO, CO2, H2, N2O Everest - Pyramid Nepal PYR227N00 27 57 N 86 48 E 5079 O3 Gosan Republic of Korea GSN233N00 33 16 N 126 10 E 72 CFCs, CH4, CO2, N2O Gosan Republic of Korea GSN233N01 33 08 N 126 07 E 72 CFCs, CH4, CO2, N2O Gosan Republic of Korea GSN233N01 33 08 N 126 07 E 72 CFCs, CH4, CO2, N2O Gosan Hamamatsu Japan HMM234N00 34 43 N 137 43 E 35 CO2 Hateruma Japan HAT224N00 24 03 N 123 47 E 10 CH4, CO2, N2O Gosan Hong Kong, China HKG222N00 22 18 N 114 10 E 65 CO2 GO3 Gosan GO3	Mt. Kenya	Kenya	MKN100S00	0 03 S	37 17 E	3678	CO, O_3
Bering Island Russian Federation BER255N00 55 12 N 165 58 E 13 CO2	REGION II (Asia)						
Cape Ochi-ishi Japan COI243N00 43 08 N 145 30 E 45 CH4, CO2 Cape Rama India CRI215N00 15 04 N 73 49 E 60 13CO2, CH4, CO, CO2, H2, N2O Everest - Pyramid Nepal PYR227N00 27 57 N 86 48 E 5079 O3 Gosan Republic of Korea GSN233N00 33 16 N 126 10 E 72 CFCs, CH4, CO2, N2O Gosan Republic of Korea GSN233N01 33 08 N 126 07 E 72 CFCs, CH4, CO2, N2O Hamamatsu Japan HMM234N00 34 43 N 137 43 E 35 CO2 Hateruma Japan HAT224N00 24 03 N 123 47 E 10 CH4, CO2, N2O Hong Kong Observatory Hong Kong, China HKG222N00 22 18 N 114 10 E 65 CO2 Ssyk-Kul Kyrgyzstan ISK242N00 42 37 N 76 58 E 1640 CH4, CO2, O3 Kasahidhoo Maldives KCO204N00 4 58 N 73 2 8 E 1 13CO2, CH4, CO2 Kisai Japan KIS236N00 36 04 N 139 33 E 13 CO2	Anmyeon-do	*	AMY236N00	36 31 N	126 19 E		
Cape Rama India CR1215N00 15 04 N 73 49 E 60 13CO2, CH4, CO, CO2, H2, N2O Everest - Pyramid Nepal PYR227N00 27 57 N 86 48 E 5079 O3 Gosan Republic of Korea GSN233N00 33 16 N 126 10 E 72 CFCs, CH4, CO2, N2O Gosan Republic of Korea GSN233N01 33 08 N 126 07 E 72 CFCs, CH4, CO2, N2O Hamamatsu Japan HMM234N00 34 43 N 137 43 E 35 CO2 Hateruma Japan HKG222N00 22 13 N 114 15 E 60 CO, O3 Hong Kong Observatory Hong Kong, China HKG222N00 22 18 N 114 10 E 65 CO2 Ssyk-Kul Kyrgyzystan ISK242N00 42 37 N 76 58 E 1640 CH4, CO2, O3 Kaashidhoo Maldives KCO204N00 4 58 N 73 28 E 1 13CO2, CH4, CO2 Kyzylcha Uzbekistan KYZ240N00 40 52 N 66 09 E 340 CO2 Lulin China	Bering Island	Russian Federation					
Pyramid	Cape Ochi-ishi	_					
Gosan Republic of Korea GSN233N00 33 16 N 126 10 E 72 CFCs, CH4, CO2, N2O Gosan Republic of Korea GSN233N01 33 08 N 126 07 E 72 CFCs, CH4, CO2, N2O Hamamatsu Japan HMM234N00 34 43 N 137 43 E 35 CO2 Hateruma Japan HAT224N00 24 03 N 123 47 E 10 CH4, CO2, N2O Holo Tsui Hong Kong, China HKG222N00 22 13 N 114 15 E 60 CO, O3 Hong Kong Observatory Hong Kong, China HKO222N00 22 18 N 114 10 E 65 CO2 Issyk-Kul Kyrgyzstan ISK242N00 42 37 N 76 58 E 1640 CH4, CO2, O3 Kaashidhoo Maldives KCO204N00 4 58 N 73 28 E 1 13CO2 CH4, CO2, CO2, O3 Kotelny Island Russian Federation KOT276N00 76 00 N 137 52 E 5 CO2 Kyzylcha Uzbekistan KYZ240N00 40 52 N 60 9 E 340 CO2 <td>Cape Rama</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Cape Rama						
Republic of Korea GSN233N01 33 08 N 126 07 E 72 CFCs, CH4, CO2, N2O	•	-					
Hamamatsu	Gosan	=					
Hateruma Japan HAT224N00 24 03 N 123 47 E 10 CH4, CO2, N2O Hok Tsui Hong Kong, China HKG222N00 22 13 N 114 15 E 60 CO, O3 Hong Kong Observatory Hong Kong, China HKO222N00 22 18 N 114 10 E 65 CO2 Issyk-Kul Kyrgyzstan ISK242N00 42 37 N 76 58 E 1640 CH4, CO2, O3 Kaashidhoo Maldives KCO204N00 4 58 N 73 28 E 1 I3CO2, CH4, CO2 Kisai Japan KIS236N00 36 04 N 139 33 E 13 CO2 KOtelny Island Russian Federation KOT276N00 76 00 N 137 52 E 5 CO2 Kyzylcha Uzbekistan KYZ240N00 40 52 N 66 09 E 340 CO2 Lulin China LLN223N00 23 28 N 120 52 E 2867 CH4, CO, CO2 Mikawa-Ichinomiya Japan MKW234N00 34 51 N 137 25 E 50 CO2 Minamitorishima Japan MKW234N00 34 51 N 137 25 E 50 CO2 Mtt. Dodaira Japan MNM224N00 24 16 N 153 58 E 8 CH4, CO, CO2, O3 Mt. Waliguan China WLG236N00 36 16 N 100 54 E 3810 I3CH4, I3CO2, CI8O2, CH4, CO, CO2, H2 Nagoya Japan NGY235N00 35 08 N 136 58 E 35 N2O CO2, N2O, O3 Plateau Assy Kazakhstan KZM243N00 43 15 N 77 52 E 2519 I3CO2, CI8O2, CH4, CO, CO2, N3O, O3	Gosan	•					
Hok Tsui Hong Kong, China HKG222N00 22 13 N 114 15 E 60 CO, O3 Hong Kong Observatory Hong Kong, China HKO222N00 22 18 N 114 10 E 65 CO2 Issyk-Kul Kyrgyzstan ISK242N00 42 37 N 76 58 E 1640 CH4, CO2, O3 Kaashidhoo Maldives KCO204N00 4 58 N 73 28 E 1 13CO2, CH4, CO2 Kisai Japan KIS236N00 36 04 N 139 33 E 13 CO2 Kotelny Island Russian Federation KOT276N00 76 00 N 137 52 E 5 CO2 Kyzylcha Uzbekistan KYZ240N00 40 52 N 66 09 E 340 CO2 Lulin China LLN223N00 23 28 N 120 52 E 2867 CH4, CO, CO2 Mikawa-Ichinomiya Japan MKW234N00 34 51 N 137 25 E 50 CO2 Minamitorishima Japan MKW234N00 34 51 N 137 25 E 50 CO2 Mit. Dodaira Japan MNM224N00 24 16 N 153 58 E 8 CH4, CO, CO2, O3 Mt. Waliguan China WLG236N00 36 16 N 100 54 E 3810 13CH4, 13CO2, C18O2, CH4, CO, CO2 Mt. Waliguan China WLG236N00 36 16 N 100 54 E 3810 CH4, CO2 Nagoya Japan NGY235N00 35 08 N 136 58 E 35 N2O Plateau Assy Kazakhstan KZM243N00 43 15 N 77 52 E 2519 13CO2, C18O2, CH4, CO, CO2, N2O, O3 RYO239N00 39 01 N 141 49 E 260 CCl4, CFCs, CH3CCl3, CH4, CO CO2, N2O, O3	Hamamatsu						
Hong Kong Observatory							
Sksyk-Kul		• •					
Kaashidhoo Maldives KCO204N00 4 58 N 73 28 E 1 13CO2, CH4, CO2 Kisai Japan KIS236N00 36 04 N 139 33 E 13 CO2 Kotelny Island Russian Federation KOT276N00 76 00 N 137 52 E 5 CO2 Kyzylcha Uzbekistan KYZ240N00 40 52 N 66 09 E 340 CO2 Lulin China LLN223N00 23 28 N 120 52 E 2867 CH4, CO, CO2 Memanbetsu Japan MMB243N00 43 55 N 144 11 E 32.9 N ₂ O Mikawa-Ichinomiya Japan MKW234N00 34 51 N 137 25 E 50 CO2 Minamitorishima Japan MNM224N00 24 16 N 153 58 E 8 CH4, CO, CO2, O3 Mt. Dodaira Japan DDR236N00 36 00 N 139 10 E 840 CO2 Mt. Waliguan China WLG236N00 36 16 N 100 54 E 3810 CH4, CO2 Nagoya Japan NGY235N00 35 08 N 136 58 E 35 N ₂ O Plateau Ass							
Kisai Japan KIS236N00 36 04 N 139 33 E 13 CO2 Kotelny Island Russian Federation KOT276N00 76 00 N 137 52 E 5 CO2 Kyzylcha Uzbekistan KYZ240N00 40 52 N 66 09 E 340 CO2 Lulin China LLN223N00 23 28 N 120 52 E 2867 CH4, CO, CO2 Memanbetsu Japan MMB243N00 43 55 N 144 11 E 32.9 N ₂ O Mikawa-Ichinomiya Japan MKW234N00 34 51 N 137 25 E 50 CO2 Minamitorishima Japan MMM224N00 24 16 N 153 58 E 8 CH4, CO, CO2, O3 Mt. Dodaira Japan DDR236N00 36 00 N 139 10 E 840 CO2 Mt. Waliguan China WLG236N00 36 16 N 100 54 E 3810 CH ₄ , I ³ CO ₂ , Cl ⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂ Mt. Waliguan China WLG236N00 36 16 N 100 54 E 3810 CH ₄ , CO ₂ Nagoya Japan NGY235N00 35 08 N 136 58 E 35 N ₂ O Plateau Assy	=						
Kotelny Island Russian Federation KOT276N00 76 00 N 137 52 E 5 CO2 Kyzylcha Uzbekistan KYZ240N00 40 52 N 66 09 E 340 CO2 Lulin China LLN223N00 23 28 N 120 52 E 2867 CH4, CO, CO2 Memanbetsu Japan MMB243N00 43 55 N 144 11 E 32.9 N ₂ O Mikawa-Ichinomiya Japan MKW234N00 34 51 N 137 25 E 50 CO2 Minamitorishima Japan MNM224N00 24 16 N 153 58 E 8 CH4, CO, CO2, O3 Mt. Dodaira Japan DDR236N00 36 00 N 139 10 E 840 CO2 Mt. Waliguan China WLG236N00 36 16 N 100 54 E 3810 CH4, I3CO2, C18O2, CH4, CO, CO2, H2 Mt. Waliguan China WLG236N00 36 16 N 100 54 E 3810 CH4, CO2 Nagoya Japan NGY235N00 35 08 N 136 58 E 35 N ₂ O Plateau Assy Kazakhstan KZM243N00 43 15 N 77 52 E 2519 13CO2, C18O2, CH4, CO, CO2, H4, CO, CO2, N2O, O3 <							
Kyzylcha Uzbekistan KYZ240N00 40 52 N 66 09 E 340 CO2 Lulin China LLN223N00 23 28 N 120 52 E 2867 CH4, CO, CO2 Memanbetsu Japan MMB243N00 43 55 N 144 11 E 32.9 N ₂ O Mikawa-Ichinomiya Japan MKW234N00 34 51 N 137 25 E 50 CO ₂ Minamitorishima Japan MNM224N00 24 16 N 153 58 E 8 CH ₄ , CO, CO ₂ , O ₃ Mt. Dodaira Japan DDR236N00 36 00 N 139 10 E 840 CO ₂ Mt. Waliguan China WLG236N00 36 16 N 100 54 E 3810 CH ₄ , CO ₂ Nagoya Japan NGY235N00 35 08 N 136 58 E 35 N ₂ O Plateau Assy Kazakhstan KZM243N00 43 15 N 77 52 E 2519 13CO ₂ , C18O ₂ , CH ₄ , CO, CO ₂ , H Ryori Japan RYO239N00 39 01 N 141 49 E 260 CCl ₄ , CFCs, CH ₃ CCl ₃ , CH ₄ , CO CO ₂ , N ₂ O, O ₃		-					
Lulin China LLN223N00 23 28 N 120 52 E 2867 CH4, CO, CO2 Memanbetsu Japan MMB243N00 43 55 N 144 11 E 32.9 N ₂ O Mikawa-Ichinomiya Japan MKW234N00 34 51 N 137 25 E 50 CO ₂ Minamitorishima Japan MNM224N00 24 16 N 153 58 E 8 CH ₄ , CO, CO ₂ , O ₃ Mt. Dodaira Japan DDR236N00 36 00 N 139 10 E 840 CO ₂ Mt. Waliguan China WLG236N00 36 16 N 100 54 E 3810 CH ₄ , CO ₂ Cl ₈ O ₂ , CH ₄ , CO, CO ₂ , H ₂ Mt. Waliguan China WLG236N00 36 16 N 100 54 E 3810 CH ₄ , CO ₂ CO ₂ , H ₂ Mt. Waliguan China WLG236N00 35 08 N 136 58 E 35 N ₂ O Plateau Assy Kazakhstan KZM243N00 43 15 N 77 52 E 2519 C ₂ , Cl ₄ , CO ₂ Ryori Japan RYO239N00 39 01 N 141 49 E 260 CCl ₄ , CFCs, CH ₃ CCl ₃ , CH ₄ , CO ₂	•						
Memanbetsu Japan MMB243N00 43 55 N 144 11 E 32.9 N ₂ O Mikawa-Ichinomiya Japan MKW234N00 34 51 N 137 25 E 50 CO ₂ Minamitorishima Japan MNM224N00 24 16 N 153 58 E 8 CH ₄ , CO, CO ₂ , O ₃ Mt. Dodaira Japan DDR236N00 36 00 N 139 10 E 840 CO ₂ Mt. Waliguan China WLG236N00 36 16 N 100 54 E 3810 I ³ CH ₄ , I ³ CO ₂ , CI ⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂ Mt. Waliguan China WLG236N00 36 16 N 100 54 E 3810 CH ₄ , CO ₂ Nagoya Japan NGY235N00 35 08 N 136 58 E 35 N ₂ O Plateau Assy Kazakhstan KZM243N00 43 15 N 77 52 E 2519 I ³ CO ₂ , CI ₈ O ₂ , CH ₄ , CO, CO ₂ , H ₂ Ryori Japan RYO239N00 39 01 N 141 49 E 260 CCl ₄ , CFCs, CH ₃ CCl ₃ , CH ₄ , CO CO ₂ , N ₂ O, O ₃							
Mikawa-Ichinomiya Japan MKW234N00 34 51 N 137 25 E 50 CO2 Minamitorishima Japan MNM224N00 24 16 N 153 58 E 8 CH4, CO, CO2, O3 Mt. Dodaira Japan DDR236N00 36 00 N 139 10 E 840 CO2 Mt. Waliguan China WLG236N00 36 16 N 100 54 E 3810 CH4, I3CO2, CI8O2, CH4, CO, CO2, H2 Mt. Waliguan China WLG236N00 36 16 N 100 54 E 3810 CH4, CO2 Nagoya Japan NGY235N00 35 08 N 136 58 E 35 N2O Plateau Assy Kazakhstan KZM243N00 43 15 N 77 52 E 2519 I3CO2, CI8O2, CH4, CO, CO2, H Ryori Japan RYO239N00 39 01 N 141 49 E 260 CCl4, CFCs, CH3CCl3, CH4, COCCO2, N2O, O3							
Minamitorishima Japan MNM224N00 24 16 N 153 58 E 8 CH4, CO, CO2, O3 Mt. Dodaira Japan DDR236N00 36 00 N 139 10 E 840 CO2 Mt. Waliguan China WLG236N00 36 16 N 100 54 E 3810 I³CH4, I³CO2, C¹8O2, CH4, CO, CO2, H2 Mt. Waliguan China WLG236N00 36 16 N 100 54 E 3810 CH4, CO2 Nagoya Japan NGY235N00 35 08 N 136 58 E 35 N2O Plateau Assy Kazakhstan KZM243N00 43 15 N 77 52 E 2519 ¹³CO2, C¹8O2, CH4, CO, CO2, H Ryori Japan RYO239N00 39 01 N 141 49 E 260 CCl4, CFCs, CH3CCl3, CH4, CO CO2, N2O, O3		-					
Mt. Dodaira Japan DDR236N00 36 00 N 139 10 E 840 CO2 Mt. Waliguan China WLG236N00 36 16 N 100 54 E 3810 13 CH4, 13 CO2, C18O2, CH4, CO, CO2, H2 Mt. Waliguan China WLG236N00 36 16 N 100 54 E 3810 CH4, CO2 Nagoya Japan NGY235N00 35 08 N 136 58 E 35 N2O Plateau Assy Kazakhstan KZM243N00 43 15 N 77 52 E 2519 13 CO2, C18O2, CH4, CO, CO2, H Ryori Japan RYO239N00 39 01 N 141 49 E 260 CCl4, CFCs, CH3CCl3, CH4, CCCCO2, N2O, O3		_					
Mt. Waliguan China WLG236N00 36 16 N 100 54 E 3810 \$^{13}\$CH4, \$^{13}\$CO2, \$^{18}\$O2, \$^		-					
CO ₂ , H ₂ Mt. Waliguan China WLG236N00 36 16 N 100 54 E 3810 CH ₄ , CO ₂ Nagoya Japan NGY235N00 35 08 N 136 58 E 35 N ₂ O Plateau Assy KzM243N00 43 15 N 77 52 E 2519 ¹³ CO ₂ , Cl ₈ O ₂ , CH ₄ , CO, CO ₂ , H Ryori Japan RYO239N00 39 01 N 141 49 E 260 CCl ₄ , CFCs, CH ₃ CCl ₃ , CH ₄ , CO CO ₂ , N ₂ O, O ₃	Mt. Waliguan	•					
Nagoya Japan NGY235N00 35 08 N 136 58 E 35 N ₂ O Plateau Assy Kazakhstan KZM243N00 43 15 N 77 52 E 2519 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H Ryori Japan RYO239N00 39 01 N 141 49 E 260 CCl ₄ , CFCs, CH ₃ CCl ₃ , CH ₄ , CC CO ₂ , N ₂ O, O ₃	-	CI.	WH COA (3100	26.1633	100 54 5		CO_2 , H_2
Plateau Assy Kazakhstan KZM243N00 43 15 N 77 52 E 2519 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H Ryori Japan RYO239N00 39 01 N 141 49 E 260 CCl ₄ , CFCs, CH ₃ CCl ₃ , CH ₄ , CC CO ₂ , N ₂ O, O ₃	-						
Ryori Japan RYO239N00 39 01 N 141 49 E 260 CCl ₄ , CFCs, CH ₃ CCl ₃ , CH ₄ , CC CO ₂ , N ₂ O, O ₃	Nagoya	_					
$\mathrm{CO}_2,\mathrm{N}_2\mathrm{O},\mathrm{O}_3$	•						
	Ryori	Japan	RYO239N00	39 01 N	141 49 E	260	
	Sary Taukum	Kazakhstan	KZD244N00	44 27 N	75 34 E	412	

