WORLD METEOROLOGICAL ORGANIZATION

GLOBAL ATMOSPHERE WATCH

WORLD DATA CENTRE FOR GREENHOUSE GASES

WMO WDCGG DATA SUMMARY

WDCGG No. 29

GAW DATA

Volume IV-Greenhouse Gases and Other Atmospheric Gases

PUBLISHED BY JAPAN METEOROLOGICAL AGENCY IN CO-OPERATION WITH WORLD METEOROLOGICAL ORGANIZATION

MARCH 2005

Acknowledgements

The present issue of *Data Summary* was prepared in cooperation with the World Meteorological Organization (WMO) and is based on the efforts of contributors (Appendix: LIST OF CONTRIBUTORS) to the WMO World Data Centre for Greenhouse Gases (WDCGG). These organizations and individuals are involved in observations and research at stations and laboratories which measure greenhouse gases and other atmospheric gases within the framework of the WMO Global Atmosphere Watch (GAW), and other cooperative monitoring and research programmes. The WDCGG thanks all of the organizations and individuals that have submitted data. Some contributors may not be explicitly acknowledged in this publication owing to lack of space, but it should be noted that all of the organizations and individuals that have submitted data to the WDCGG equally contributed to this new issue of *Data Summary*.

CONTENTS

Summary	Pa
1. Introduction	
2. Analysis	
3. Carbon Dioxide	
4. Methane	
5. Nitrous Oxide	
6. Halocarbons	
7. Surface Ozone	
8. Carbon Monoxide	
9. Nitrogen Monoxide and Nitrogen Dioxide	
10.Sulphur Dioxide	
References	
Appendices	
CALIBRATION AND STANDARD SCALES	
LIST OF OBSERVATION STATIONS	
LIST OF CONTRIBUTORS	
GLOSSARY	
LIST OF WMO/ WDCGG PUBLICATIONS	

Summary

This issue of *Data Summary* covers the results of basic analyses of greenhouse gas concentrations reported to the WMO World Data Centre for Greenhouse Gases (WDCGG). The observations range from 1968 to 2003, and only data that reached the WDCGG by December 2004 were analyzed. This *Data Summary* includes analyses of the monthly mean concentrations of global, hemispheric and zonal greenhouse and related gases, and provides useful information on the change in concentrations of these gases.

Only monthly mean concentrations were used in the analyses so that data from many observation sites, including a large number of stations in the NOAA flask-sampling network, are included. Of course, it is also appreciated that some stations submit daily and hourly mean concentrations, which may be more appropriate for analyzing the variations on various time-scales. All the submitted data are available on the WDCGG web site (http://gaw.kishou.go.jp/wdcgg.html).

A time series of greenhouse gas concentrations, which is often produced by removing local factors that can vary in a very short time, was made by integrating the variation in concentration on different time scales. The CO_2 concentration can be seen on both a seasonal scale and a long-term scale. Annual growth rates are derived from the deseasonalised long-term trend.

The analytical results are summarized below for each greenhouse and related gas:

1. Carbon Dioxide (CO₂)

The level of Carbon Dioxide (CO_2) , which of all the greenhouse gases contributes most to global warming, has been increasing since the pre-industrial period. Global mean concentrations have increased annually, and was 374 ppm as of 2002. Concentrations peak in northern high and mid-latitudes, suggesting strong net sources in these areas.

The global growth rate varies significantly interannually and was 1.6 ppm/year on average for the period 1983-2002. The high growth rates in 1983, 1987/1988, 1994/1995, 1997/1998 and 2002 are associated with the warm events of El Niño-Southern Oscillation (ENSO). The anomalously strong El Niño event in 1997/1998 brought about worldwide high increases in 1998. The exceptionally low growth rates in 1992, including negative values for northern high and mid-latitudes, were caused by low global temperatures following the eruption of Mt. Pinatubo in 1991.

Amplitudes of the seasonal cycle are clearly large in northern high and mid-latitudes and small in the Southern Hemisphere. The northern seasonal cycle mainly reflects the seasonal variation in the absorption/emission in the biosphere there, while the southern cycle reflects oceanic variations and biomass burning in addition to the influence of the biosphere. In southern low latitudes, an annual cycle cannot be seen clearly but a semiannual cycle can. This is probably due to two opposing factors—the direct influence of sources and sinks there and the propagation of the out-of-phase seasonal variation from the Northern Hemisphere.

2. Methane (CH₄)

 CH_4 is the second most significant greenhouse gas, and its level has been increasing since the beginning of the 19th century. Global mean concentrations reflect an annual increase, and the annual averaged concentration was 1787 ppb in 2003. The annual concentrations peak in the northernmost latitudes and fall toward the southernmost latitudes, suggesting significant net sources in northern latitudes.

The global growth rate was 11 ppb/year on average for the period 1984-1990, but the rates decreased markedly from the 1980s to the 1990s. The global growth rate for 1991-2003 was 5 ppb/year. Growth rates decreased significantly in some years, including 1992, when negative values were recorded in northern high latitudes, and 1996, when growth almost stopped in many regions. However, both hemispheres experienced high growth rates in 1998, caused by an exceptionally high global mean temperature. And the global growth rates decreased to almost zero in 2000-2001.

Monthly mean concentrations have a seasonal variation with high concentrations in winter and low concentrations in summer. Unlike CO_2 , amplitudes of the seasonal cycle are large for CH_4 not only in the Northern Hemisphere but also in southern high and mid-latitudes. In southern low latitudes, a distinct semi-annual component with a secondary maximum in boreal winter overlays the annual component. This is attributed to the large-scale transportation of CH_4 from the Northern Hemisphere.

3. Nitrous Oxide (N₂O)

Nitrous oxide (N_2O) is an important greenhouse gas, and its level is increasing on a global scale. Data for N_2O reported to the WDCGG show that concentrations are increasing in both hemispheres. Global mean concentration was 318 ppb in 2003.

4. Halocarbons

Halocarbons, most of which are anthropogenic, are effective greenhouse gases and some also act as ozonedepleting compounds. Levels of some halocarbons (CFCs, etc.) increased in the 1970s and 1980s, but have now almost ceased increasing as a result regulation of production and emission under the Montreal Protocol on Substances that Deplete the Ozone Layer and its Adjustments and Amendments.

Concentrations of CFC-11 peaked around 1992 and then started decreasing. CFC-12 increased slowly, but growth has almost stopped in recent times. CFC-113 growth stopped in the early 1990s, and over the last decade has shown a trend of decreasing slightly. Concentrations of HCFC-141b and HCFC-142b are increasing linearly. Concentrations of CCl₄ are decreasing slowly. Concentrations of CH₃CCl₃ peaked around 1992 and then clearly started to decrease.

5. Surface Ozone (O₃)

Ozone (O_3) plays important roles in the atmospheric environment through radiative and chemical processes. It absorbs UV radiation in the stratosphere, making a temperature profile, and circulates the atmosphere with its absorbed energy. It also absorbs IR radiation in the troposphere, and is thus one of the greenhouse gases.

Variation in the concentration of O_3 near the surface, so-called surface ozone, reflects various processes there. While some of the O_3 in the troposphere comes from the stratosphere, the rest is chemically produced there through oxidation of CO or hydrocarbons in the presence of rich NO_x.

Many stations at various locations measure the concentration of surface ozone. As the seasonal and interannual variations are relatively large, it is difficult to identify a global long-term trend.

6. Carbon Monoxide (CO)

Carbon Monoxide (CO) is not a greenhouse gas, but brings influences the concentrations of greenhouse gases by affecting hydroxyl radicals (OH). Its concentration in northern high latitudes has been increasing since the mid-19th century. The mean global concentration was 98 ppb in 2002. The concentration is high in the Northern Hemisphere and low in the Southern Hemisphere, suggesting substantial anthropogenic emissions in the Northern Hemisphere.

Although the global concentration of CO was increasing before the mid-1980s, the growth stopped or the concentration decreased after then (WMO, 1999a). There was large fluctuation in the growth rate, however, with high positive rates followed by high negative rates in northern latitudes and southern low latitudes from 1997 to 1999. The growth rates in the Northern Hemisphere increased again in 2002.

Monthly mean concentrations show a seasonal variation with large fluctuations in the Northern Hemisphere and small fluctuations in the Southern Hemisphere. This seasonal cycle is driven by industrial emissions, biomass burning, large-scale transportation, and variations in OH concentration which acts as a sink.

7. Nitrogen Monoxide (NO) and Nitrogen Dioxide (NO₂)

Nitrogen oxides (NO_x, i.e., NO and NO₂) are not greenhouse gases, but influence concentrations of important greenhouse gases by affecting OH. In the presence of NO_x, CO and hydrocarbons are oxidized to produce ozone (O₃), which affects the Earth's radiative balance as a greenhouse gas and the oxidization capacity of the atmosphere by reproducing OH.

Most of the stations reporting NO_x data to the WDCGG are located in Europe. NO_x has large temporal and geographic variability, and it is difficult to identify a long-term trend. In Europe, NO_2 concentrations are generally higher in southern regions than in northern regions.

8. Sulphur Dioxide (SO₂)

Sulphur Dioxide (SO₂) is not a greenhouse gas but a precursor of atmospheric sulphate (H_2SO_4) aerosol. Sulphate aerosol is produced by SO₂ oxidation through photochemical gas-to-particle conversion. SO₂ has been a major source of acid rain and deposition throughout industrial times.

Most of the stations reporting SO_2 data to the WDCGG are located in Europe. Generally, in Europe, SO_2 concentrations are higher in southern regions than in northern regions.