Station	Country/Territory	Index Number	Latitude (° ')	Location Longitude (° ')	Altitude (m)	e Parameter
Ship between Ishigaki Island and Hateruma Island	Japan	SIH224N00	24 07 N	123 49 E	5	CO ₂
South China Sea (03N)	N/A	SCS903N00	3 00 N	105 00 E	15	¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
South China Sea (05N) South China Sea (06N)	N/A	SCS905N00 SCS906N00	6 00 N			¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
South China Sea (09N)	N/A	SCS909N00	9 00 N			¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
South China Sea (12N)	N/A	SCS912N00	12 00 N			¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
South China Sea (15N)	N/A	SCS915N00	15 00 N			¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
South China Sea (18N)	N/A	SCS918N00	18 00 N	113 00 E		¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
South China Sea (21N)	N/A	SCS921N00	21 00 N	114 00 E	15	¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
Suita	Japan	SUI234N00	34 49 N	135 31 E	63	CO_2
Tae-ahn Peninsula	Republic of Korea	TAP236N00	36 43 N			¹³ CH ₄ , ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
Takayama	Japan	TKY236N00	36 08 N		1420	
Tsukuba	Japan	TKB236N00	36 02 N			CH ₄ , CO ₂
Tsukuba	Japan	TKB236N10	36 02 N			O_3
Ulaan Uul	Mongolia	UUM244N00	44 27 N			¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
Urawa	Japan	URW235N00	35 52 N			CO ₂
Yonagunijima	Japan	YON224N00	24 28 N	123 01 E	30	CH_4 , CO , CO_2 , O_3
REGION III (South An	nerica)					
Arembepe	Brazil	ABP312S00	12 46 S	38 10 W	0	O_3
Arembepe	Brazil	ABP312S00	12 46 S	38 10 W	0	CH ₄ , CO ₂
Arembepe	Brazil	ABP312S00	12 46 S			CH ₄ , CO, CO ₂ , N ₂ O
Bird Island	United Kingdom of Great Britain and Northern Ireland	SGI354S00	54 00 S	38 02 W	30	CH ₄ , CO ₂
Easter Island	Chile	EIC327S00	27 07 S	109 27 W	50	¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
Huancayo	Peru	HUA312S00	12 04 S	75 31 W	3313	CO_2
Tierra del Fuego	Argentina	TDF354S00	54 52 S	68 28 W	20	¹³ CO ₂ , C ¹⁸ O ₂ , CBrClF ₂ , CFCs, CH ₃ Br, CH ₃ CCl ₃ , CH ₄ , CO, CO ₂ , H ₂ , HCFCs, HFCs
Ushuaia	Argentina	USH354S00	54 49 S	68 17 W	18	CO, O ₃
REGION IV (North an	d Central America)					
Alert	Canada	ALT482N00	82 27 N	62 31 W		CH ₄ , CO, CO ₂ , N ₂ O, SF ₆
Alert	Canada	ALT482N00	82 27 N			¹³ CO ₂ , CH ₄ , CO, CO ₂ , H ₂ , N ₂ O
Alert	Canada	ALT482N00	82 27 N			¹³ CH ₄ , ¹³ CO ₂ , C ¹⁸ O ₂ , C ₂ Cl ₄ , CBrClF ₂ , CBrF ₃ , CCl ₄ , CFCs, CH ₂ Cl ₂ , CH ₃ Br, CH ₃ CCl ₃ , CH ₄ , CO, CO ₂ , H ₂ , HCFCs, HFCs, N ₂ O, SF ₆
Algoma	Canada	ALG447N00	47 01 N		411	
Argyle	United States of America	AMT445N00	45 01 N	68 40 W	50	¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄
Barrow	United States of America	BRW471N00	71 19 N	156 35 W	11	¹³ CH ₄ , ¹³ CO ₂ , C ¹⁸ O ₂ , C ₂ Cl ₄ , CBrClF ₂ , CBrF ₃ , CCl ₄ , CFCs, CH ₂ Cl ₂ , CH ₃ Br, CH ₃ CCl ₃ , CH ₃ Cl, CH ₄ , CO, CO ₂ , H ₂ , HCFCs, HFCs, N ₂ O, O ₃ , SF ₆
Bratt's Lake	Canada	BRA450N00	50 12 N	104 42 W	595	
Diau S Lake	Canada	DKA430IN00	30 12 IN	104 42 W	393	03

Station	Country/Territory	Index Number	Latitude (° ')	Location Longitude (° ')	Altitude Parameter (m)	
Candle Lake	Canada	CDL453N00	53 52 N	104 39 W	489 CH ₄ , CO, CO ₂	
Cape Meares	United States of America	CMO445N00	45 28 N	123 58 W	30 CCl ₄ , CFCs, CH ₃ CCl ₃ , CH ₄ , N	√2O
Cape Meares	United States of America	CMO445N00	45 28 N	123 58 W	30 13CO ₂ , C18O ₂ , CH ₄ , CO, CO ₂ ,	H ₂
Cape St. James	Canada	CSJ451N00	51 55 N	131 01 W	89 CO ₂	
Chalk River	Canada	CHA446N00	46 04 N		184 O ₃	
Chapais	Canada	CPS449N00	49 49 N		381 O ₃	
Chibougamau	Canada	CHM449N00	49 40 N		393 CH ₄ , CO, CO ₂	
Cold Bay	United States of America	CBA455N00	55 12 N	162 43 W	25 ¹³ CH ₄ , ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO CO ₂ , H ₂	Э,
East Trout Lake	Canada	ETL454N00	54 21 N	104 59 W	492 CH ₄ , CO, CO ₂	
Egbert	Canada	EGB444N00		79 46 W	253 O ₃	
Egbert	Canada	EGB444N01	44 13 N	79 46 W	253 CH ₄ , CO, CO ₂ , VOCs	
Estevan Point	Canada	ESP449N00	49 22 N	126 32 W	39 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , N ₂ O, SF ₆	
Estevan Point	Canada	ESP449N00	49 22 N	126 32 W	39 CO, CO ₂ , H ₂ , N ₂ O	
Esther	Canada	EST451N00	51 40 N	110 12 W	707 O ₃	
Experimental Lakes Area	Canada	ELA449N00	49 40 N	93 43 W	369 O ₃	
Fraserdale	Canada	FSD449N00	49 52 N	81 34 W	210 CH ₄ , CO, CO ₂	
Grifton	United States of America	ITN435N00	35 21 N	77 22 W	505 ¹³ CO ₂ , C ¹⁸ O ₂ , CCl ₄ , CFCs, CF CO, CO ₂ , H ₂ , N ₂ O, SF ₆	H4,
Harvard Forest	United States of America	HFM442N00	42 53 N	72 17 W	340 CBrClF ₂ , CCl ₄ , CFCs, CH ₃ Br, CH ₃ CCl ₃ , HCFCs, HFCs, N ₂ C SF ₆	
Kejimkujik	Canada	KEJ444N00	44 25 N	65 12 W	127 O ₃	
Key Biscayne	United States of America	KEY425N00	25 40 N	80 12 W	3 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ ,	H ₂
Kitt Peak	United States of America	KPA431N00	31 58 N	111 35 W	2083 CH ₄	
La Jolla	United States of America	SIO432N00	32 49 N	117 16 W	14 CH ₄	
La Palma	Cuba	PLM422N00	22 45 N	83 31 W	47 NO ₂	
Lac La Biche (Alberta)	Canada	LLB454N00	54 57 N	112 27 W	540 CH ₄ , CO ₂	
Lac La Biche (Alberta)	Canada	LLB454N01	54 57 N	112 27 W	540 CH ₄ , CO, CO ₂	
Longwoods	Canada	LON442N00	42 52 N		239 O ₃	
Mex High Altitude Global Climate Observation Center, Mavice	Mexico	MEX419N00	19 58 N	97 10 W	4560 CH ₄ , CO ₂	
Mexico Moody	United States of America	WKT431N00	31 19 N	97 19 W	708 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄	
Mould Bay	Canada	MBC476N00	76 15 N	119 19 W	58 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ ,	Н۰
Niwot Ridge (C-1)	United States of America	NWR440N00		105 32 W	3021 C ₂ Cl ₄ , CBrClF ₂ , CBrF ₃ , CCl ₄ , CFCs, CH ₂ Cl ₂ , CH ₃ Br, CH ₃ CO CH ₃ Cl, HCFCs, HFCs, N ₂ O, C	, Cl3,
Niwot Ridge (Saddle)	United States of America	NWR440N02	40 03 N	105 35 W	3528 O ₃	
Niwot Ridge (T-van)	United States of America	NWR440N01	40 03 N	105 35 W	3523 ¹³ CH ₄ , ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO CO ₂ , H ₂	Э,

LIST OF ODSERVING STATIONS (continued)						
Station	Country/Territory	Index Number	Latitude (° ')	Location Longitude (°')	Altitude Parameter (m)	
Olympic Peninsula	United States of America	OPW448N00	48 15 N	124 25 W	488 CH ₄ , CO ₂ , H ₂	
Pacific Ocean (15N)	N/A	POC915N00	15 00 N	145 00 W	10 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂	
Pacific Ocean (20N)	N/A	POC920N00		141 00 W	10 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂	
Pacific Ocean (25N)	N/A	POC925N00		139 00 W	10 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂	
Pacific Ocean (30N)	N/A	POC930N00		135 00 W	10 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂	
Pacific Ocean (35N)	N/A	POC935N00		137 00 W	10 ¹³ CO ₂ , C ¹⁸ O ₂ , CO, H ₂	
Pacific Ocean (40N)	N/A	POC940N00		136 00 W	10 ¹³ CO ₂ , H ₂	
Pacific Ocean (45N)	N/A	POC945N00		131 00 W	10 ¹³ CO ₂ , H ₂	
Park Falls	United States of America	LEF445N00		90 16 W	868 ¹³ CO ₂ , C ¹⁸ O ₂ , CBrClF ₂ , CCl ₄ , CFCs, CH ₃ Br, CH ₃ CCl ₃ , CH ₄ , CO, CO ₂ , H ₂ , HCFCs, HFCs, N ₂ O, SF ₆	
Point Arena	United States of America	PTA438N00	38 57 N	123 43 W	17 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂	
Ragged Point	Barbados	RPB413N00	13 10 N	59 25 W	45 C ₂ Cl ₄ , C ₂ HCl ₃ , CBrClF ₂ , CBrF ₃ , CCl ₄ , CFCs, CH ₂ Cl ₂ , CH ₃ Br, CH ₃ CCl ₃ , CH ₃ Cl, CH ₄ , CHCl ₃ , HCFCs, HFCs, N ₂ O, SF ₆ , SO ₂ F ₂	
Ragged Point	Barbados	RPB413N00	13 10 N	59 25 W	45 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂ , O ₃	
Sable Island	Canada	WSA443N00	43 55 N	60 01 W	5 CH ₄ , CO, CO ₂ , N ₂ O, SF ₆	
Saturna	Canada	SAT448N00	48 46 N	123 07 W	178 O ₃	
Shemya Island	United States of America	SHM452N00	52 43 N	174 04 E	40 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂	
Southern Great Plains	United States of America	SGP436N00	36 46 N	97 30 W	314 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂	
St. Croix	United States of America	AVI417N00	17 45 N	64 45 W	3 CH ₄ , CO ₂	
St. David's Head	United Kingdom of Great Britain and Northern Ireland	BME432N00	32 22 N	64 39 W	30 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂	
Sutton	Canada	SUT445N00	45 04 N	72 40 W	243 O ₃	
Trinidad Head	United States of America	THD441N00		124 09 W	120 C ₂ Cl ₄ , C ₂ HCl ₃ , CBrClF ₂ , CBrF ₃ , CCl ₄ , CFCs, CH ₂ Cl ₂ , CH ₃ Br, CH ₃ CCl ₃ , CH ₃ Cl, CH ₄ , CHCl ₃ , HCFCs, HFCs, N ₂ O, SF ₆ , SO ₂ F ₂	
Trinidad Head	United States of America	THD441N00	41 02 N	124 09 W	120 ¹³ CO ₂ , C ¹⁸ O ₂ , CBrClF ₂ , CCl ₄ , CFCs, CH ₃ Br, CH ₃ CCl ₃ , CH ₄ , CO, CO ₂ , HCFCs, HFCs, N ₂ O, O ₃ , SF ₆	
Tudor Hill	United Kingdom of Great Britain and Northern Ireland	BMW432N00	32 16 N	64 52 W	30 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂ , O ₃	
Wendover	United States of America	UTA439N00	39 52 N	113 43 W	1320 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂	

REGION V (South-West Pacific)

Station	Country/Territory	Index Number	Latitude (° ')	Location Longitude (° ')	Altitude Parameter (m)
Baring Head	New Zealand	BHD541S00	41 24 S	174 52 E	85 ¹³ CH ₄ , ¹⁴ CO ₂ , CH ₄ , CO, CO ₂ , N ₂ O, O ₃ , VOCs
Baring Head	New Zealand	BHD541S00	41 24 S	174 52 E	85 CH ₄ , CO ₂
Bukit Koto Tabang	Indonesia	BKT500S00	0 12 S	100 19 E	864.5 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂
Bukit Koto Tabang	Indonesia	BKT500S00	0 12 S	100 19 E	864.5 NO ₂ , SO ₂
Bukit Koto Tabang	Indonesia	BKT500S00	0 12 S	100 19 E	864.5 CO, O ₃
Cape Ferguson	Australia	CFA519S00	19 16 S	147 03 E	2 ¹³ CO ₂ , CH ₄ , CO, CO ₂ , H ₂ , N ₂ O
Cape Grim	Australia	CGO540S00	40 40 S		94 C ₂ Cl ₄ , C ₂ HCl ₃ , CBrClF ₂ , CBrF ₃ , CCl ₄ , CFCs, CH ₂ Cl ₂ , CH ₃ Br, CH ₃ CCl ₃ , CH ₃ Cl, CH ₄ , CHCl ₃ , CO, H ₂ , HCFCs, HFCs, N ₂ O, SF ₆ , SO ₂ F ₂
Cape Grim	Australia	CGO540S00	40 40 S	144 40 E	94 ¹³ CH ₄ , ¹³ CO ₂ , C ¹⁸ O ₂ , C ₂ Cl ₄ , CBrClF ₂ , CBrF ₃ , CCl ₄ , CFCs, CH ₂ Cl ₂ , CH ₃ Br, CH ₃ CCl ₃ , CH ₄ , CO, CO ₂ , H ₂ , HCFCs, HFCs, N ₂ O, SF ₆
Cape Grim	Australia	CGO540S00	40 40 S	144 40 E	94 ¹³ CO ₂ , CH ₄ , CO, CO ₂ , H ₂ , N ₂ O
Cape Grim	Australia	CGO540S00	40 40 S	144 40 E	94 CO ₂ , O ₃
Cape Kumukahi	United States of America	KUM519N00	19 31 N	154 49 W	3 13CH ₄ , 13CO ₂ , C18O ₂ , C ₂ Cl ₄ , CBrClF ₂ , CBrF ₃ , CCl ₄ , CFCs, CH ₂ Cl ₂ , CH ₃ Br, CH ₃ CCl ₃ , CH ₄ , CO, CO ₂ , H ₂ , HCFCs, HFCs, N ₂ O, SF ₆
Christmas Island	Kiribati	CHR501N00	1 42 N	157 10 W	3 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
Danum Valley GAW Baseline Station	Malaysia	DMV504N00	4 58 N	117 49 E	426 CO ₂ , O ₃
Guam	United States of America	GMI513N00	13 25 N	144 46 E	2 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
Jakarta	Indonesia	JKR506S00	6 10 S	106 49 E	7 NO ₂ , SO ₂
Kaitorete Spit	New Zealand	NZL543S00	43 49 S	172 37 E	3 CH ₄
Lauder	New Zealand	LAU545S00	45 01 S	169 40 E	$370 \mathrm{O}_3$
Macquarie Island	Australia	MQA554S00	54 28 S	158 58 E	12 ¹³ CO ₂ , CH ₄ , CO, CO ₂ , H ₂ , N ₂ O
Mauna Loa	United States of America	MLO519N00	19 32 N	155 34 W	3397 ¹³ CH ₄ , ¹³ CO ₂ , C ¹⁸ O ₂ , C ₂ Cl ₄ , CBrClF ₂ , CBrF ₃ , CCl ₄ , CFCs, CH ₂ Cl ₂ , CH ₃ Br, CH ₃ CCl ₃ , CH ₃ Cl, CH ₄ , CO, CO ₂ , H ₂ , HCFCs, HFCs, N ₂ O, O ₃ , SF ₆
Mauna Loa	United States of America	MLO519N00	19 32 N	155 34 W	3397 ¹³ CO ₂ , CH ₄ , CO, CO ₂ , H ₂ , N ₂ O
Pacific Ocean (00N)	N/A	POC900N00		155 00 W	10 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
Pacific Ocean (05N)	N/A	POC905N00		151 00 W	10 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
Pacific Ocean (05S)	N/A	POC905S00		159 00 W	10 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
Pacific Ocean (10N)	N/A	POC910N00		149 00 W	10 13CO ₂ , C18O ₂ , CH ₄ , CO, CO ₂ , H ₂
Pacific Ocean (10S)	N/A	POC910S00		161 00 W	10 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
Pacific Ocean (15S)	N/A	POC915S00	15 00 S	171 00 W	10 13CO ₂ , C18O ₂ , CH ₄ , CO, CO ₂ , H ₂
Pacific Ocean (20S)	N/A	POC920S00	20 00 S	174 00 W	10 13CO ₂ , C18O ₂ , CH ₄ , CO, CO ₂ , H ₂
Pacific Ocean (25S)	N/A	POC925S00	25 00 S	171 00 W	10 13CO ₂ , C18O ₂ , CH ₄ , CO, CO ₂ , H ₂
Pacific Ocean (30S)	N/A	POC930S00	30 00 S	176 00 W	10 13CO ₂ , C18O ₂ , CH ₄ , CO, CO ₂ , H ₂
Pacific Ocean (35S)	N/A	POC935S00	35 00 S	180 00 E	10 13CO ₂ , C18O ₂ , CH ₄ , CO, CO ₂ , H ₂
Sand Island	United States of America	MID528N00	28 11 N	177 22 W	7.7 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
Tanah Rata	Malaysia	TAR504N00	4 28 N	101 22 E	1545 O ₃