1. Introduction

Human activities have been shown to have major impacts on the global environment. Since the beginning of the industrial revolution, mankind has increasingly made use of land, water, minerals and other natural resources, and future population and economy growth will result in further increases in our impact on the environment. As the global climate, biogeochemical processes and natural ecosystems are closely interlinked, changes in any one of these systems may affect the others and be detrimental to humans and other organisms. Emissions of man-made gaseous and particulate matter alter the energy balance of the atmosphere, and consequently affect interactions between the atmosphere, hydrosphere, and biosphere. Nevertheless, we do not yet have a sufficient understanding of either the chemical processes that occur within the atmosphere or the interrelationships between the atmosphere. the hydrosphere, and the biosphere. This lack of understanding regarding the chemical processes of the atmosphere and the oceans is due mainly to a paucity of observation data.

The World Meteorological Organization (WMO) launched the Global Atmosphere Watch (GAW) Programme in 1989 to promote systematic and reliable observation of the global environment, including greenhouse gases (CO₂, CH₄, CFCs, N₂O, etc.) and other related gases (e.g., CO, NO_x, and SO₂) in the atmosphere. In October 1990, the WMO established the World Data Centre for Greenhouse Gases (WDCGG) at the Japan Meteorological Agency (JMA) in Tokyo as one of the GAW World Central Facilities to collect, archive, and distribute data regarding greenhouse and related gases in the atmosphere and oceans. In August 2002, the WDCGG took over the role of the Data Centre for Surface Ozone from the Norwegian Institute for Air Research (NILU) and began to collect surface ozone data from a number of observation sites throughout the world participating in GAW and other scientific monitoring programmes (Appendix: LIST OF OBSERVING STATIONS).

With regard to issues involving global warming, the Kyoto Protocol, in which quantified emission limitations and reductions were agreed upon based on the United Nations Framework Convention on Climate Change, came into force in February 2005. Therefore, global observation data and related information regarding greenhouse gases are becoming increasingly important. The WDCGG is required to swifter and smoother exchange of such data.

Since its establishment, the WDCGG has provided its users with data and other information through its regular publications: *Data Report, Data Catalogue, Data Summary,* and *CD-ROM* (Appendix: LIST OF WMO WDCGG PUBLICATIONS). All data and information are now available on the WDCGG web site, which aims to improve accessibility to data, information, and products in line with the Strategy of the Implementation of the Global Atmosphere Watch Programme (2001-2007) published in June 2001 and its Addendum for the Period 2005-2007 (WMO, 2001; WMO, 2004).

This strategy also requests that GAW facilities, including World Data Centres, build a data bank that can provide good analyses in cooperation with the scientific research community. To meet this request, the WDCGG has increased its analytical activities, and made the contents of the annual Data Summary more comprehensive. Global and integrated analyses used to monitor global changes in concentrations of greenhouse gases have become important tasks of the WDCGG Other important tasks include the revision and improvement of the contents of the Data Summary based on comments from data contributors and scientists, and to provide scientists and policy makers with more advanced analytical information. The WDCGG welcomes comments and suggestions regarding the Data Summary and its other publications. It is expected that the analytical information presented here will not only stimulate the use of data regarding greenhouse and other gases, but will also increase appreciation of the value of the GAW program.

The WDCGG thanks all the data contributors, including those involved in measurement at the numerous sites worldwide, for their efforts in maintaining the observation programme and for their continuous provision of data.

Mailing address:

0	
WMO V	Vorld Data Centre for Greenhouse Gases
(WDCG	G)
c/o Japan	Meteorological Agency
1-3-4, Ote	emachi, Chiyoda-ku, Tokyo 100-8122, Japan
E-mail:	wdcgg@hq.kishou.go.jp
Telephone:	+81-3-3287-3439
Facsimile:	+81-3-3211-4640
Web Site:	http://gaw.kishou.go.jp/wdcgg.html

Note:

The WDCGG requests acknowledgement from data users by the appropriate citation of the contributors and data sources when they use any data or information provided by the WDCGG Data users should refer to the GAW Station Information System (GAWSIS) at the GAW web site (http://www.wmo.ch/web/arep/gaw/gaw_home.html) or the WDCGG web site for details on the GAW Country Contacts, what measurements are being made, and the investigators responsible. The information at the GAWSIS and the World Data Centres is updated in cooperation with the WMO Secretariat.

2. Analysis

The WDCGG collects, archives and distributes observation data regarding concentrations of greenhouse gases, and also provides analytical results on the collected data.

This publication presents long-term trends and seasonal variations in concentrations of CO_2 , CH_4 and CO derived for the global, hemispheric and zonal means. For N₂O global and hemispheric long-term trends are presented. For halocarbons, surface O_3 , NO_x and SO_2 , only time series of monthly mean concentrations are presented because only a small number of stations have reported observation data.

The following sections explain the methods used for analysis for CO_2 , CH_4 , CO and N_2O . The respective chapters should be referred to for the other parameters.

2-1. Site selection for global, hemispheric and zonal mean concentrations

As ground-based stations observe air at a lower boundary layer, the measured concentrations of gases, such as CO_2 , CH_4 and CO, which have sources and/or sinks on the Earth's surface, may show localised characteristics in a lower boundary layer depending on weather conditions, *etc.*

These data incorporate very useful information for investigating the power of local sources and sinks. However, for global scale analysis, it is necessary to use data that can be considered representative concentrations averaged over a reasonable geographical area and in a whole boundary layer, *i.e.*, background data. Background data can usually be extracted from the total data through appropriate selection criteria, which are chosen for each site.

In this study, observation sites that were considered to offer data appropriate for the purpose were selected. In some cases, *e.g.*, where the observatory was in a marine area, even data without any selection criteria may be regarded as background data. In contrast, it could be difficult to select background data in other cases where the observatory was located in woodland or near a densely populated city.

Final site selection was performed objectively as described below, based on data in a reasonable scattered range of the total data in the same latitudinal zone. The latitudinal distribution of the annual mean concentrations normalised with respect to the South Pole, which were calculated from the monthly mean concentrations, was fitted with the loess model curve (Cleveland *et al.*, 1988). Sites with concentrations lying more than $\pm 3\sigma$ from this curve were rejected and this process was iterated until all of the remaining sites lay within $\pm 3\sigma$ from the fitted curve. The selected sites are listed in Plate 3.1 for CO₂, Plate 4.1 for CH₄, and Plate 8.1 for CO with asterisks.

2-2. Trend analysis

The time series of greenhouse gas concentrations, which is often produced by removing local effects with very short-term variations, represents integration of variations on different time scales. The two major components of variation in CO_2 concentration are seasonal variations and long-term trends. Many researchers have attempted to decompose observation data into these two components by objective curve fitting (Keeling *et al.*, 1989), digital filtering (Thoning *et al.*, 1989; Nakazawa *et al.*, 1991), or both (Conway *et al.*, 1994; Dlugokencky *et al.*, 1994).

Trend analysis approximating variations in the sum of seasonal variations by Fourier harmonics and longterm trends by low-pass filtering with a cut-off frequency of 0.48 cycles/year was performed for each selected site. Refer to the previous Summary (WDCGG No. 22) for details.

2-3. Estimation of value for periods without data for zonal mean calculation

The number of sites used for trend analysis outlined above varied during the analysis period. Moreover, data were frequently excluded due to pauses in the observation. When the calculations are performed without considering changes in the number of the sites used in the analysis, the values, such as the zonal growth rate, fluctuate with the change in the number of available sites. These fluctuations were particularly evident in the early period when few sites were available.

However, if we select only those sites for which data are available throughout the whole analysis period, the data from many newly established sites will not be reflected in the analysis. To use as many sites as possible and to avoid gaps accompanying changes in the number of sites, the estimated values for the periods for which no data were included in the zonal mean calculations. The values were estimated by interpolation and extrapolation as follows.

First, sites requiring interpolation were selected. A provisional seasonal variation was calculated from the longest consecutive data set for each site with all the same Lanczos filters (Duchon, 1979) as described in the previous Summary. Then, linear interpolation was performed for the data from which the provisional seasonal variation was subtracted. The complete variation was then retrieved by adding the provisional seasonal variation.

Next, the sites requiring extrapolation were selected. The provisional long-term trend and the seasonal variation were calculated from the interpolated data set with the same filter. Extrapolation was then performed for the long-term trend as its growth rate traces the zonal mean growth rate calculated from those of the other sites in the same latitudinal zone. Subsequently, the complete variation was retrieved by adding the site's own provisional seasonal variation. Here, each zone was created every 30° of latitude.

The zonal mean concentrations were calculated from the continuous data set, derived in the above procedure, by determining the arithmetic mean for the sites included in each latitudinal zone for every 20° or 30° . The zonal mean in the early stage of the analysis period may have lower accuracy than that in the latest stage. Although the data sets were partly estimated, the completeness of data was assumed to be advantageous for trend analysis of the zonal mean.

2-4. Calculation of global and hemispheric means

Global and hemispheric means were calculated by averaging the zonal means, taking into consideration the area ratio of each latitudinal zone.

The deseasonalised long-term trend and growth rate for the globe, both hemispheres and each latitudinal zone were calculated again with the filter from the global, hemispheric and zonal means. To derive the trend for the whole period, we assumed provisional data extending from both ends followed the linear trend for the whole period. Therefore, analyzed trends at both ends may depart from the actual values.

Here, we summarise the characteristics of global, hemispheric and zonal mean concentrations by presenting the time series of monthly mean concentrations, deseasonalised long-term trends, annual growth rates and the averaged seasonal cycle.

Plate 3.1 Monthly mean CO_2 concentrations for all sites reported to the WDCGG illustrated in colors that change with the concentration. The sites are set from north to south. Though some stations reported data at two or three different altitudes, only data at the lowest altitudes are illustrated. The monthly value at the site which has submitted only original (hourly) data before selection is calculated by the WDCGG as an arithmetric mean, and may become high for reflecting the concentration influenced in plant breathing at nighttime in the lower boundary layer. Site index with an asterisk shows the site used in the analysis shown in Plate 3.2.