Station	Country/Territory	Index Number	Latitude	Location Longitude	Altitude	e Parameter
			(° ')	(° ')	(m)	
Tutuila (Cape Matatula) Tutuila (Cape Matatula)	United States of America United States of America	SMO514S00 SMO514S00		170 34 W 170 34 W		13CH ₄ , 13CO ₂ , C18O ₂ , C ₂ Cl ₄ , CBrClF ₂ , CBrF ₃ , CCl ₄ , CFCs, CH ₂ Cl ₂ , CH ₃ Br, CH ₃ CCl ₃ , CH ₃ Cl, CH ₄ , CO, CO ₂ , H ₂ , HCFCs, HFCs, N ₂ O, O ₃ , SF ₆ C ₂ Cl ₄ , C ₂ HCl ₃ , CBrClF ₂ , CBrF ₃ , CCl ₄ , CFCs, CH ₂ Cl ₂ , CH ₃ Br, CH ₃ CCl ₃ , CH ₃ Cl, CH ₄ , CHCl ₃ , HCFCs, HFCs, N ₂ O, SF ₆ , SO ₂ F ₂
REGION VI (Europe)						
Adrigole	Ireland	ADR651N00	51 40 N	9 43 W	50	CCl ₄ , CFCs, CH ₃ CCl ₃ , N ₂ O
Angra do Heroismo	Portugal	ANG638N00	38 40 N	27 13 W	74	O_3
BEO Moussala	Bulgaria	BEO642N00	42 10 N	23 35 E	2925	CO , CO_2 , NO , NO_2 , NOx , O_3 , SO_2
Baltic Sea	Poland	BAL655N00	55 21 N	17 13 E	28	¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
Begur	Spain	BGU641N00	41 58 N	3 13 E	13	CH ₄ , CO ₂
Beja	Portugal	BEJ638N00	38 01 N	7 52 W	246	O_3
Black Sea	Romania	BSC644N00	44 10 N	28 40 E	3	¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
Bragança	Portugal	BRG641N00	41 47 N	6 43 W	690	SO_2
Brotjacklriegel	Germany	BRT648N00	48 49 N	13 13 E	1016	CO_2, O_3
Brotjacklriegel	Germany	BRT648N00	48 49 N	13 13 E	1016	VOCs
Burgas	Bulgaria	BUR642N00	42 28 N	27 28 E	16	NO ₂ , SO ₂
Campisabalos	Spain	CAM641N00	41 16 N	3 08 W	1360	VOCs
Castelo Branco	Portugal	CAS639N00	39 49 N	7 28 W	386	O_3
Danki	Russian Federation	DAK654N00	54 53 N	37 47 E	140	O_3
Deuselbach	Germany	DEU649N00	49 46 N	7 02 E	480	CH ₄ , CO ₂ , O ₃
Dobele	Latvia	DBL656N00	56 22 N	23 11 E	42	
Donon	France	DNN648N00	48 30 N	7 07 E		VOCs
Doñana	Spain	DON637N00	37 02 N	6 32 W		NO_2 , O_3 , SO_2
Dwejra Point	Malta	GOZ636N00	36 02 N			¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
Eskdalemuir	United Kingdom of Great Britain and Northern Ireland	EDM655N00	55 19 N	3 12 W	242	O_3
Fundata	Romania	FDT645N00	45 28 N	25 18 E	1383.5	NO ₂ , SO ₂
Fundata	Romania	FDT645N00	45 28 N			CO ₂ , NO ₂ , O ₃
Giordan Lighthouse	Malta	GLH636N00	36 04 N	14 13 E		CO, O ₃
Hegyhatsal	Hungary	HUN646N00	46 57 N	16 38 E		CO_2
Hegyhatsal	Hungary	HUN646N00	46 57 N	16 38 E		¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
Heimaey	Iceland	ICE663N00	63 23 N	20 16 W		¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂ , O ₃
Hohe Warte	Austria	HHE648N00	48 15 N	16 22 E	202	NO, NO ₂ , SO ₂
Hohe Warte	Austria	HHE648N00	48 15 N	16 22 E		NO, NO ₂ , SO ₂
Hohenpeissenberg	Germany	HPB647N00	47 47 N	11 01 E		CH ₄ , CO ₂
Hohenpeissenberg	Germany	HPB647N00	47 47 N	11 01 E	985	²²² Rn, CO, H ₂ O ₂ , NO, NO ₂ , NOx , NOy, O ₃ , PAN, ROOH, SO ₂ , VOCs
Ile Grande	France	LPO648N00	48 48 N	3 35 W	10	CH ₄ , CO ₂
Iskrba	Slovenia	IRB645N00	45 34 N	14 52 E		NO ₂ , O ₃ , SO ₂
Ivan Sedlo	Bosnia and Herzegovina		43 46 N	18 01 E		NO ₂ , SO ₂
Jarczew	Poland	JCZ651N00	51 49 N	21 58 E		NO ₂ , SO ₂

Station	Country/Territory	Index Number	Latitude (° ')	Location Longitude (°')	Altitude Parameter (m)
Jungfraujoch	Switzerland	JFJ646N00	46 32 N	7 59 E	3580 CH ₄ , CO, N ₂ O, NO, NO ₂ , NO _x NO _y , O ₃ , PAN, SF ₆ , SO ₂
K-puszta	Hungary	KPS646N00	46 58 N	19 33 E	125 CO ₂ , NO ₂ , O ₃ , SO ₂
Kamenicki Vis	Serbia	KAM643N00	43 23 N	21 56 E	813 NO ₂ , SO ₂
Kloosterburen	Netherlands (the)	KTB653N00	53 23 N	6 25 E	0 CO, NO, NO ₂ , NO _x , SO ₂
Kollumerwaard	Netherlands (the)	KMW653N00	53 19 N	6 16 E	0 CH ₄ , CO, CO ₂ , NO, NO ₂ , NO _X O ₃ , SO ₂
Kosetice	Czech Republic	KOS649N00	49 34 N	15 04 E	534 VOCs
Kosetice	Czech Republic	KOS649N00	49 34 N	15 04 E	534 CH ₄ , CO, NO, NO ₂ , O ₃ , SO ₂
Kovk	Slovenia	KVK646N00	46 07 N	15 05 E	600 O ₃
Krvavec	Slovenia	KVV646N00	46 17 N	14 31 E	1720 CO, O ₃
La Cartuja	Spain	CAR637N00	37 12 N	3 36 W	720 NO ₂ , SO ₂
La Tardiere	France	LAT646N00	46 38 N	0 45 W	133 VOCs
Lampedusa	Italy	LMP635N00	35 31 N	12 37 E	45 CBrClF ₂ , CBrF ₃ , CCl ₄ , CFCs, CH ₂ Br ₂ , CH ₂ Cl ₂ , CH ₃ Br, CH ₃ CCl ₃ , CH ₃ Cl, CH ₃ I, CH ₄ , CHCl ₃ , CO ₂ , HCFCs, HFCs, N, , SF ₆
Lampedusa	Italy	LMP635N00	35 31 N	12 37 E	45 CH ₄ , CO, CO ₂
Lazaropole	The former Yugoslav Republic of Macedonia	LZP641N00	41 31 N	20 41 E	1320 NO ₂ , SO ₂
Leba	Poland	LEB654N00	54 45 N	17 31 E	2 NO ₂ , SO ₂
Lisboa / Gago Coutinho	Portugal	LIS638N00	38 46 N	9 07 W	105 O ₃
Logroño	Spain	LOG642N00	42 27 N	2 30 W	370 NO ₂ , SO ₂
Mace Head	Ireland	MHD653N00	53 19 N	9 54 W	8 ¹³ CH ₄ , ¹³ CO ₂ , Cl ⁸ O ₂ , CBrClF ₂ , CBrF ₃ , CCl ₄ , CFCs, CH ₃ Br, CH ₃ CCl ₃ , CH ₄ , CO, CO ₂ , H ₂ , HCFCs, HFCs, N ₂ O, SF ₆
Mace Head	Ireland	MHD653N00	53 19 N	9 54 W	8 CO ₂
Mace Head	Ireland	MHD653N00	53 19 N	9 54 W	8 C ₂ Cl ₄ , C ₂ HCl ₃ , CBrClF ₂ , CBrF CCl ₄ , CFCs, CH ₂ Cl ₂ , CH ₃ Br, CH ₃ CCl ₃ , CH ₃ Cl, CH ₄ , CHCl ₃ , CO, H ₂ , HCFCs, HFCs, N ₂ O, SF ₆ , SO ₂ F ₂
Mace Head	Ireland	MHD653N00	53 19 N	9 54 W	8 O ₃
Mahón	Spain	MHN639N00	39 52 N	4 19 E	78 NO ₂ , O ₃ , SO ₂
Monte Cimone	Italy	CMN644N00	44 10 N	10 41 E	2165 CO ₂
Monte Cimone	Italy	CMN644N00	44 10 N	10 41 E	2165 CH ₄ , CO, H ₂ , O ₃
Monte Velho	Portugal	MVH638N00	38 04 N	8 48 W	43 O ₃
Neuglobsow	Germany	NGL653N00	53 10 N	13 01 E	65 CH ₄ , CO, CO ₂ , O ₃
Noia	Spain	NIA642N00	42 43 N	8 55 W	685 NO ₂ , O ₃ , SO ₂
Ocean Station "M"	Norway	STM666N00	66 00 N	2 00 E	5 ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , I
Ocean Station Charlie	Russian Federation	STC652N00	52 45 N	35 30 W	5 CO ₂
Ocean Station Charlie	United States of America	STC654N00	54 00 N	35 00 W	6 CO ₂
Ochsenkopf	Germany	OXK650N00	50 01 N	11 48 E	1185 CH ₄ , CO
Oulanka	Finland	OUL666N00	66 19 N	29 23 E	310 NO ₂ , O ₃ , SO ₂
Pallas-Sammaltunturi	Finland	PAL667N00	67 58 N	24 07 E	560 VOCs
Pallas-Sammaltunturi	Finland	PAL667N00	67 58 N	24 07 E	560 ¹³ CO ₂ , C ¹⁸ O ₂ , CBrF ₃ , CH ₄ , CO CO ₂
Pallas-Sammaltunturi	Finland	PAL667N00	67 58 N	24 07 E	560 CO ₂ , O ₃
Payerne	Switzerland	PAY646N00	46 49 N	6 57 E	490 CO, NO, NO ₂ , NO _x , O ₃ , SO ₂
Penhas Douradas	Portugal	PEN640N00	40 25 N	7 32 W	1380 O ₃
Peyrusse Vieille	France	PVI643N00	43 37 N	0 10 E	200 VOCs

Station	Country/Territory	Index Number	Latitude (° ')	Location Longitude (°')	Altitud (m)	e Parameter
Pic du Midi	France	PDM642N00	42 56 N	0 08 E	2877	CH ₄ , CO ₂
Plateau Rosa	Italy	PRS645N00	45 55 N	7 42 E	3480	CH ₄ , CO ₂ , O ₃
Pleven	Bulgaria	PLV643N00	43 25 N	24 36 E	64	NO_2 , SO_2
Plovdiv	Bulgaria	PLD642N00	42 07 N	24 45 E	179	NO_2 , SO_2
Puszcza Borecka/Diabla Gora	Poland	DIG654N00	54 08 N	22 04 E	157	CO ₂ , NO ₂ , O ₃ , SO ₂
Puy de Dome	France	PUY645N00	45 46 N	2 57 E	1465	CH ₄ , CO ₂
Rigi	Switzerland	RIG646N00	46 04 N	8 26 E		CO, NO, NO ₂ , NO _x , O ₃ , SO ₂ , VOCs
Roquetes	Spain	ROQ640N00	40 49 N	0 28 E	50	NO ₂ , O ₃ , SO ₂
Rucava	Latvia	RCV656N00	56 09 N	21 10 E		NO ₂ , O ₃ , SO ₂
San Pablo de los Montes	Spain	SPM639N00	39 32 N	4 20 W		NO ₂ , O ₃ , SO ₂
Schauinsland	Germany	SSL647N00	47 55 N	7 55 E		CH ₄ , CO, CO ₂ , N ₂ O, NO, NO ₂ , O ₃ , PAN, SF ₆
Schmuecke	Germany	SCH650N00	50 38 N	10 46 E	937	VOCs
Sede Boker	Israel	WIS631N00	31 07 N	34 52 E		¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
Semenic	Romania	SEM645N00	45 07 N	21 58 E		NO_2 , SO_2
Shepelevo	Russian Federation	SHP659N00	59 58 N	29 07 E		O ₃
Shetland	United Kingdom of Great Britain and Northern Ireland	SIS660N00	60 04 N	1 15 W	30	¹³ CO ₂ , CH ₄ , CO, CO ₂ , H ₂ , N ₂ O
Site J	Denmark	GRL666N00	66 30 N	46 12 W	2030	CH ₄
Sniezka	Poland	SNZ650N00	50 43 N	15 43 E		NO_2 , SO_2
Sofia	Bulgaria	SOF642N00	42 38 N	23 22 E		NO ₂ , SO ₂
Sonnblick	Austria	SNB647N00	47 02 N	12 56 E		CO, CO ₂ , NO, NOy, O ₃
Starina	Slovakia	STA649N00	49 02 N	22 16 E		VOCs
Stephansplatz	Austria	STP648N00	48 13 N	16 22 E		NO, NO ₂ , SO ₂
Stephansplatz	Austria	STP648N00	48 13 N	16 22 E		NO, NO ₂ , SO ₂
Stîna de Vale	Romania	STN646N00	46 40 N	22 37 E		NO ₂ , SO ₂
Summit	Denmark	SUM672N00	72 34 N	38 28 W		13CO ₂ , C18O ₂ , CBrClF ₂ , CCl ₄ , CFCs, CH ₃ Br, CH ₃ CCl ₃ , CH ₄ , CO ₂ , HCFCs, HFCs, N ₂ O, O ₃ , SF ₆
Suwalki	Poland	SWL654N00	54 07 N	22 56 E		NO_2 , SO_2
Terceira Island	Portugal	AZR638N00	38 46 N	27 22 W	40	¹³ CH ₄ , ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
Teriberka	Russian Federation	TER669N00	69 12 N	35 06 E	40	CH ₄ , CO ₂
Utö	Finland	UTO659N00	59 46 N	21 22 E	7	VOCs
Utö	Finland	UTO659N00	59 46 N	21 22 E	7	NO_2 , O_3 , SO_2
Varna	Bulgaria	VRN643N00	43 12 N	27 55 E	41	NO_2 , SO_2
Viana do Castelo	Portugal	VDC641N00	41 42 N	8 48 W		SO_2
Vindeln	Sweden	VDL664N00	64 15 N	19 46 E	271	O_3
Virolahti	Finland	VIR660N00	60 31 N	27 40 E	4	NO_2 , O_3 , SO_2
Waldhof	Germany	LGB652N00	52 47 N	10 46 E	74	VOCs
Waldhof	Germany	LGB652N00	52 47 N	10 46 E	74	CO_2, O_3
Wank Peak	Germany	WNK647N00	47 31 N	11 09 E	1780	CO ₂ , NOx, SO ₂
Westerland	Germany	WES654N00	54 55 N	8 19 E	12	CO_2, O_3
Zabljak	Montenegro	ZBL643N00	43 08 N	19 07 E	1450	NO_2 , SO_2
Zavodnje	Slovenia	ZRN646N00	46 25 N	15 00 E	770	
Zeppelinfjellet	Norway	ZEP678N00	78 54 N	11 52 E	475	CO ₂
(Ny-Alesund) Zeppelinfjellet (Ny-Alesund)	Norway	ZEP678N00	78 54 N	11 52 E	475	CCl ₄ , CFCs, CH ₃ CCl ₃ , N ₂ O, O ₃ , SO ₂

Station	Country/Territory	Index Number	Latitude (° ')	Location Longitude (°')	Altitudo (m)	e Parameter
Zeppelinfjellet (Ny-Alesund)	Norway	ZEP678N00	78 54 N	11 52 E	475	¹³ CH ₄ , ¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
Zingst	Germany	ZGT654N00	54 25 N	12 43 E	1	VOCs
Zingst	Germany	ZGT654N00	54 25 N	12 43 E		CH ₄ , CO ₂ , O ₃
Zoseni	Latvia	ZSN657N00	57 04 N	25 32 E		NO ₂ , O ₃ , SO ₂
Zugspitze	Germany	ZUG647N00	47 25 N	10 58 E		CH ₄ , CO, CO ₂ , NO, NOx, NOy, O ₃
Zugspitze	Germany	ZUG647N00	47 25 N	10 58 E	2960	
Zugspitze /	Germany	ZSF647N00	47 25 N	10 58 E	2656	-
Schneefernerhaus	J					-
Zugspitze / Schneefernerhaus	Germany	ZSF647N00	47 25 N	10 58 E	2656	CH ₄ , CO, CO ₂ , N ₂ O, NO, NO ₂ , NO _y , O ₃ , PAN, SF ₆
Ähtäri	Finland	AHT662N00	62 34 N	24 11 E	180	NO ₂ , O ₃ , SO ₂
ANTARCTICA						
Arrival Heights	New Zealand	ARH777S00	77 47 S	166 40 E	184	¹³ CH ₄ , CH ₄ , CO, N ₂ O
Arrival Heights	New Zealand	ARH777S00	77 47 S	166 40 E	184	
Casey Station	Australia	CYA766S00	66 16 S	110 31 E		¹³ CO ₂ , CH ₄ , CO, CO ₂ , H ₂ , N ₂ O
Halley Bay	United Kingdom of	HBA775S00	75 34 S	26 30 W		¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
	Great Britain and Northern Ireland					
Jubany	Argentina	JBN762S00	62 13 S	58 40 W	15	CO_2
Mawson	Australia	MAA767S00	67 37 S	62 52 E		¹³ CO ₂ , CH ₄ , CO, CO ₂ , H ₂ , N ₂ O
McMurdo Station	United States of America	MCM777S00	77 49 S	166 34 E		CH ₄ , O ₃
Mizuho	Japan	MZH770S00	70 42 S	44 17 E	2230	CH ₄
Neumayer	Germany	NMY770S00	70 39 S	8 15 W		O_3
Palmer Station	United States of America	PSA764S00	64 55 S	64 00 W	10	13CO ₂ , C18O ₂ , CBrClF ₂ , CCl ₄ , CFCs, CH ₃ Br, CH ₃ CCl ₃ , CH ₄ , CO, CO ₂ , H ₂ , HCFCs, HFCs, N ₂ O, SF ₆
South Pole	United States of America	SPO789S00	89 58 S	24 48 W	2810	¹³ CO ₂ , CH ₄ , CO, CO ₂ , H ₂ , N ₂ O
South Pole	United States of America	SPO789S00	89 58 S	24 48 W	2810	¹³ CH ₄ , ¹³ CO ₂ , C ₁₈ O ₂ , C ₂ Cl ₄ , CBrClF ₂ , CBrF ₃ , CCl ₄ , CFCs, CH ₂ Cl ₂ , CH ₃ Br, CH ₃ CCl ₃ , CH ₃ Cl, CH ₄ , CO, CO ₂ , H ₂ , HCFCs, HFCs, N ₂ O, O ₃ , SF ₆
Syowa Station	Japan	SYO769S00	69 00 S	39 34 E	16	CO_2
Syowa Station	Japan	SYO769S00	69 00 S	39 34 E	16	¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
Syowa Station	Japan	SYO769S00	69 00 S	39 34 E	16	O_3
MOBILE STATION						
Aircraft (over Bass Strait and Cape Grim)	Australia	AIA999900				¹³ CO ₂ , CH ₄ , CO, CO ₂ , H ₂ , N ₂ O
Aircraft: Orleans	France	ORL999900			150	CH ₄ , CO ₂
Akademik Korolev, R/V	United States of America	AKD999900				CH ₄
Alligator liberty, M/V	Japan	ALG999900				CO_2
Atlantic Ocean	United States of America	AOC9XXX00			10	CH ₄ , CO ₂

Station	Country/Territory	Index Number Latitud	Location Longitude Altitude Parameter (° ') (m)
BACPAC 99	United States of America	BAC999900	CCl ₄ , CFCs, CH ₃ Br, CH ₃ CCl ₃ , CH ₃ Cl, HCFCs
BLAST1	United States of America	BLA999900	CCl ₄ , CFCs, CH ₃ Br, CH ₃ CCl ₃ , CH ₃ Cl, HCFCs
BLAST2	United States of America	BLA999901	CCl ₄ , CFCs, CH ₃ Br, CH ₃ CCl ₃ , CH ₃ Cl, HCFCs
BLAST3	United States of America	BLA999902	CCl ₄ , CFCs, CH ₃ Br, CH ₃ CCl ₃ , CH ₃ Cl, HCFCs
CLIVAR 01	United States of America	CLI999900	CCl ₄ , CFCs, CH ₃ Br, CH ₃ CCl ₃ , CH ₃ Cl, HCFCs
Comprehensive Observation Network for TRace gases by AIrLiner (CONTRAIL)	Japan	EOM999900	CH ₄ , CO ₂
Discoverer 1983 & 1984, R/V	United States of America	DIS999900	CH ₄
Discoverer 1985, R/V	United States of America	DSC999900	CH ₄
Drake Passage	United States of America	DRP999900	CH ₄ , CO ₂
Gas Change Experiment	United States of America	GAS999900	CCl ₄ , CFCs, CH ₃ Br, CH ₃ CCl ₃ , CH ₃ Cl, HCFCs
HATS Ocean Projects	United States of America	HOP999900	HFCs
INSTAC-I (International Strato/Tropospheric Air Chemistry Project)	Japan	INS999900	¹³ CO ₂ , CH ₄ , CO ₂
John Biscoe, R/V	United States of America	JBS999900	CH ₄
Keifu Maru, R/V	Japan	KEF999900	CO_2
Kofu Maru, R/V	Japan	KOF999900	CO_2
Korolev, R/V	United States of America	KOR999900	CH ₄
Long Lines Expedition, R/V	United States of America	LLE999900	CH ₄
MRI Research, 1978-1986, R/V	Japan	MRI999900	CH ₄
MRI Research, Hakuho Maru, R/V	Japan	НКН999900	CO_2
MRI Research, Kaiyo Maru, R/V	Japan	KIY999900	CO_2
MRI Research, Mirai, R/V	Japan	MMR999900	CO_2
MRI Research, Natushima, R/V	Japan	NTU999900	CO_2
MRI Research, Ryofu Maru, R/V	Japan	RFM999900	CO_2
MRI Research, Wellington Maru, R/V	Japan	WLT999900	CO_2
Mexico Naval H-02, R/V	United States of America	MXN999900	CH ₄
NOPACCS - Hakurei Maru -	Japan	HAK999900	TIC