Plate 3.2 Variation of zonally averaged monthly mean CO_2 concentrations (top), deseasonalized concentrations (middle), and growth rates (buttom). Zonally averaged concentrations are calculated for each 20° zone. Deseasonalized concentrations and growth rates are derived as described in Chapter 2.

3. Carbon Dioxide (CO₂)

Basic information on CO₂ with regard to environmental issues

Carbon dioxide (CO₂) is a significant greenhouse gas that has strong absorption bands in the infrared region and is the largest contributor to the greenhouse effect. CO₂ contributed to 60% of the radiative forcing due to the increase in well-mixed greenhouse gases after the industrial revolution (IPCC, 2001).

The balance between emission and absorption at the surface of the earth or ocean determines the concentration of CO_2 in the atmosphere. About 750 Gigatonnes of carbon is stored in the atmosphere as CO_2 . This carbon in atmospheric CO_2 is exchanged with two other large reservoirs, the terrestrial biosphere and the ocean. The CO_2 is exchanged between the atmosphere and terrestrial biosphere mainly through absorption by photosynthesis and emission from plant respiration and decomposition of organic soils. These biogenic activities vary with season, resulting in large seasonal variations in CO₂ levels. Transport of CO₂ from the atmosphere to the ocean or in the opposite direction occurs according to the differences in CO₂ concentration, which varies with season and sea region.

The atmospheric CO₂ concentration has never exceeded the current level during the past 420,000 years (IPCC, 2001). The levels of anthropogenic emission of CO₂ have been increasing since the 18th century, and the emitted CO_2 has been distributed into the atmosphere, oceans and terrestrial biosphere, which serve as reservoirs of CO_2 in the global carbon cycle. However, the whole global carbon cycle, which is comprised mainly of CO₂, has not yet been revealed. About half of this anthropogenic CO_2 emission has increased CO_2 in the atmosphere and the rest has been removed by sinks, including the terrestrial biosphere and ocean uptake. However, the amount of removal depends strongly on the year (Figure 3.1).

Carbon isotopic studies have demonstrated the importance of the terrestrial biosphere and oceans as sources and sinks (Francey *et al.*, 1995; Keeling *et al.*, 1995; and Nakazawa *et al.*, 1993, 1997a). On the other hand, the atmospheric O_2 content is dependent mainly on O_2 removal by burning of fossil fuels, and O_2 release from the terrestrial biosphere. Therefore, the uptake of carbon by the terrestrial biosphere and the ocean can be evaluated from O_2 (O_2/N_2) measurements combined with CO_2 measurements (IPCC, 2001). IPCC (2001) showed that the ocean and the terrestrial biosphere respectively absorbed about 27% and 22% of CO_2 emitted from the burning of fossil fuel in the 1990s, while the remaining 51% contributed to the annual increase in CO_2 level in the atmosphere.

Fig. 3.1 Time series of annual mean CO_2 growth rates in the atmosphere calculated from observation data (column) and from anthropogenic emission data (thin line with dots). CO_2 emissions were calculated by CDIAC based on the United Nations Energy Statistics, and the observed growth rate was calculated by the WDCGG.

Large amounts of CO_2 are exchanged among these reservoirs, and the global carbon cycle is coupled with the climate system on seasonal, interannual and decadal time scales. Accurate understanding of the global carbon cycle is essential for the estimation of future CO_2 concentrations in the atmosphere.

The map at the beginning of this chapter shows observation sites that submitted CO_2 concentration data to the WDCGG by December 2004. These sites include *in situ* stations performing continuous measurement as well as flask-sampling stations, such as those in the NOAA/CMDL network. In addition to such fixed stations, mobile stations on ships and aircraft, and other stations that measure event data also report their data to the WDCGG (Appendix: LIST OF OBSERVATION STATIONS).

Annual variations in CO₂ in the atmosphere

The monthly mean CO_2 data from all the stations that submitted to the WDCGG are shown in Plate 3.1. In this plate, concentration levels are illustrated in different colours. Global, hemispheric and zonal mean background concentrations were analysed based on selected stations (see the caption to Plate 3.1). The three-dimensional representations of latitudinal distribution of atmospheric CO_2 concentration, deseasonalized concentrations and the growth rate are shown in Plate 3.2. These three-dimensional representations (CO₂ carpets) indicate that the amplitudes of seasonal concentration variations are large in the northern mid-latitudes, but the seasonal variation is indistinct in the Southern Hemisphere; the increases in concentration occur in the Northern Hemisphere prior to the Southern Hemisphere, and propagate to the Southern Hemisphere, and the inter-

Fig. 3.2 Monthly mean concentrations (thick line and dots) and deseasonalized long-term trends (thin line) (top), and growth rate (bottom) from 1983 to 2002 for the globe.

annual variation of growth rates occurs largely in the Northern Hemisphere.

Figure 3.2 shows the global monthly mean concentrations with the long-term trends and growth rate from 1983 to 2002. Based on the results of ice core studies, the concentration of carbon dioxide in the atmosphere prior to the 18th Century (the pre-industrial period) was about 280 ppm (IPCC, 2001). The global average concentration in 2002 was 374 ppm.

Fig. 3.3 Monthly mean concentrations (thick lines and dots) and deseasonalized long-term trends (thin lines) from 1983 to 2002 for each 30° latitudinal zone.

The mean global growth rate during this period (1983–2002) was 1.6 ppm/year. The global growth rate of CO_2 shows a large inter-annual variation.

During the above period, the maximum and minimum global growth rates were 3.2 ppm/year in April 1998 and 0.4 ppm/year in March 1992, respectively. High growth rates exceeding 2 ppm/year were seen in 1987/1988 and 1997/1998.

Figure 3.3 shows the monthly mean concentrations and their long-term trends from 1983 to 2002 for each 30° latitudinal zone. Long-term increases in both hemispheres and seasonal variations in the Northern Hemisphere were clearly observed.

As shown in Figure 3.4, the growth rates fluctuated between -0.3 and 3.5 ppm/year, and variability in the growth rate was relatively large in northern high latitudes. All growth rates were high in 1987/1988 and 1997/1998. On the other hand, negative values were recorded in northern high latitudes in 1992.

Changes in growth rate are also known to be associated with El Niño-Southern Oscillation (ENSO). El Niño events occurred in 1982/1983, 1986-1988, 1991/1992, 1993, 1997/1998 and 2002/2003, and with the exception of 1992, growth rates were high in these years. In addition to those at the surface, the CO_2 growth rates at high altitudes (8-13 km) over the Pacific Ocean are also known to have a similar relationship with ENSO (Matsueda et al., 2002). Ordinarily, there is an up-welling area with CO₂-rich ocean water in the eastern equatorial Pacific, and CO₂ is emitted from the ocean. However, El Niño events suppress this up-welling, which reduces CO₂ emission from the ocean. On the other hand, El Niño events result in high temperature anomalies in many areas globally, particularly in the Tropics, which increase CO₂ emission from the terrestrial biosphere by the enhanced respiration of plants and decomposition of organic matter in the soil (Keeling et al., 1995). Anomalously low precipitation, particularly in the Tropics, also enhances this effect by suppressing plant photosynthesis. These oceanic and terrestrial

processes have opposite effects during El Niño events.

However, Dettinger and Ghil (1998) suggested that the former effect was limited to the eastern equatorial Pacific, while the latter had a global scale. Thus, the CO_2 response, which is almost synchronous with El Niño events, is due to terrestrial biosphere changes associated with temperature variations on a global scale.

Carbon isotope (¹³C) studies have also shown that atmospheric CO₂ variations accompanying El Niño events are brought about by the flux between the terrestrial biosphere and the atmosphere, rather than between the ocean and the atmosphere (Keeling et al., 1989; Nakazawa et al., 1993; Morimoto et al., 2000). A strong El Niño event during 1997/1998, which was one of the most severe ENSO events in the 20th Century, brought about high temperatures and low precipitation levels on a global scale during this period (JMA, 1999; WMO, 1999b), resulting in frequent wildfires and drought in Southeast Asia. Such meteorological conditions perturbed the global carbon cycle (Watanabe et al., 2000), and are considered to intensify CO₂ emission from the terrestrial biosphere.

However, an exceptionally low CO₂ growth rate

Fig. 3.5 Time series of growth rates in the Tropics $(30^{\circ}N-30^{\circ}S)$ and a comparison with the Southern Oscillation Index inversed sign (top), SST anomaly in the eastern equatorial Pacific $(4^{\circ}N-4^{\circ}S, 150^{\circ}W-90^{\circ}W)$ (middle) and temperature anomaly on land in the Tropics calculated from NCEP reanalysis data (bottom). The solid lines show the growth rates, and the dots show each element (5-month running mean).

occurred even during the El Niño event in 1991/1992.

The injection of 14-20 Mt of SO_2 aerosols into the stratosphere by the Mt Pinatubo eruption in June 1991, which affected the radiation budget and atmospheric circulation (Hansen *et al.*, 1992; Stenchikov *et al.*, 2002), resulted in a drop in the global temperature. The reduced CO_2 emission from the terrestrial respiration and from decomposition of organic matter in the soil due to anomalous low temperatures (Conway *et al.*, 1994; Lambert *et al.*, 1995; Rayner *et al.*, 1999), and enhanced CO_2 absorption by intensive photosynthesis due to the increase in diffuse radiation (Gu *et al.*, 2003) contributed to the low CO_2 growth rate despite the El Niño event (Angert *et al.*, 2004).