Station	Country/Territory	Index Number	Latitude (° ')	Location Longitude (° ')	Altitude (m)	Parameter
Observation of Atmospheric Chemistry Over Japan	Japan	OAJ999900				CFCs, N ₂ O
Oceanographer, R/V	United States of America	OCE999900				CH ₄
PHASE I-04	United States of America	PHA999900				CCl ₄ , CFCs, CH ₃ Br, CH ₃ CCl ₃ , CH ₃ Cl, HCFCs
Pacific Ocean	Japan	BSL999900				¹³ CH ₄ , CH ₄ , VOCs
Pacific Ocean	United States of America	POC9XXX00			10	¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
Pacific-Atlantic Ocean	United States of America	PAO999900				CH ₄
Polar Star, R/V	United States of America	PLS999900				CH ₄
Ryofu Maru, R/V	Japan	RYF999900				CFCs, CH ₄ , CO ₂ , N ₂ O, TIC
South China Sea	United States of America	SCS9XXX00			15	¹³ CO ₂ , C ¹⁸ O ₂ , CH ₄ , CO, CO ₂ , H ₂
Soyo Maru, R/V	Japan	SOY999900				CO_2
Surveyor, R/V	United States of America	SUR999900				CH ₄
The Observation of Atmospheric Methane Over Japan	Japan	OAM999900				CH ₄
The Observation of Atmospheric Sulfur Hexafluoride Over Japan	Japan	OAS999900				SF ₆
WEST COSMIC - Hakurei Maru No.2 -	Japan	HAK999901				TIC
Wakataka-Maru	Japan	WAK999900				CO_2
Western Pacific	United States of America	WPC9XXX00			10	¹³ CH ₄ , CH ₄ , CO ₂
northern and western Pacific	Japan	NWP999900				N_2O

LIST OF CONTRIBUTORS

Station	Name	Address
Country/Territory	1101110	11441000
REGION I (Africa)		
Izaña (Tenerife) (Spain)	Angel J. Gomez-Pelaez Carlos Marrero	Izana Atmospheric Research Center, Meteorological State Agency of Spain (AEMET) C/ La Marina, 20, Planta 6. Apartado 880. 38071 Santa Cruz de Tenerife, Spain
Cape Point (South Africa)	Ernst Günther Brunke	South African Weather Service (Climate Division) SAWS, c/o CSIR (Environmentek), P.O. Box 320, Stellenbosch 7599, South Africa
Cairo (Egypt)	Hamza Mohamed Hamza	Egyptian Meteorological Authority Department of Air Pollution Study Egyptian Meteorological Authority P.O.Box:11784 – Cairo, Egypt
Amsterdam Island (France)	Jean Sciare Michel Ramonet	LSCE (Laboratoire des Sciences du Climat et de l'Environnement) UMR CEA-CNRS LSCE - CEA Saclay - Orme des Merisiers - Bat. 701 91191 Gif-sur-Yvette, France
Mt. Kenya (Kenya)	Josiah Kariuki Murageh Jörg Klausen Stephan Henne	Kenya Meteorological Department Dagoretti Corner P.O. Box 30259 00100 Nairobi, Kenya
Cape Verde Observatory (Cape Verde)	Katie Read Zoë Fleming	Department of Chemistry, University of York, Heslington, York, Y010 5DD, United Kingdom
Funchal (Portugal)	Maria Amelia V. Lopes	Instituto de Meteorologia, I.P. Rua C-Aeroporto de Lisboa 1749-077 Lisboa Portugal
Assekrem (Algeria)	Mimouni Mohamed	Office National de la Meteorologie PO Box 31 Tamanrasset 11000, Algeria
REGION II (Asia)		
Nagoya (Japan)	A. Matsunami	Research Center for Advanced Energy Conversion, Nagoya University Furocho, Chikusa-ku, Nagoya 464-8603, Japan
Minamitorishima Ryori Yonagunijima (Japan)	Daisuke KUBOIKE	Atmospheric Environment Division, Global Environment and Marine Department, Japan Meteorological Agency (JMA) 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan

Station Country/Territory	Name	Address
Cape Ochi-ishi Hateruma (Japan)	Hitoshi MUKAI	Center for Global Environmental Research, National Institute for Environmental Studies 16-2, Onogawa, Tsukuba-shi, Ibaraki 305-8506, Japan
Gosan (Republic of Korea)	Jeong-Ah Yu Seung-Yeon Kim Jaebum Lee Okjung Ju Sang-Kyun Kim	National Institute of Environmental Research Environmental Research Complex, Gyeongseo-dong, Seo-gu, Incheon, 404-708, Republic of Korea
Anmyeon-do (Republic of Korea)	Jeong-Sik Kim Young-Ho Lee Im-Chul Shin Ki-Jun Park Sang-Hoon Kim	Korea Global Atmosphere Watch Center, Korea Meteorological Administration 1764-6, Seungen-Ri, Anmyeon-Eup, Taean-Kun, ChungNam, 357-961, Republic of Korea
Hong Kong Observatory (Hong Kong, China)	K.C. Tsui	Hong Kong Observatory 134A Nathan Road, Kowloon, Hong Kong, China
Hok Tsui (Hong Kong, China)	Ka Se Lam	Department of Civil and Structural Engineering, Hong Kong Polytechnic University Hung Hom, Kowloon, Hong Kong, China
Mikawa-Ichinomiya (Japan)	Koji Ohno	Aichi Air Environment Division 1-2 Sannomaru-3chome, Naka-ku, Nagoya, Aichi 460-8501, Japan
Mt. Waliguan (China)	Lingxi ZHOU	PI for Greenhouse Gases & Related Tracers Chinese Academy of Meteorological Sciences (CAMS) China Meteorological Administration (CMA) 46 Zhongguancun Nandajie Beijing 100081, China
Memanbetsu (Japan)	Michio Hirota	Geochemical Research Department, Meteorological Research Institute 1-1, Nagamine, Tsukuba, Ibaraki 305-0052, Japan
Tsukuba (Japan)	Michio Hirota Yousuke Sawa	Geochemical Research Department, Meteorological Research Institute 1-1, Nagamine, Tsukuba, Ibaraki 305-0052, Japan
Hamamatsu (Japan)	Mitsuo TODA	Shizuoka University 3-5-1 Jyohoku, Nakaku, Hamamatsu 432-8561, Japan
Bering Island Kotelny Island (Russian Federation)	Nina Paramonova	Main Geophysical Observatory (MGO) Karbyshev Street 7, St. Petersburg, 194021, Russian Federation
Kyzylcha (Uzbekistan)		

Station Country/Territory	Name	Address
Everest - Pyramid (Nepal)	Paolo Cristofanelli Paolo Bonasoni	ISAC-CNR ISAC-CNR, VIa Gobetti 101 - 40129 Bologna -Italy
Takayama (Japan)	Shohei Murayama	Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST) AIST Tsukuba West, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
Gosan (Republic of Korea)	So-young Bang	Applied Meteorology Research Laboratory, Meteorological Research Institute (METRI), Korea Meteorological Administration (KMA) 460-18, Shindaebang-dong, Dongjak-gu, Seoul 156-720, Rep. of Korea
Ship between Ishigaki Island and Hateruma Island (Japan)	Takakiyo Nakazawa Shuji Aoki	Center for Atmospheric and Oceanic Studies, Graduate School of Science, Tohoku University Aoba, Sendai 980-8578, Japan
Suita (Japan)	Tomohiro Oda	Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka Universiy 2-1 Yamadaoka, Suita, Osaka 565-0871 Japan
Tsukuba (Japan)	Tosiro Kimura	Lower Aerological Observations Division, Aerological Observatory, Japan Meteorological Agency (JMA) Lower Aerological Observations Division, Aerological Observatory1-2 Nagamine, Tsukuba, Ibaraki, 305-0052, Japan
Issyk-Kul (Kyrgyzstan)	V. Sinyakov	Laboratory of Geophysics, Institute of Fundamental Sciences at the Kyrgyz National University Manas Street 101, Bishkek, 720033, Kyrgyz Republic
Mt. Dodaira Kisai Urawa (Japan)	Yosuke MUTO	Center for Environmental Science in Saitama 914 Kamitanadare, Kisai-machi, Kita-Saitama-gun, Saitama 347-0115, Japan
REGION III (South A	merica)	
Arembepe (Brazil)	Luana S. Basso Luciana Vanni Gatti	IPEN Atmospheric Chemistry Laboratory Av. Prof. Lineu Prestes, 2242, Cidade Universitaria, Sao Paulo, CEP 05508-900, Brazil
Huancayo (Peru)	Mutsumi Ishitsuka	Observatorio de Huancayo, Instituto Geofisico del Peru Apartado 46, Huancayo, Peru

Station Country/Territory	Name	Address
Ushuaia (Argentina)	Sergio Luppo	Servicio Meteorológico Nacional - Gobierno de Tierra del Fuego Estación VAG Ushuaia Subsecretaria de Ciencia y Tecnología, Ministerio de Educación, Cultura, Ciencia y Tecnología Gobierno de Tierra del Fuego 9410 Ushuaia, Tierra del Fuego, Argentina
REGION IV (North a	nd Central America)	
Alert Candle Lake Chibougamau Cape St. James Egbert Estevan Point East Trout Lake Fraserdale Lac La Biche (Alberta) Sable Island (Canada)	Doug Worthy	Environment Canada (EC) 4905 Dufferin Street, Toronto, Ontario, Canada, M3H 5T4
Algoma Bratt's Lake Chalk River Chapais Egbert Experimental Lakes Area Esther Kejimkujik Longwoods Saturna Sutton (Canada)	Mike Shaw	Environment Canada Meteorological Service of Canada Air Quality Research Branch 4905 Dufferin StreetToronto, Ontario CANADA M3H 5T4
La Palma (Cuba)	Osvaldo Cuesta Santos	Institute of Meteorology, Atmospheric Environment Research Center Aptdo. 17032, Postal Code 11700, Havana 17, Cuba
REGION V (South-W	est Pacific)	
Baring Head (New Zealand)	Antony Gomez Sylvia Nichol Gordon Brailsford	National Institute of Water & Atmospheric Research Ltd. 301 Evans Bay Parade, Greta Point, Private Bag 14-901, Kilbirnie, Wellington, New Zealand
Cape Grim (Australia)	Bruce Forgan Ian Galbally	Commonwealth Bureau of Meteorology 700 Collins St, Docklands GPO Box 1289K, Melbourne, Victoria 3001, Australia

Station Country/Territory	Name	Address
Tanah Rata (Malaysia)	Lim Sze Fook	Environmental Studies Division Malaysian Meteorological Department Jalan Sultan, 46667 Petaling Jaya, Selangor, Malaysia
Danum Valley GAW Baseline Station (Malaysia)	Lim Sze Fook Maznorizan Mohamad	Environmental Studies Division Malaysian Meteorological Department Jalan Sultan, 46667 Petaling Jaya, Selangor, Malaysia
Bukit Koto Tabang Jakarta (Indonesia)	Nurhayati	Agency for Meteorology, Climatology and Geophysics Jalan Angkasa 1 No.2 Jakarta 10720, Indonesia
Bukit Koto Tabang (Indonesia)	Nurhayati Ilahi, Asep Firman Jörg Klausen	Agency for Meteorology, Climatology and Geophysics Jalan Angkasa 1 No.2 Jakarta 10720, Indonesia
REGION VI (Europe)		
Puszcza Borecka/Diabla Gora (Poland)	Anna Degorska	Institute of Environmental Protection Kolektorska 4 01-692 Warsaw, Poland
Kollumerwaard Kloosterburen (Netherlands (the))	Arien Stolk Hans Berkhout	RIVM - Laboratory for Environmental Measurements (LVM) P.O. Box 1, 3720 BA Bilthoven, The Netherlands
Monte Cimone (Italy)	Attilio Di Diodato Riccardo Santaguida	Italian Air Force Meteorological Service C.A.M.M. Mt. CIMONE, Via delle Ville 40, 41029-Sestola (MO), Italy
Hohe Warte Stephansplatz (Austria)	August Kaiser	Department for Environmental Meteorology, Central Institute for Meteorology and Geodynamics Postfach 342, Hohe Warte 38, A-1191 Wien, Austria
Iskrba Krvavec (Slovenia)	Brigita Jesenovec Marijana Murovec	Ministry of Environment and Spatial Planning - Environmental Agency of the Republic of Slovenia (EARS) Vojkova 1/b, Sl-1000 Ljubljana, Slovenia
Jungfraujoch Payerne Rigi (Switzerland)	Brigitte Buchmann Martin Steinbacher Thomas Seitz	Empa, Swiss Federal Laboratories for Materials Testing and Research, Air Pollution / Environmental Technology Überlandstrasse 129, CH-8600 Dübendorf, Switzerland