Figure 3.5 shows a time series of CO₂ growth rates in the tropical area (< $\pm 30^{\circ}$ from 1983 to 2002), the SOI (Southern Oscillation Index), the SST anomaly in the eastern equatorial Pacific (4°N-4°S, 150°W-90°W) and the temperature anomaly on land in the Tropics calculated from NCEP (National Centers for Environmental Prediction) reanalysis data. In the figure, the SOI, the SST anomaly and the temperature anomaly are processed as a five-month running mean to display the seasonal variation. The growth rate in the Tropics showed good correspondence with the SOI and SST anomalies with a time lag except in 1992. In addition, the growth rate in the Tropics also showed good correspondence with the temperature anomaly on land in the Tropics, including 1992. These results suggested that the growth rate is related to ENSO events, but that temperature anomalies on tropical land have the closest relationship with CO₂ growth rate in the Tropics. These observations suggest a strong influence of the tropical biosphere on tropical CO₂ concentration.

Seasonal cycle of CO₂ in the atmosphere

Figure 3.6 shows average seasonal cycles for each 30° latitudinal zone from which the long-term trends were subtracted.

Amplitudes of seasonal cycles are clearly large in

northern high and mid-latitudes and small in the

Southern Hemisphere. Ocean uptake (Ramonet *et al.*, 1996) and biomass burning (Wittenberg *et al.*, 1998) are thought to influence the seasonal variation. However, these large seasonal cycles in the Northern Hemisphere are characterized by rapid decreases from June to August and large returns from September to December. They are the result of the activities of the terrestrial biosphere, *i.e.*, CO_2 absorption by photosynthesis, emission by respiration of vegetation, and decomposition of organic matter by microbes in the soil (*e.g.*, Nakazawa *et al.*, 1997b).

In northern high and low latitudes, the occurrences of their maximum concentrations are delayed by one or two months. Minimum concentrations appeared in August in northern high and mid-latitudes and in September in northern low latitudes. The peak in low latitudes is delayed because the seasonal variation in high latitudes takes some time to reach the low latitudes (Tanaka *et al.*, 1987), and the seasonal cycle of terrestrial biosphere activity at low latitudes is delayed against that in the mid-latitudes due to the courses of the wet and dry seasons (Nemry *et al.*, 1996).

In the Southern Hemisphere, the seasonal variations showed small amplitudes with a half-year delay due to small amounts of net emission and absorption by the terrestrial biosphere. The seasonal variations of northern mid-latitudes and southern midlatitudes seemed to be superimposed in the southern low latitudes (0-30°S), while the amplitude was small, suggesting that the large seasonal variation in the Northern Hemisphere influences the Southern The direct influence of sources and Hemisphere. sinks in the Southern Hemisphere might be partially cancelled by propagation of the out-of-phase seasonal variation from the Northern Hemisphere.

Fig. 3.7 Latitudinal distributions of monthly mean concentrations in January, April, July and October 2002.

Figure 3.7 shows the latitudinal distributions of CO_2 concentrations in January, April, July and October in 2002. Latitudinal gradients around 30°N were positive in January and April, and negative in July, corresponding to the large seasonal cycle in northern, mid- and high latitudes.

Annual variation of CO₂ in the upper atmosphere

The Meteorological Research Institute in Japan Meteorological Agency has carried out aircraft-based measurement of trace gases, such as CO2, at altitudes of 8-13 km over the western Pacific using a commercial flight between Japan and Australia in cooperation with the Japan Airlines Foundation, the Ministry of Land, Infrastructure and Transport, and Japan Airlines since 1993. The observation data are submitted to the WDCGG every year. Fig. 3.8 shows the time series of the atmospheric CO_2 concentrations, Deseasonalized concentrations and the growth rates in the upper air obtained by these measurements. We used continuous data obtained by linear interpolation. The trend analysis method used was the same as that described in section 2. The CO_2 concentrations increased with seasonal variations, similarly to those on the surface. The seasonal variations observed over the Northern Hemisphere also reflected those on the surface, but the amplitudes were smaller.

Fig. 3.8 Time series of CO_2 concentrations (dots), deseasonalized concentrations (dashed lines), and growth rates (solid lines) observed at latitudinal zones of 15-20°N and 10-15°S at altitudes of 8–13 km over the western Pacific.

4. METHANE (CH₄)

:*IN SITU* STATION :FLASK STATION :FLASK SAMPLING (SHIP)

1980/01

Plate 4.1 Monthly mean CH₄ concentrations for all sites reported to the WDCGG illustrated in colors that change with the concentration. The sites are set from north to south. Though some stations reported data at two or three different altitudes, only data at the lowest altitudes are illustrated. The monthly value at the site which has submitted only original (hourly) data before selection is calculated by the WDCGG as an arithmetric mean. Site index with an asterisk shows the site used in the analysis shown in Plate 4.2.

Plate 4.2 Variation of zonally averaged monthly mean CH_4 concentrations (top), deseasonalized concentrations (middle), and growth rates (buttom). Zonally averaged concentrations are calculated for each 20° zone. Deseasonalized concentrations and growth rates are derived as described in Chapter 2.

4. Methane (CH₄)

Basic information on CH₄ with regard to environmental issues

Methane (CH₄) is the second most significant greenhouse gas, but is estimated to have 21 times as much radiative forcing as CO₂ per molecule. From 1000 to 1800 A.D., the concentration of CH₄ was about 700 ppb (Etheridge *et al.*, 1998). CH₄ contributed to 20% of the radiative forcing due to increases in levels of greenhouse gases after the industrial evolution (IPCC, 2001).

Atmospheric CH₄ is produced mainly by anaerobic digestion and combustion of fossil fuel, and is removed by reaction with hydroxyl radicals (OH). CH_4 is emitted from both natural and anthropogenic sources, including natural wetlands, oceans, landfills, rice paddies, enteric fermentation, gas drilling and biomass burning. Of the various emissions, 60-80% are estimated to have a relationship with anthropogenic Particularly, the increases in energy activities. consumption with landfills, sewage disposal, and fossil fuel use in urban cities have resulted in high concentrations of CH₄ in Asia (Bartlett et al., 2004). CH₄ is destroyed by reaction with OH in the troposphere and the stratosphere, reaction with chlorine atoms and oxygen atoms in the excited $O(^{1}D)$ state in the stratosphere and soil absorption. CH₄ is one of the most important water vapour sources in the stratosphere. The atmospheric lifetime (adjustment time) of CH_4 was estimated to be 12 years (IPCC, 2001). However, the concentration of OH, which decomposes CH₄, is affected by ambient temperature and humidity. In addition, emissions from some sources are dependent on temperature. Therefore, information regarding sources and sinks of CH₄ must be further improved to estimate the atmospheric CH₄ budget.

Analyses of confined air in ice cores in Antarctica and Arctic areas showed that the present CH_4 concentration has not been exceeded during the past 420,000 years (IPCC, 2001). The CH_4 concentration before the industrial revolution was 700-800 ppb, showing a rapid increase thereafter. However, the increase was very slow in a few years.

The observation sites that submitted CH_4 concentration data to the WDCGG are shown on the map at the beginning of this chapter.

Annual variation in CH₄ levels in the atmosphere

The monthly mean CH_4 data from all the stations that submitted to the WDCGG are shown in Plate 4.1. In this plate, concentration levels are illustrated in different colours. Global, hemispheric and zonal mean background concentrations were analysed based

on selected stations (see the caption for Plate 4.1). The three-dimensional representations of latitudinal distribution of atmospheric CH₄ concentration, deseasonalized concentrations and the growth rate are shown in Plate 4.2. These three-dimensional representations (CH₄ carpets) indicate that the amplitudes of seasonal variation of concentration are larger in the Northern hemisphere than in the Southern Hemisphere; the increase in concentration occurs in the Northern Hemisphere prior to the Southern Hemisphere, and propagates the to Southern Hemisphere. The variation in growth rate occurs on a global scale. These features are similar to those of CO_2 (see Section 3). The latitudinal gradient of CH_4 concentration is large from the mid-latitudes in the Northern Hemisphere to the Tropics, suggesting that the major sources located in the high and middle northern latitudes and CH4 are destroyed with transportation to the Tropics where OH concentrations are high.

Measurements of CH_4 concentrations in Antarctic and Greenland ice cores indicated that the differences between northern and southern high latitudes ranged from 24 to 58 ppb from 1000 to 1800 A.D. (Etheridge *et al.*, 1998). At present, the difference between the northern and southern high latitudes is about 150 ppb (see Fig.4.3). This increase is presumably due to increased emissions in the Northern Hemisphere, which are mainly from anthropogenic sources.

Figure 4.1 shows the monthly mean concentrations with deseasonalized long-term trends and the growth rate from 1984 to 2003 for the globe. The global mean concentration in 2003 was 1787 ppb.

The growth rate of CH₄ shows a large interannual

Fig. 4.1 Monthly mean concentrations (thick line), deseasonalized long-term trends (thin line) (top) and growth rates (bottom) from 1984 to 2003 for the globe.

variation. During the analysis period, global growth rates reached a maximum in June 1984 at 14 ppb/year and a minimum in October 2000 at -1 ppb/year. The global growth rate of almost zero in 2000-2001 suggested that the global CH4 budget seemed to have been at a steady-state. Growth rates after the 1990s were generally lower than those during the 1980s. The global mean growth rates were 7 ppb/year for the whole period (1984-2003), 11 ppb/year for 1984-1990 and 5 ppb/year for 1991-2003. Lelieveld et al. (1998) noted that the decrease in global emission of CH₄ brought about a reduction in CH₄ growth rate in the 1990s. However, Dlugokencky et al. (1998) and Etheridge et al. (1998) reported that the decreased growth rates in the 1990s suggested that global CH₄ concentrations are approaching a steady-state where removal of CH₄ is balanced by emission from CH₄ sources.

Figure 4.2 shows the monthly mean concentrations and their deseasonalized long-term trends from 1984 to 2003 for each of the 30° latitudinal zones. The seasonal variations were small in the latitudinal zone from the equator to 30° S.

Figure 4.3 shows the deseasonalized long-term trends and growth rates for each of the 30° latitudinal zones. Deseasonalized long-term trends have the distinct feature of high concentrations in northern high and mid-latitudes and low concentrations in southern latitudes. Growth rates clearly decreased from the 1980s to 1990s for all of the latitudinal zones.

Fig. 4.2 Monthly mean concentrations (thick line) and deseasonalized long-term trends (thin line) from 1983 to 2003 for each 30° latitudinal zone.

Fig. 4.3 Deseasonalized long-term trends (top) and growth rates (bottom) for each 30° latitudinal zone.

Growth rates in the Southern Hemisphere and Northern Subtropics were large in 1991 and small in 1992 and 1993 for all latitudinal zones, and took negative values in the northern high latitudes in 1992.

The large increase in 1991 may have been caused by decreased OH radical levels due to a reduction in UV radiation as a result of the eruption of Mt. Pinatubo in 1991 (Dlugokencky *et al.*, 1996). Carbon isotope observations suggested that the decrease in 1992 was probably caused by a reduction in biomass burning at low latitudes (Lowe *et al.*, 1997), and analysis of monsoon activity suggested a role of a decrease in emission from wetlands and rice paddy fields due to low temperatures and enhancement of decomposition due to dryness (Lelieveld *et al.*, 1998). The decrease in 1992 may also have been due to an increase in OH radical concentration caused by stratospheric ozone depletion after the eruption of Mt. Pinatubo in 1991 (Bekki *et al.*, 1994).

Growth rates were large in 1998 for all of the latitudinal zones. Dlugokencky *et al.* (2001) suggested that the large growth rates in 1998 were due to increased emissions from the northern high latitudinal zones and the tropical wetlands due to high temperatures and increased precipitation, and partly due to the influence of biomass burning of the boreal forest mainly in Siberia. The CH_4 growth rate has been almost zero since 2000, but the reasons for this observation have yet to be determined.

Fig. 4.4 shows the interannual variations in global mean growth rate and global surface temperature anomaly. Global CH_4 growth rates varied along with global mean temperature anomalies in the 1990s, particularly during the period from 1992-1998. High temperature anomalies result in increased CH_4 emission from wetlands and increased removal by increased OH radical levels (Bekki *et al.*, 1997). The relation between global growth rates and temperature anomalies showed that the former effect exceeds the latter globally. A study of the relationship between

Fig. 4.4 Time series of the global mean CH_4 growth rates and their comparison with temperature anomalies on land from NCEP reanalysis data. The solid lines show the growth rates, and the dots show temperature anomalies (5-month running mean).

 CH_4 concentrations in ice cores or firn layers and global temperature anomalies also suggested that a large growth rate for the CH_4 concentration follows a high global mean temperature (Etheridge *et al.*, 1998). However, the global mean growth rate in the 1980s did not correspond with the global surface temperature anomaly in the same decade. This suggests that causes other than the global temperature anomaly resulted in the large increase rate in the 1980s.

Seasonal cycle of CH₄ in the atmosphere

Figure 4.5 shows average seasonal cycles for each of the 30° latitudinal zones. Seasonal cycles are brought about mainly by reaction with OH, a major CH₄ sink in the atmosphere. The strength and timing of the emission from CH₄ sources, such as wetlands and biomass burning, along with transportation of CH₄, also affect the seasonal cycle. The amplitudes of the seasonal cycle were large in the Northern Hemisphere. Unlike CO₂, amplitudes were large in the Southern Hemisphere except at low latitudes. The CH_4 seasonal cycle showed a minimum in winter and a maximum in summer in both hemispheres. The seasonal variation of CH4 is almost consistent with that of OH, which reacts chemically with CH₄. Southern low latitudes have a distinct semi-annual component, which is superimposed on the annual component of the seasonal cycle at southern mid-latitudes. The secondary maximum occurred in boreal winter due to the trans-hemisphere transportation of CH₄ from the Northern Hemisphere. This phenomenon was seen at stations located in the western Indian Ocean, e.g., Mahe Island and the Seychelles, and in the western and central equatorial Pacific, e.g., Cape Matatula and Samoa.

5. NITROUS OXIDE (N₂O)

:IN SITU STATION :FLASK STATION

Plate 5.1 Monthly mean N_2O concentrations for all sites reported to the WDCGG illustrated in colors that change with the concentration. The sites are set from north to south. Site index with an asterisk shows the site used in the analysis shown in Fig. 5.1.

5. Nitrous Oxide (N₂O)

Basic information on N₂O with regard to environmental issues

Nitrous oxide (N₂O), which is a relatively stable gas in the troposphere, is a greenhouse gas with an "adjustment-time" of 114 years. At present, radiative forcing of N₂O is estimated at 0.15 W/m², which is 6% of the total from all of the long-lived and globally mixed greenhouse gases (IPCC, 2001). The atmospheric concentration of N₂O increased steadily from about 270 ppb in pre-industrial times and is now 16% higher than in 1750 (IPCC, 2001).

 N_2O is emitted into the atmosphere from natural and anthropogenic sources, including the oceans, soil, combustion of fuels, biomass burning, fertiliser use and various industrial processes. One-third of the total amount of emission is considered to be from anthropogenic sources. N_2O is removed from the atmosphere mainly by photo-dissociation in the stratosphere. However, even at this stage, the estimated amounts from sources and sinks have not yet been balanced.

Annual variation of N₂O in the atmosphere

The map at the beginning of this chapter shows observation sites that have submitted N₂O data to the WDCGG. The monthly mean N₂O data from all stations submitted to the WDCGG are shown in Plate 5.1. In this plate, concentration levels are illustrated in different colours. The time series of monthly mean concentrations are plotted in Figure 5.1 using a solid line for the stations located in the Northern Hemisphere and a faint line for those in the Global mean concentration Southern Hemisphere. was 318 ppb in 2003. The observation data in this figure did not show large fluctuations. The concentrations are increasing in both hemispheres, and the difference between both hemispheres is small.

At some stations, the average growth rate decreased considerably between 1991 and 1993, but then returned to almost the same rate as that observed during the 1980s. This was suggested to be due to a decrease in the use of nitrogen-based fertilisers, lower biogenic emissions and larger stratospheric losses due to volcanic-induced circulation changes (IPCC, 2001)

Fig. 5.1 Monthly mean concentrations (thin lines) and deseasonalized long-term trends (thick lines) from 1988 to 2003 for the globe (solid line) and both hemispheres (faint lines).

6. HALOCARBONS

:IN SITU STATION :FLASK STATION

Plate 6.1 Monthly mean (a) CFC-11, (b) CFC-12, (c) CFC-113 concentrations for all sites reported to the WDCGG illustrated in colors that change with the concentration. The sites are set from north to south.

Plate 6.2 Monthly mean (a) HCFC-141b, (b) HCFC-142b, (c) CCl₄, (d) CH₃CCl₃ concentrations for all sites reported to the WDCGG illustrated in colors that change with the concentration. The sites are set from north to south.

6. Halocarbons (CFCs, HCFCs, CCl₄ and CH₃CCl₃)

Basic information on halocarbons with regard to environmental issues

"Halocarbon" is a general term for carbon compounds containing one or more halogens, i.e., fluorine, chlorine, bromine or iodine. Most of the products. halocarbons are industrial The chlorofluorocarbons (CFCs) are halocarbons containing fluorine and chlorine but no hydrogen, while hydrochlorofluorocarbons (HCFCs) also contain hydrogen. Carbon tetrachloride (CCl₄) and methyl chloroform (CH₃CCl₃) are produced industrially, while methyl chloride and methyl bromide are halocarbons with natural sources. Halocarbons have very low concentrations in the atmosphere, but most have large global warming potential. Thus, halocarbons contributed to 14% of radiative forcing due to increases in levels of long-lived and globally mixed greenhouse gases since the industrial revolution (IPCC, 2001).

Halocarbons are clear, odourless, and innocuous substances, which are readily gasified and liquefied and have low surface tension. Thus, they were commonly used as refrigerants, propellant and detergents for semiconductors, which resulted in a rapid increase in their atmospheric concentrations until the mid-1980s. Halocarbons containing chlorine and bromine were found to deplete the ozone layer. The Montreal Protocol on Substances that Deplete the Ozone Layer and its Adjustments and Amendments regulate the production and transportation of ozonedepleting compounds. As a result, global concentrations of CFC-11, CCl₄ and CH₃CCl₃ have begun to decrease; the global growth of CFC-113 had stopped by 1996, and that of CFC-12 has decelerated substantially.

A decrease in stratospheric ozone leads to the cooling of the lower stratosphere. However, the increase in halocarbons has a net positive radiative forcing effect on global warming because the positive direct radiative forcing of halocarbons is greater than the negative indirect radiative forcing due to ozone depletion (WMO, 1999a).

CFCs are dissociated mainly by ultraviolet radiation in the stratosphere, and their lifetimes are generally long (*e.g.*, about 50 years for CFC-11). However, HCFCs and CH₃CCl₃, which contain hydrogen, react with hydroxyl radicals (OH) in the troposphere and thus have relatively short lifetimes (*e.g.*, about 5 years for CH₃CCl₃). As the reaction with OH in the troposphere is a major sink for CH₃CCl₃, global measurements of CH₃CCl₃ provide an accurate estimate of the global concentration of OH (Prinn *et al.*, 2001).

Annual variation of halocarbons in the atmosphere

The map at the beginning of this chapter shows observation sites that have submitted halocarbon data to the WDCGG. The monthly mean CFC-11, CFC-12, CFC-113 data from all stations submitted to the WDCGG are shown in Plate 6.1. The monthly mean HCFC-141b, HCFC-142b, CCl_4 and CH_3CCl_3 data from all stations submitted to the WDCGG are shown in Plate 6.2. Figure 6.1 shows the time series of monthly mean concentrations of CFC-11, CFC-12 and CFC-113.