Station Country/Territory	Name	Address
Fundata Semenic Stîna de Vale (Romania)	Daniela ZISU	National Research and Development Institute for Environmental Protection Splaiul Independentei nr. 294, sector 6, 77703 Bucuresti, Romania
Kamenicki Vis (Serbia)	Dragan Djordjevic	Republic Hydrometeorological Service, Environmental Control Department Kneza Viseslava 66, 11030 Belgrade, Serbia
Burgas Plovdiv Pleven Sofia Varna (Bulgaria)	Ekaterina Batchvarova	National Institute of Meteorology and Hydrology 66 Tzarigradsko chaussee, 1784 Sofia, Bulgaria
Jarczew Leba Suwalki (Poland)	Eugeniusz Brejnak	Institute of Meteorology and Water Management; Laboratory for Research and Monitoring of Air Pollution 61 Podlesna Street, 01-673 Warszawa, Poland
Sniezka (Poland)	Eugeniusz Brejnak Krzaczkowski Piotr, MSc	Institute of Meteorology and Water Management; Laboratory for Research and Monitoring of Air Pollution 61 Podlesna Street, 01-673 Warszawa, Poland
Fundata (Romania)	Florin Nicodim	National Meteorological Administration Sos. Bucuresti-Ploiesti nr. 97, 71552 Bucharest, Romania
Lampedusa (Italy)	Florinda Artuso Salvatore Chiavarini Salvatore Piacentino Alcide di Sarra	Italian National Agency for New Technology, Energy and the Environment (ENEA) ENEA ACS-CLIMOSS, Via Anguillarese 301, 00060 S.Maria di Galeria, Rome, Italy
Plateau Rosa (Italy)	Francesco Apadula Daniela Heltai Andrea Lanza	Ricerca sul Sistema Energetico - RSE S.p.A. via Rubattino 54, 20134 Milano, Italy
Site J (Denmark)	Gen Hashida Shinji Morimoto Shuji Aoki	National Institute of Polar Research 10-3, Midoricho, Tachikawa, Tokyo 190-8518, Japan
Mace Head (Ireland)	Gerard Spain	National University of Ireland, Galway (NUI) Mace Head Research Station Carna, Co. Galway, Ireland
Hohe Warte Stephansplatz (Austria)	Guenther Schermann	Municipal Department 22 - Environmental Protection Air quality subdepartment, City of Vienna Ebendorferstrasse 4, A-1082 Vienna, Austria
Vindeln (Sweden)	Hakan Blomgren	IVL Swedish Environmental Research Institute P.O. Box 5302 S-400 14 Goteborg, Sweden

Station Country/Territory	Name	Address
Wank Peak Zugspitze (Germany)	Hans-Eckhart Scheel	Fraunhofer-Institute for Atmospheric Environmental Research, Forschungszentrum Karlsruhe, IMK-IFU D-82467 Garmisch-Partenkirchen, Germany
Danki Shepelevo (Russian Federation)	Irina Brouskina	
BEO Moussala (Bulgaria)	Ivo Kalapov	INRNE Institut fo Nuclear Research and Nuclear Energy Tsarigradsko chaussee Blvd. 1784 Sofia, Bulgaria
La Cartuja Doñana Logroño Mahón Noia Roquetes San Pablo de los Montes (Spain)	J.M. Saenz	Servicio de Desarrollos Medioambientales, Instituto Nacional de Meteorologia, Ministerio de Medio Ambiente Leonardo Prieto Castro, 8, 28071 Madrid, Spain
Zeppelinfjellet (Ny-Alesund) (Norway)	Johan Strom	Department of Applied Environmental Science (ITM), Stockholm University SE-106 91 Stockholm, Sweden
Pallas-Sammaltunturi (Finland)	Juha Hatakka Timo Salmi	Finnish Meteorological Institute P.O. Box 503, FI-00101 Helsinki, Finland
Brotjacklriegel Deuselbach Waldhof Neuglobsow Schauinsland Westerland Zingst Zugspitze / Schneefernerhaus Zugspitze (Germany)	Karin Uhse	Umweltbundesamt (UBA, Federal Environmental Agency) Air Monitoring Network Paul-Ehrlich-Strasse 29, D-63225 Langen, Germany
Hegyhatsal K-puszta (Hungary)	Laszlo Haszpra	Hungarian Meteorological Service P.O. Box 39, H-1675 Budapest, Hungary

Station Country/Territory	Name	Address
Angra do Heroismo Beja Bragança Castelo Branco Lisboa / Gago Coutinho Monte Velho Penhas Douradas Viana do Castelo (Portugal)	Maria Amelia V. Lopes	Instituto de Meteorologia, I.P. Rua C-Aeroporto de Lisboa 1749-077 Lisboa Portugal
Kovk Zavodnje (Slovenia)	Marijana Murovec	Environmental Agency of Republic of Slovenia Environment Office Sektor za kakovcost zraka / Air Quality Division Vojkova 1b, 1001 Ljubljana, p.p. 2608, Slovenia
Dobele Rucava Zoseni (Latvia)	Marina Frolova	Observation Network Department, Latvian Environment, Geology and Meteorology Centre, Ministry of Environmental 165 Maskavas str. LV-1019, Riga, Latvia
Sonnblick (Austria)	Marina Fröhlich Wolfgang Spangl Elisabeth Friedbacher	Federal Environment Agency Austria Spittelauer Lände 5, A-1090 Wien, Austria
Ivan Sedlo (Bosnia and Herzegovina)	Martin Tais	Meteoroloski zavod Bosne i Hercegovine Bardakcije 12, 71000 Sarajevo, Bosnia and Herzegovina
Ile Grande Pic du Midi Puy de Dome (France) Mace Head (Ireland)	Michel Ramonet	LSCE (Laboratoire des Sciences du Climat et de l'Environnement) UMR CEA-CNRS LSCE - CEA Saclay - Orme des Merisiers - Bat. 701 91191 Gif-sur-Yvette, France
Begur (Spain)		
Kosetice (Czech Republic)	Milan Vana	Czech Hydrometeorological Institute, Kosetice Observatory Na Sabatce 17, 143 06 Praha 4 - Komorany, Czech Republic
Ocean Station Charlie Teriberka (Russian Federation)	Nina Paramonova	Main Geophysical Observatory (MGO) Karbyshev Street 7, St. Petersburg, 194021, Russian Federation
Zeppelinfjellet (Ny-Alesund) (Norway)	Ove Hermansen	Norwegian Institute for Air Research (NILU) P. O. Box 100 Instituttveien 18, N-2027 Kjeller, Norway
Monte Cimone (Italy)	Paolo Bonasoni jgor arduini	ISAC-CNR ISAC-CNR, Via Gobetti 101 - 40129 Bologna -Italy

Station Country/Territory	Name	Address
Eskdalemuir (United Kingdom of Great Britain and Northern Ireland)	Peter Kuria	Air and Environment Quality Division, DEFRA 4/F15, Ashdown House 123 Victoria Street, London, SW1E 3DE, United Kingdom
Giordan Lighthouse (Malta)	Raymond Ellul	Atmospheric Research Unit / Physics Department / University of Malta Msida MSD 06, Malta
Zugspitze / Schneefernerhaus Hohenpeissenberg (Germany)	Stefan Gilge Christian Plass-Duelmer Wolfgang Fricke	Deutscher Wetterdienst (DWD, German Meteorological Service) Meteorologisches Observatorium Hohenpeissenberg Albin-Schwaiger-Weg 10, D-82383 Hohenpeissenberg, Germany
Lazaropole (The Former Yugoslav Republic of Macedonia)	Suzana Alcinova Monevska	Hydrometeorological Service Skupi bb, 1000 Skopie, The former Yugoslav Republic of Macedonia
Kosetice (Czech Republic)	Sverre Solberg	Norwegian Institute for Air Research P.O. Box 100, NO-2027 Kjeller, Norway
Pallas-Sammaltunturi Utö (Finland)		
Donon La Tardiere Peyrusse Vieille (France)		
Brotjacklriegel Waldhof Schmuecke Zingst (Germany)		
Starina (Slovakia)		
Campisabalos (Spain)		
Ähtäri Oulanka Utö Virolahti (Finland)	Timo Salmi	Finnish Meteorological Institute Erik Palmenin aukio 1, P.O. Box 503, FIN-00101 Helsinki, Finland

ANTARCTICA

Station Country/Territory	Name	Address
Arrival Heights (New Zealand)	Antony Gomez Sylvia Nichol Gordon Brailsford	National Institute of Water & Atmospheric Research Ltd. 301 Evans Bay Parade, Greta Point, Private Bag 14-901, Kilbirnie, Wellington, New Zealand
Jubany (Italy)	Claudio Rafanelli Luigi Ciattaglia	ICES (Int.l Center for Earth Sciences) c/o CNR-Istituto di Acustica- Area della Ricerca di Roma Tor Vergata, via Fosso del Cavaliere 100, 00133 Rome, Italy
Syowa Station (Japan)	Motohisa Doi Yasuo Shudou	Office of Antarctic Observations, Japan Meteorological Agency (JMA) 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan
Neumayer (Germany)	Rolf Weller	Alfred Wegener Institute Am Handelshafen 12, 27570 Bremerhaven, Germany
Mizuho (Japan)	Takakiyo Nakazawa	Center for Atmospheric and Oceanic Studies, Graduate School of Science, Tohoku University Aoba, Sendai 980-8578, Japan
Syowa Station (Japan)	Takakiyo Nakazawa Gen Hashida Shinji Morimoto	Center for Atmospheric and Oceanic Studies, Graduate School of Science, Tohoku University Aoba, Sendai 980-8578, Japan
MOBILE STATION		
NOPACCS - Hakurei Maru - WEST COSMIC - Hakurei Maru No.2 - (Japan)		The General Environmental Technos Co., Ltd. 1-3-5, Azuchi machi, Chuo-ku, Osaka 541-0052, Japan
INSTAC-I (International Strato/Tropospheric Air Chemistry Project) (Japan)	Hidekazu Matsueda	Geochemical Research Department, Meteorological Research Institute Nagamine 1-1, Tsukuba, Ibaraki 305-0052, Japan
Comprehensive Observation Network for TRace gases by AIrLiner (CONTRAIL) (Japan)	Hidekazu Matsueda Toshinobu Machida	Geochemical Research Department, Meteorological Research Institute Nagamine 1-1, Tsukuba, Ibaraki 305-0052, Japan
MRI Research, Mirai, R/V (Japan)	Hisayuki Yoshikawa-Inoue	Laboratory of Marine and Atmospheric Geochemistry, Graduate School of Environmental Earth Science, Hokkaido University N10W5, Kita-ku, Sapporo 060-0810, Japan

Station Country/Territory	Name	Address
northern and western Pacific (Japan)	Kentaro Ishijima Shuji Aoki Takakiyo Nakazawa	Japan Agency for Marine-earth Science and Technology (JAMSTEC) 3173-25 Showamachi, Kanazawa-ku, Yokohama, 236-0001, Japan
MRI Research, Hakuho Maru, R/V MRI Research, Kaiyo Maru, R/V MRI Research, 1978-1986, R/V MRI Research, Natushima, R/V MRI Research, Ryofu Maru, R/V MRI Research, Wellington Maru, R/V (Japan)	Masao Ishii	Geochemical Research Department, Meteorological Research Institute Nagamine 1-1, Tsukuba, Ibaraki 305-0052, Japan
Aircraft: Orleans (France)	Michel Ramonet	LSCE (Laboratoire des Sciences du Climat et de l'Environnement) UMR CEA-CNRS LSCE - CEA Saclay - Orme des Merisiers - Bat. 701 91191 Gif-sur-Yvette, France
Observation of Atmospheric Chemistry Over Japan The Observation of Atmospheric Methane Over Japan The Observation of Atmospheric Sulfur Hexafluoride Over Japan (Japan)	Michio Hirota	Geochemical Research Department, Meteorological Research Institute 1-1, Nagamine, Tsukuba, Ibaraki 305-0052, Japan
Pacific Ocean (Japan)	Sylvia Nichol	National Institute of Water & Atmospheric Research Ltd. 301 Evans Bay Parade, Greta Point, Private Bag 14-901, Kilbirnie, Wellington, New Zealand
Alligator liberty, M/V Keifu Maru, R/V Kofu Maru, R/V Ryofu Maru, R/V (Japan)	Takashi Miyao	Pollutants Chemical Analysis Center, Marine Division, Climate and Marine Department, Japan Meteorological Agency (JMA) 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan
Soyo Maru, R/V Wakataka-Maru (Japan)	Tsuneo Ono	Hokkaido National Fisheries Research Institute 116 Katsurakoi, Kushiro 085-0802, Japan