Figures 6.2 and 6.3 show the corresponding data for HCFCs, and CCl_4 and CH_3CCl_3 , respectively. All monthly data from each station are plotted in these figures. The absolute values of concentrations differ from station to station, suggesting that standard gases may not be traceable at each station.

Figures 6.1 and 6.3 showed significant increases in concentrations of all compounds during the 1980s in both hemispheres. Long-term trends since around 1990 for each compound are as follows:

CFC-11:	Concentrations were at a maximum around 1992 in the Northern Hemisphere and about one year later in the Southern Hemisphere.
CFC-12:	The growth rates have declined since around 1990 and are now nearly zero in both
	hemispheres.
CFC-113:	Concentrations were at a maximum around
	1992 in the Northern Hemisphere and around
	1994 in the Southern Hemisphere.
	Concentrations are currently almost constant or
	decreasing slowly in both hemispheres.
HCFC-141b:	Concentrations are increasing linearly.
HCFC-142b:	Concentrations are increasing linearly.
CCl₄:	Concentrations were at a maximum around
·	1991 in both hemispheres. Since then, they
	have been decreasing slowly.
CH ₃ CCl ₃ :	Concentrations were at a maximum around
	1992 in the Northern Hemisphere and around
	1993 in the Southern Hemisphere. They have
	been decreasing almost linearly since then.

Comparison of the stations using identical standard gases revealed that the concentration differences between the two hemispheres were large for all compounds except HCFCs in the 1980s. However, the differences have been decreasing following each compound's concentration peak. The increases in concentrations of HCFCs are the result of their continued use as substitutes for CFCs.

Fig. 6.1 Time series of monthly mean concentrations of (a) CFC-11, (b) CFC-12 and (c) CFC-113. Solid circles show the sites located in the Northern Hemisphere and open circles show the sites located in the Southern Hemisphere. Data at all sites reported to the WDCGG are shown.

Fig. 6.2 Time series of monthly mean concentrations of HCFC-141b (upper panel) and HCFC-142b (lower panel). Solid circles show the sites located in the Northern Hemisphere and open circles show the sites located in the Southern Hemisphere. Data at all sites reported to the WDCGG are shown.

Fig. 6.3 Time series of monthly mean concentrations of (a) CCl₄ and (b) CH₃CCl₃. Solid circles show the sites located in the Northern Hemisphere and open circles show the sites located in the Southern Hemisphere. Data at all sites reported to the WDCGG are shown.

Plate 7.1 Monthly mean O_3 concentrations for all sites reported to the WDCGG illustrated in colors that change with the concentration. The sites are set from north to south. It is shown that an asterisk incidental to station index is one peak type in the analysis shown in Fig 7.1.

7. Surface Ozone (O₃)

Basic information on surface ozone (O₃) with regard to environmental issues

Ozone (O_3) plays an important role in the atmospheric environment through radiative and chemical processes. O3 absorbs UV radiation in the stratosphere, and this energy influences the temperature profile and circulation in the stratosphere. O₃ also absorbs IR radiation, and is thus one of the greenhouse gases in the troposphere. Tropospheric O₃ accounts for less than 10% of atmospheric O₃, but tropospheric O₃ is the third most important greenhouse gas after CO₂ and CH₄ (IPCC, 2001), and is also a chemically reactive gas producing OH radicals that control atmospheric concentrations of many greenhouse gases, such as CH4 through chemical reactions. O₃ differs markedly from other greenhouse gases (such as CO₂, CH₄, N₂O and CFCs). O₃ does not have direct natural sources, but is produced in the atmosphere, and its concentration ranges from around 10 ppb near the remote Earth's surface to about 10 ppm in the stratosphere. In contrast to O_3 , CO_2 , CH_4 , N₂O and halocarbons (e.g., CFCs) are relatively uniform-hence the term "well-mixed greenhouse gases".

A variation in O_3 near the Earth's surface (the socalled "surface O_3 ") reflects various reactions involving O_3 . Tropospheric O_3 is partly transported from the stratosphere, while the rest is produced chemically in the troposphere itself, especially near the Earth's surface where various O_3 precursors are emitted. At the same time, O_3 is destroyed mainly through chemical reactions with OH radicals and deposition at the Earth's surface.

 O_3 is produced in the troposphere through oxidation of precursors, *i.e.*, CO or hydrocarbons in the presence of high concentrations of NO_x. As mentioned in following chapters, most of these substances (the socalled "O₃ precursors") are anthropogenic. As they

Fig. 7.1 Average seasonal cycles of single-peak type for each 30° latitudinal zone from which the long-term trends were subtracted.

are localized and their lifetimes are generally short, the distribution of surface O_3 , produced from anthropogenic precursors, is also localized and time-variant.

Surface O_3 is estimated to have increased since preindustrial times (IPCC, 2001).

Annual variation of surface O_3

The World Data Centre for surface O_3 was transferred from NILU to JMA in August 2002. The map at the beginning of this chapter shows observation sites that have submitted O_3 data to the WDCGG.

The monthly mean O_3 data from all stations submitted to the WDCGG are shown in Plate 7.1. In the plate, concentration levels are illustrated by different colours. Please note that the data on surface O_3 is reported in two units, *i.e.*, mixing ratio (ppb) and weight per volume (μ g/m³) at 25°C. Weights per volume (μ g/m³) are converted to mixing ratios (ppb) as follows:

$$X_{p}$$
 [ppb] = (R * T / M / P_{0}) * 10 * X_{g} [µg/m³]

where R is the molar gas constant (8.31451 [J/K/mol]), T is the absolute temperature reported by an individual station, M is the molecular weight of O₃ (47.9982), and P₀ is the standard pressure (1013.25 [hPa]).

The concentration of surface O_3 varies from station to station, many of which are located in Europe. Moreover, the seasonal and interannual variation is relatively large at most stations and so it is difficult to identify a general long-term trend in surface O_3 concentrations.

Figures 7.1 and 7.2 show average seasonal cycles from which the long-term trends were subtracted for each 30° latitudinal zone of a single- or multi-peak type. The seasonal cycles for each site can be divided into two types: a single-peak type that has a maximum monthly mean, and a multi-peak type that has more than one annual maximum. One single-peak type, the Southern Hemisphere site, is not shown in Figure 7.1. The maximum concentration of the single-peak type appears in April in northern high and low latitudes and in May in northern mid-latitudes. The delayed peak in the mid-latitudes may be attributed to the air pollution in Europe given that most mid-latitude stations are located on this continent. Relatively high spring maximum concentrations were observed at Sonnblick, Niwot Ridge, Assekrem and Mauna Loa, all of which are located at high altitudes (higher than

Fig. 7.2 Average seasonal cycles of multi-peak type for each 30° latitudinal zone from which the long-term trends were subtracted.

8. CARBON MONOXIDE (CO)

:*IN SITU* STATION :FLASK STATION :FLASK SAMPLING (SHIP)

Plate 8.1 Monthly mean concentrations of CO for all stations reported to the WDCGG. The stations are set from north to south. Station index with an asterisk shows the station used in the analysis shown in Plate 8.2.

Plate 8.2 Variation of zonally averaged monthly mean CO concentrations (top), deseasonalized concentrations (middle), and growth rates (buttom). Zonally averaged concentrations are calculated for each 20° zone. Deseasonalized concentrations and growth rates are derived as described in Chapter 2.

8. Carbon Monoxide (CO)

Basic information on CO with regard to environmental issues

Carbon monoxide (CO) is not a significant greenhouse gas as it absorbs little infrared radiation from the Earth. However, it does have an influence on oxidisation in the atmosphere through interaction with hydroxyl radicals (OH), which also react with methane, halocarbons and tropospheric ozone. The eventual indirect influence of current CO emission on radiative forcing has been estimated to be greater than the direct influence of N₂O (Daniel and Solomon, 1998). In addition, CO is identified in IPCC (2001) as an important indirect greenhouse gas.

Most of the significant sources and sinks of CO have been identified, but there are large uncertainties in the CO budget. Sources of atmospheric CO include fossil fuel combustion and biomass burning along with the oxidisation of both natural and anthropogenic methane and non-methane hydrocarbons (NMHC). Major sinks are primarily reaction with OH and surface deposition. The measurement of carbon isotopic partitioning in CO should provide constraints for reducing these uncertainties. Issues of calibration and the consistency of measurements between laboratories still remain a concern. CO measurements in ice cores have indicated that the CO concentration of about 50 ppb has not changed markedly during the last two millennia over central Antarctica and that it increased to 110 ppb in 1950 in Greenland (Haan and Raynaud, 1998).

Annual variation of CO in the atmosphere

The map at the beginning of this chapter shows observation sites that have submitted CO data to the WDCGG. The time series of monthly mean CO data from all the stations that submitted to WDCGG are shown in Plate 8.1. Concentration levels are illustrated by different colours. Global, hemispheric and zonal mean concentrations were calculated based on selected stations (see the caption for Plate 8.2).

The three-dimensional representations of latitudinal distribution of atmospheric CO concentration, deseasonalized concentrations and growth rate are shown in Plate 8.2. The concentrations are clearly dependent on latitude and exhibit seasonal variations.

Please note that the CO data are reported in various units, *i.e.*, ppb, μ g/m³-25°C, μ g/m³-20°C and mg/m³-25°C. All units are converted to ppb as follows:

$$\begin{split} X_p \, [ppb] &= (R \, \ast \, T \, / \, M \, / \, P_0) \, \ast \, 10 \, \ast \, X_g \, [\mu g / m^3] \\ X_p \, [ppb] &= (R \, \ast \, T \, / \, M \, / \, P_0) \, \ast \, 10^4 \, \ast \, X_g \, [mg / m^3] \end{split}$$

where R is the molar gas constant (8.31451 [J/K/mol]),

T is the absolute temperature reported by an individual station,

M is the molecular weight of CO (28.0101), and

P₀ is the standard pressure (1013.25 [hPa]).

Global monthly mean concentrations, their deseasonalized long-term trends and growth rates are shown in Figure 8.1.

Clear seasonal variations were seen. WMO (1999a) reported that the increasing trend in CO concentration of slightly less than 1% per year before the mid-1980s appears to have been reversed in the late 1980s, but the significant long-term global trend is not seen after 1991. Growth rates were high in 1993/1994, 1997/1998 and 2002, and low in 1992 and 1998/1999. The global annual mean concentration was about 98 ppb in 2002.

Figure 8.2 shows the monthly mean concentrations and their deseasonalized long-term trends for each 30° latitudinal zone. A seasonal variation is seen in both hemispheres. In the Northern Hemisphere, the concentration is higher in the winter season. Amplitudes of the seasonal cycle are larger in the Northern Hemisphere than in the Southern Hemisphere.

Figure 8.3 shows the deseasonalized long-term trends and growth rates for each 30° latitudinal zone. Deseasonalized long-term trends clearly showed that concentrations are highest in the northern mid-latitudes, suggesting intense anthropogenic CO sources in these regions. CO concentrations are generally higher in northern than in southern regions. A negative growth rate was seen in 1992 in all latitudes. Novelli *et al.* (1998) reported a clear decline in CO concentrations from late 1991 through mid-1993, with a subsequent recovery from mid-1993 through mid-1994. The

Fig. 8.1 Global monthly mean concentrations (thick line and dots) and deseasonalized long-term trends (thin line) (top) and the growth rate (bottom) from 1992 to 2002.

decline in CO concentrations almost coincides with the decrease in growth rate of CH_4 concentration, which can be ascribed to the variations in their common sink. Enhanced stratospheric ozone depletion due to the increase in volcanic aerosols from the eruption of Mt. Pinatubo in 1991 may have increased the concentration of OH, which reacts with both CO and CH_4 (Dlugokencky *et al.*, 1996). Increases in CO concentrations were observed from 1997 to 1998 in northern latitudes and southern low latitudes. This increase was attributed to the severe biomass burning

Fig. 8.3 Deseasonalized long-term trends (top) and growth rates (bottom) for each 30° latitudinal zone.

around Indonesia in late 1997 and that around Siberia between summer and autumn 1998 (Novelli *et al.*, 1998). Duncan *et al.* (2003) also suggested that CO emission in 1997 and 1998 was 19-32% greater than that in 1999. The concentrations returned to normal levels after 1999, but the growth rates in the Northern Hemisphere increased again substantially in 2002.

Seasonal cycle of CO in the atmosphere

Figure 8.4 shows the average seasonal cycles for each 30° latitudinal zone from which the long-term trends were subtracted. The seasonal cycle of CO is mainly driven by seasonal variations in OH concentration, which acts as a CO sink. Furthermore, emission and oxidation as CO sources and the largescale transportation of CO are additional factors, although the seasonality of emission and oxidation is relatively weak compared with that of the OH concentration. This seasonality and the roughly 2month lifetime of CO produce a sharp decrease in early summer and a relatively gradual increase in autumn. Semi-annual features evident in the southern low latitudes may be attributed to the cross-equatorial transportation of CO from the Northern Hemisphere.

Direct CO emission also brings about intense seasonal variation on some occasions. Novelli *et al.* (1998) showed with a model of a box representing the well-mixed northern layer and a box representing the southern boundary layer that seasonal cycles are strongly affected by changes in emission from biomass burning in both hemispheres. Using observation data for the upper troposphere, Matsueda *et al.* (1998) showed that high CO concentrations in southern low latitudes from October to November were enhanced by tropical biomass burning.

Plate 9.1 Monthly mean (a) NO_2 and (b) NO concentrations for all sites reported to the WDCGG illustrated in colors that change with the concentration. The sites are set from north to south.

9. Nitrogen Monoxide (NO) and Nitrogen Dioxide (NO₂)

Basic information on NO and NO₂ with regard to environmental issues

Nitrogen oxides (NO_x, *i.e.*, NO and NO₂) are not greenhouse gases, but affect hydroxyl radicals (OH), which control concentrations of methane (CH₄), carbon monoxide (CO) and hydrochlorofluorocarbons (HCFCs). In the presence of NO_x, CO and hydrocarbons are oxidised to produce ozone (O₃) in the troposphere, which is a greenhouse gas. Thus, NO_x can influence the Earth's radiative balance and, by generating OH, alter the oxidisation capacity of the atmosphere.

Sources of NO_x include fossil fuel combustion, biomass burning, lightning and soil (IPCC, 2001). The dominant sink of NO_x in the atmosphere is its nitric into acid conversion (HNO₃) and peroxyacetylnitrate (PAN), which are eventually removed by dry or wet deposition. In some cases, NO_x are removed from the atmosphere directly by dry Anthropogenic emission of NO_x is deposition. currently one of the major causes of acid rain and NO_x concentrations show deposition. large variability in both space and time because of the species' short lifetimes and uneven source distribution .

Annual variation of NO and NO₂

Observation stations that submitted data for NO_2 and NO to the WDCGG are shown on the map at the beginning of this chapter. Most of the contributing stations are located in Europe.

The time series of monthly mean NO and NO₂ data from all stations submitted to the WDCGG are shown in Plate 9.1. In this plate, concentration levels are illustrated in different colours. Please note that the data for NO_x are reported in various units, *i.e.*, ppb, $\mu g/m^3$ -25°C, $\mu g/m^3$ -20°C, $\mu gN/m^3$ -25°C and mg/m^3 -25°C. All units are converted to ppb as follows:

$$\begin{split} X_{p} \ [ppb] &= (R * T / M / P_{0}) * 10 * X_{g} \ [\mu g / m^{3}] \\ X_{p} \ [ppb] &= (R * T / M / P_{0}) * 10^{4} * X_{g} \ [mg / m^{3}] \\ X_{p} \ [ppb] &= (R * T / M_{N} / P_{0}) * 10 * X_{g} \ [\mu g N / m^{3}] \end{split}$$

where R is the molar gas constant (8.31451 [J/K/mol]), T is the absolute temperature reported by an individual station, M is the molecular weight of NO (30.00614) or NO₂ (46.00554), M_N is the atomic weight of N (14.00674), and P_0 is the standard pressure (1013.25 [hPa]).

As their sources are localised and their lifetimes are short, the distributions of NO and NO_2 are also localised and vary over time. Due to the high temporal variability of NO_2 concentrations for each observation site, it was difficult to identify a long-term trend. A number of stations located in southern Europe showed higher concentrations, and some stations exhibited a winter enhancement of NO_2 .

As the number of observation sites for NO is quite small, it is difficult to identify increasing or decreasing trends for NO concentrations.

10. SULPHUR DIOXIDE (SO₂)

:IN SITU STATION

Plate 10.1 Monthly mean SO₂ concentrations for all sites reported to the WDCGG illustrated in colors that change with the concentration. The sites are set from north to south.

10. Sulphur Dioxide (SO₂)

Basic information on SO₂ with regard to environmental issues

Sulphur dioxide (SO_2) is not a greenhouse gas, but is a precursor of atmospheric sulphuric acid (H_2SO_4) or sulphate aerosol. SO_2 is oxidised by hydroxyl radicals (OH) to form sulphuric acid, which then produces aerosols through photochemical gas-toparticle conversion. While the SO₂ reaction with OH is much slower than with NO₂, SO₂ dissolves readily in suspended liquid droplets in the atmosphere.

Sources of SO_2 include fossil fuel combustion by industry, biomass burning, volcanoes and the oxidation of dimethylsulphide (DMS) from the oceans (IPCC, 2001). Major SO_2 sinks are oxidation by OH and deposition onto wet surfaces. Anthropogenic SO_2 has caused acid rain and deposition throughout the industrial era. SO_2 concentrations show large variations in both space and time because of the species' short lifetime and uneven anthropogenic source distribution.

Annual variation of SO₂

The map at the beginning of this chapter shows observation sites that have submitted SO_2 data to the WDCGG. Most of the contributing stations are located in Europe.

The monthly mean SO₂ data from all stations submitted to the WDCGG are shown in Plate 10.1. In this plate, concentration levels are illustrated in different colours. Please note that the data for SO₂ are reported in various units, *i.e.*, ppb, μ g/m³, mg/m³ and μ gS/m³.

All units are converted to ppb as follows:

$$\begin{split} X_{p} \, [ppb] &= (R * T \, / \, M \, / \, P_{0}) * \, 10 * X_{g} \, [\mu g/m^{3}] \\ X_{p} \, [ppb] &= (R * T \, / \, M \, / \, P_{0}) * \, 10^{4} * X_{g} \, [mg/m^{3}] \\ X_{p} \, [ppb] &= (R * T \, / \, M_{S} \, / \, P_{0}) * \, 10 * X_{g} \, [\mu gS/m^{3}] \end{split}$$

where R is the molar gas constant (8.31451 [J/K/mol]), T is the absolute temperature reported by an individual station, M is the molecular weight of SO₂ (64.0648), M_S is the atomic weight of S (32.066), and P₀ is the standard pressure (1013.25 [hPa]).

Certain stations in southern Europe showed higher concentrations. However, it was difficult to identify an increasing or decreasing trend for SO_2 concentrations.