Station Country/Territory	Name	Address
NOAA/ESRL Flask N	Network	
Assekrem (Algeria)	Bruce Vaughn** (¹³ CH ₄ , N2O and SF6)	(*)NOAA/ESRL Global Monitoring Division 325 Broadway R/GMD1 Boulder, CO 80305-3328, U.S.A.
Tierra del Fuego (Argentina)	Bruce Vaughn** James White** (13CO ₂ and C18O ₂)	(**)Institute of Arctic and Alpine Research (INSTAAR) Campus box 450, University of Colorado, Boulder, CO
Cape Grim (Australia)	Edward J. Dlugokencky* (CH ₄)	80309-0450, U.S.A.
Ragged Point (Barbados)	Paul C. Novelli* (CO and H ₂)	
Arembepe (Brazil)	Thomas J. Conway* (CO ₂)	
Alert Lac La Biche Mould Bay (Canada)		
Easter Island (Chile)		
Lulin Mt. Waliguan (China)		
Summit (Denmark)		
Pallas-Sammaltunturi (Finland)		
Amsterdam Island Crozet (France)		
Hohenpeissenberg Ochsenkopf (Germany)		
Hegyhatsal (Hungary)		
Heimaey (Iceland)		
Bukit Koto Tabang (Indonesia)		

LIST OF CONTRIBUTORS (continued)		
Station Name Country/Territory	Address	
Mace Head (Ireland)		
Sede Boker (Israel)		
Lampedusa (Italy)		
Syowa Station (Japan)		
Sary Taukum Plateau Assy (Kazakhstan)		
Mt. Kenya (Kenya)		
Christmas Island (Kiribati)		
Kaashidhoo (Maldives)		
Dwejra Point (Malta)		
Mex High Altitude Global Climate Observation Center (Mexico)		
Ulaan Uul (Mongolia)		
Gobabeb (Namibia)		
Baring Head Kaitorete Spit (New Zealand)		
Ocean Station "M" Zeppelinfjellet (Ny-Alesund) (Norway)		
Baltic Sea (Poland)		
Terceira Island (Portugal)		

~ .		
Station	Name	Address
Country/Territory		
Tae-ahn Peninsula		
(Republic of Korea)		
Black Sea		
(Romania)		
Mahe Island		
(Seychelles)		
Izaña (Tenerife)		
(Spain)		
(Spain)		
Ascension Island		
St. David's Head		
Tudor Hill		
Halley Bay		
Bird Island		
(United Kingdom of Great		
Britain and Northern		
Ireland)		
Akademik Korolev, R/V		
Argyle		
Atlantic Ocean		
St. Croix		
Barrow		
Cold Bay		
Cape Meares Discoverer 1983 & 1984,		
R/V		
Drake Passage		
Discoverer 1985, R/V		
Guam		
Grifton		
John Biscoe, R/V		
Key Biscayne		
Korolev, R/V		
Kitt Peak		
Cape Kumukahi		
Park Falls		
Long Lines Expedition,		
R/V		
McMurdo Station		
Sand Island		
Mauna Loa		
Mexico Naval H-02, R/V		
Niwot Ridge (T-van)		
Oceanographer, R/V		
Olympic Peninsula		
Pacific-Atlantic Ocean		
Polar Star, R/V Pacific Ocean		
Pacific Ocean Palmer Station		

Palmer Station

Station Name Address Country/Territory

Point Arena

South China Sea

Southern Great Plains

Shemya Island

La Jolla

Tutuila (Cape Matatula)

South Pole

Ocean Station Charlie

Surveyor, R/V

Trinidad Head

Wendover

Moody

Western Pacific

(United States of America)

NOAA/ESRL/HATS Network

Tierra del Fuego (Argentina)

Geoffrey S. Dutton Stephen A. Montzka

James W. Elkins

Cape Grim

(Australia)

Alert (Canada)

Summit (Denmark)

Mace Head (Ireland)

BACPAC 99

BLAST1

BLAST2

BLAST3

Barrow

CLIVAR 01

Gas Change Experiment

Harvard Forest

HATS Ocean Projects

Grifton

Cape Kumukahi

Park Falls

Mauna Loa

Niwot Ridge (C-1)

PHASE I-04

Palmer Station

Tutuila (Cape Matatula)

South Pole

Trinidad Head

(United States of America)

Halocarbons and Other Atmosphere Trace Species Group (HATS)/NOAA/ESRL Global Monitoring

Division

325 Broadway R/GMD1 Boulder, CO 80305-3328,

U.S.A.

Station	Name	Address	
Country/Territory			

NOAA/ESRL Surface Ozone Network

Ragged Point (Barbados)

Sam Oltmans

NOAA/ESRL Global Monitoring Division 325 Broadway R/GMD1 Boulder, CO 80305-3328, U.S.A.

Summit

(Denmark)

Heimaey (Iceland)

Arrival Heights Lauder (New Zealand)

Tudor Hill (United Kingdom of Great Britain and Northern Ireland)

Barrow
McMurdo Station
Mauna Loa
Niwot Ridge (C-1)
Niwot Ridge (Saddle)
Tutuila (Cape Matatula)
South Pole
Trinidad Head
(United States of America)

Station	Name	Address
Country/Territory		
CSIRO Flask Network		
Aircraft (over Bass Strait	Ray Langenfelds	Commonwealth Scientific and Industrial Research
and Cape Grim)	Paul Krummel	Organisation (CSIRO)
Cape Ferguson	Paul Steele	CSIRO Marine and Atmospheric Research
Cape Grim	Colin Allison	Private Bag 1
Casey Station		Aspendale, Vic 3195, Australia
Mawson		
Macquarie Island		
(Australia)		
Alert		
Estevan Point		
(Canada)		
Cape Rama		
(India)		
Shetland		
(United Kingdom of Great		
Britain and Northern		
Ireland)		
Mauna Loa		
South Pole		
(United States of America)		
ALE/GAGE/AGAGE	Network	
Cape Grim	Ray Wang	School of Earth and Atmospheric Sciences, Georgia
(Australia)	200J 1100118	Institute of Technology
()		311 Ferst Drive
Ragged Point		School of Earth and Atmospheric Sciences
(Barbados)		Georgia Institute of Technology
		Atlanta, GA 30332-0340, U.S.A.
Adrigole		
Mace Head		
(Ireland)		
Cape Meares		
Tutuila (Cape Matatula)		

Trinidad Head

(United States of America)

GLOSSARY

ATMOSPHERIC SPECIES:

CCl₄ tetrachloromethane (carbon tetrachloride)

CFC-11 chlorofluorocarbon-11 (trichlorofluoromethane, CCl₃F) **CFC-12** chlorofluorocarbon-12 (dichlorodifluoromethane, CCl₂F₂)

CFC-113 chlorofluorocarbon-113 (1,1,2-trichlorotrifluoroethane, CCl₂FCClF₂)

CFCs chlorofluorocarbons

CH₂Cl₂ dichloromethane (methylene chloride)
CH₃Cl chloromethane (methyl chloride)
CH₃Br bromomethane (methyl bromide)

Halon-1211 chlorodifluorobromomethane (CBrClF₂)

Halon-1301 bromotrifluoromethane (CBrF₃)

HCFC-141b hydrochlorofluorocarbon-141b (1,1-dichloro-1-fluoroethane, CH₃CCl₂F) hydrochlorofluorocarbon-142b (1,1-difluoro-1-chloroethane, CH₃CClF₂)

HCFC-22 hydrochlorofluorocarbon-22 (chlorodifluoromethane, CHClF₂)

HCFCs hydrochlorofluorocarbons

HFC-134a hydrofluorocarbon-134a (1,1,1,2-tetrafluoroethane, CH₂FCF₃) **HFC-152a** hydrofluorocarbon-152a (1,1-difluoroethane, CHF₂CH₃)

HFCs hydrofluorocarbons

CH₄ methane

CH₃CCl₃ trichloroethane (methyl chloroform)

 $\begin{array}{ccc} \textbf{CO} & \textbf{carbon monoxide} \\ \textbf{CO}_2 & \textbf{carbon dioxide} \\ \textbf{N}_2\textbf{O} & \textbf{nitrous oxide} \\ \textbf{NO} & \textbf{nitrogen monoxide} \\ \textbf{NO}_2 & \textbf{nitrogen dioxide} \\ \textbf{NO}_X & \textbf{nitrogen oxides} \\ \end{array}$

 O_3 ozone

SF₆ sulphur hexafluoride SO₂ sulphur dioxide

UNITS:

ppbppmpptparts per millionpptparts per trillion

Others:

ENSO El Niño-Southern Oscillation

M/V merchant vessel R/V research vessel

SOI Southern Oscillation Index SST Sea Surface Temperature

LIST OF WMO WDCGG PUBLICATIONS

DATA REPORTING MANUAL:

WDCGG No. 1 January 1991

WMO	WDCGG DATA REPORT:	
11110	WDCGG DATA KEI OKI.	

(period of data accepted)

			VI.			1 /	
WDCGG No. 2 Part A	October	1992	October	1990	~	August	1992
WDCGG No. 2 Part B	October	1992	October	1990	\sim	August	1992
WDCGG No. 3	October	1993	September	1992	~	March	1993
WDCGG No. 5	March	1994	April	1993	~	September	1993
WDCGG No. 6	September	1994	September	1993	~	March	1994
WDCGG No. 7	March	1995	April	1994	~	December	1994
WDCGG No. 9	September	1995	January	1995	~	June	1995
WDCGG No.10	March	1996	July	1995	~	December	1995
WDCGG No.11	September	1996	January	1996	~	June	1996
WDCGG No.12	March	1997	July	1996	~	November	1996
WDCGG No.14	September	1997	December	1996	~	June	1997
WDCGG No.16	March	1998	July	1997	~	December	1997
WDCGG No.17	September	1998	January	1998	~	June	1998
WDCGG No.18	March	1999	July	1998	~	December	1998
WDCGG No.20	September	1999	January	1999	~	June	1999
WDCGG No.21	March	2000	July	1999	~	December	1999
WDCGG No.23	September	2000	January	2000	~	June	2000
WDCGG No.25	March	2001	July	2000	~	December	2000

WMO WDCGG DATA CATALOGUE:

WDCGG No. 4	December	1993
WDCGG No.13	March	1997
WDCGG No.19	March	1999
WDCGG No 24	March	2001

WMO WDCGG DATA SUMMARY:

WDCGG No. 8	October	1995
WDCGG No.15	March	1998
WDCGG No.22	March	2000
WDCGG No.26	March	2002
WDCGG No.27	March	2003
WDCGG No.28	March	2004
WDCGG No.29	March	2005
WDCGG No.30	March	2006
WDCGG No.31	March	2007
WDCGG No.32	March	2008
WDCGG No.33	March	2009
WDCGG No.34	March	2010

WMO WDCGG CD-ROM:

(period of data accepted)

CD-ROM No. 1	March	1995	October	1990	~	December	1994
CD-ROM No. 2	March	1996	October	1990	~	June	1995
CD-ROM No. 3	March	1997	October	1990	~	June	1996
CD-ROM No. 4	March	1998	October	1990	~	December	1997
CD-ROM No. 5	March	1999	October	1990	~	December	1998
CD-ROM No. 6	March	2000	October	1990	~	December	1999
CD-ROM No. 7	March	2001	October	1990	~	December	2000
CD-ROM No. 8	March	2002	October	1990	~	January	2002
CD-ROM No. 9	March	2003	October	1990	~	December	2002
CD-ROM No.10	March	2004	October	1990	~	December	2003

CD-ROM No.11 CD-ROM No.12 CD-ROM No.13 CD-ROM No.14	March March March March	2005 2006 2007 2008	October October October October	1990 1990 1990 1990	2 2 2 2	December December November November	2004 2005 2006 2007
WMO WDCGG DV	D :		(period	of data	acc	epted)	
DVD No. 1	March	2009	October	1990	~	November	2008
DVD No. 2	March	2010	October	1990	~	November	2009
DVD No. 3	March	2011	October	1990	~	November	2010