REFERENCES

References

- Angert A., S. Biraud, C. Bonfils, W. Buermann, I. Fung, CO₂ seasonality indicates origins of post-Pinatubo sink, *Geophys. Res. Lett.*, **31**, L11103, doi:10.1029/2004GL019760, 2004.
- Bartlett, B. B., G W. Sache, T. Slate, C. Haward, and D. D. Blake, Large-scale distribution of CH₄ in the western Pacific: Sources and transport from the Asian continent, *J. Geophys. Res.*, **108 (D20)**, 8807, doi:10.1029/2002JD003076, 2003.
- Bekki, S., K. S. Law, and J. A. Pyle, Effects of ozone depletion on atmospheric CH₄ and CO concentrations, *Nature*, **371**, 595-597, 1994.
- Bekki, S., K. S. Law, Sensitivity of atmospheric CH₄ growth rate to global temperature change observed from 1980 to 1992, *Tellus*, **49B**, 409-416, 1997.
- Ciais, P., P. P. Tans, M. Trolier, J. W. C. White, and R. J. Francey, A large northern hemisphere terrestrial CO_2 sink indicated by the ${}^{13}C/{}^{12}C$ ratio of atmospheric CO_2 , *Science*, **269**, 1098-1102, 1995.
- Cleveland, W. S., S. J. Devlin, Locally weighted regression: an approach to regression analysis by local fitting, *J. Amer. Statist. Assn.*, **83**, 596-610, 1988.
- Conway, T. J., P. P. Tans, L. S. Waterman, K. W. Thoning, D. R. Kitzis, K. A. Masarie, and N. Zhang, Evidence for interannual variability of the carbon cycle from the National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostics Laboratory global air sampling network, J. Geophys. Res., 99, 22831-22855, 1994.
- Daniel, J. S. and S. Solomon, On the climate forcing of carbon monoxide. J. Geophys. Res., 103(D11), 13249-13260, 1998.
- Dettinger, M. D. and M. Ghill, Seasonal and interannual variations of atmospheric CO_2 and climate, *Tellus*, **50B**, 1-24, 1998.
- Dlugokencky, E. J., L. P. Steele, P. M. Lang, and K. A. Masarie, The grouth rate and distribution of atmospheric methane, *J. Geophys. Res.*, **99**, 17021-17043, 1994.
- Dlugokencky, E. J., E. G. Dutton, P. C. Novelli, P. P. Tans, K. A. Masarie, K. O. Lantz, and S. Mardronich, Changes in CH_4 and CO growth rates after the eruption of Mt. Pinatubo and their link with changes in tropical tropospheric UV flux, *Geophys. Res. Lett.*, **23**, 2761-2764, 1996.
- Dlugokencky, E. J., K. A. Masarie, P. M. Lang, and P. P. Tans, Continuing decline in the growth rate of the atmospheric methane burden, *Nature*, **393**, 447-450, 1998.

- Dlugokencky, E. J., B. P. Walter, K. A. Masarie, P. M. Lang and E. S. Kasischke, Measurements of an anomalous global methane increase during 1998, *Geophys. Res. Lett.*, 28, 499-502, 2001.
- Duchon, C. E., Lanczos filtering in one and two dimensions, J. Appl. Meteor., 18, 1016-1022, 1979.
- Duncan, B. N., I. Bey, M. Chin, L. J. Mickley, T. D. Fairlie, R. V. Martin, and H. Matsueda, Indonesian wildfires of 1997: Impact on tropospheric chemistry, J. Geophys. Res., 108 (D15), 4458, doi:10.1029/2002JD003195, 2003.
- Etherridge, D. M., L. P. Steele, R. J. Francey, and R. L. Langenfelds, Atmospheric methane between 1000 A.D. and present: Evidence of anthropogenic emissions and climatic variability, *J. Geophys. Res.*, **103**, 15979-15993, 1998.
- Francey, R. J., P. P. Tans, C. E. Allison, I. G. Enting, J. W. C. White, and M. Trolier, Changes in oceanic and terrestrial carbon uptake since 1982, *Nature*, **373**, 326-330, 1995.
- Gu, L., D. D. Baldocchi, S. C. Wofsy, J. W. Munger, J. J. Michalsky, S. P. Urbanski, and T. A. Bonden, Response of a deciduous forest to the Mount Pinatubo eruption enhanced photosysthesis, *Science*, 299, 2035-2038, 2003.
- Haan, D. and D. Raynaud, Ice core record of CO variations during the last two millennia: atmospheric implications and chemical interactions within the Greenland ice, *Tellus*, **50B**, 253-262, 1998.
- Hansen, J., A.Lacis, R. Ruedy, and M. Sato, Potential Clim. Impact of Mount-Pinatubo Eruption, *Geophys. Res. Lett.*, **19(2)**, 215-218, 1992.
- IPCC, Climate Change 2001: The Science Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 881pp, 2001.
- JMA, Climate change monitoring report 1998, Japan Meteorological Agency, Tokyo, Japan, 49 pp, 1999.
- Keeling, C. D., R. B. Bacastow, A. F. Carter, S. C. Piper, T. P. Whorf, M. Heimann, W. G. Mook, and H. Roeloffzen, A three-dimensional model of atmospheric CO₂ transport based on observed winds: 1. Analysis of observational data, in aspects of climate variability in the Pacific and the Western Americas, edited by D. H. Peterson, *Geophysical Monograph* 55, 165-236, American Geophysical Union,

Washington, D.C, 1989.

- Keeling, C. D., T. P. Whorf, M. Wahlen, and J. van der Plicht, Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980, *Nature*, **375**, 666-670, 1995.
- Lambert, G , P. Monfray, B. Ardouin, G Bonsang, A.Gaudry, V. Kazan and G. Polian, Year-to-year changes in atmospheric CO₂, *Tells*, **47B**, 35-55,1995.
- Lelieveld, J., P. J. Crutzen, and F. J. Dentener: Changing concentration, lifetime and climate forcing of atmospheric methane, *Tellus*, **50B**, 128-150, 1998.
- Lowe, D. C., M. R. Manning, G. W. Brailsford, and A. M. Bromley, The 1991-1992 atmospheric methane anomaly: Southern hemisphere ¹³C decrease and growth rate fluctuations, *Geophys. Res. Lett.*, 24, 857-860, 1997.
- Morimoto, S., T. Nakazawa, K. Higuchi, and S. Aoki, Latitudinal distribution of atmospheric CO₂ sources nad sinks inferred by ¹³C measurements from 1985 to 1991. *J. Geophys. Res.*, **105(D19)**, 24,315-24,326, 2000,
- Matsueda, H., H. Inoue, Y. Sawa, Y. Tsutsumi, and M. Ishii, Carbon monoxide in the upper troposphere over the western Pacific between 1993 and 1996, *J. Geophys. Res.*, **103**, 19093-19110, 1998.
- Matsueda, H., S. Taguchi, H.Y. Inoue, and M. Ishii, A large impact of tropical biomass burning on CO and CO_2 in the upper troposphere. Science in China (Series C), **45**, 116-125, 2002.
- Nakazawa, T., K. Miyashita, S. Aoki, and M. Tanaka, Temporal and spatial variations of upper tropospheric and lower stratospheric carbon dioxide, *Tellus*, **43B**, 106-117, 1991.
- Nakazawa, T., S. Morimoto, S. Aoki and M. Tanaka, Time and space variations of the carbon isotopic ratio of tropospheric carbon dioxide over Japan, *Tellus*, **45B**, 258-274, 1993.
- Nakazawa, T., S. Morimoto, S. Aoki and M. Tanaka, Temporal and spatial variations of the carbon isotopic ratio of atmospheric carbon dioxide in the western Pacific region, *J. Geophys. Res.*, **102**, 1271-1285, 1997a.
- Nakazawa, T., S. Murayama, M. Toi, M. Ishizawa, K. Otonashi, S. Aoki and S. Yamamoto, Temporal variations of CO₂ concentration and its carbon and oxygen isotopic ratios in a temperate forest in the central part of the main island of Japan, *Tellus*, **49B**, 364-381, 1997b.
- Nemry, B., L. Francois, P. Warnant, F. Robinet, and J.C. Gerard, The seasonality of the CO₂ exchange between the atmosphere and the land biosphere: A study with a global mechanistic vegetation model, *J. Geophys. Res.*, **101**, 7111-7125, 1996.

- Novelli, P. C., K. A. Masarie, and P. M. Lang, Distributions and recent changes of carbon monoxide in the lower troposphere, *J. Geophys. Res.*, **103**, 19015-19033, 1998.
- Prinn, R. G, J. Huang, R. F. Weiss, D. M. Cunnold, P. J. Fraser, P. G. Simmonds, A. McCulloch, C. Harth, P. Salameh, S. O'Doherty, R. H. J. Wang, L. Porter, B. R. Miller, Evidence for substantial variations of atmospheric hydroxyl radicals in the past two decades, *Science*, **292**, 1882-1888, 2001.
- Rayner, P. J., I. G. Enting, R. J. Francey and R. Langenfelds, Reconstructing the recent carbon cycle from atmospheric CO_2 , $\delta^{13}C$ and O_2/N_2 observations, *Tellus*, **51B**, 213-232, 1999.
- Ramonet, M. and P. Monfray, CO₂ baseline concept in 3-D atmospheric transport models, *Tellus*, **48B**, 502-520, 1996.
- Stenchikov, G, A.Robock, V. Ramaswamy, M. D. Schwarzkopf, K. Hamilton, and S. Ramachandran, Arctic Oscillation response to the 1991 Mount Pinatubo eruption: Effects of volcanic aerosols and ozone depletion, J. Geophys. Res., 107(D24), 4803, doi:10.1029/2002JD002090., 2002.
- Tanaka, M., T. Nakazawa, S. Aoki, Seasonal and meridional variations of atmospheric carbon dioxide in the lower troposphere of the northern and southern hemispheres, *Tellus*, **39B**, 29-41, 1987.
- Thoning, K. W., P. P. Tans, and W. D. Komhyr, Atmospheric carbon dioxide at Mauna Loa observatory, 2. Analysis of the NOAA GMCC data, 1974-1985, J. Geophys. Res., 94, 8549-8565, 1989.
- Watanabe, F., O. Uchino, Y. Joo, M. Aono, K. Higashijima, Y. Hirano, K. Tsuboi, and K. Suda, Interannual variation of grouth rate of atmospheric carbon dioxide concentration observed at the JMA's three monitoring stations: Large increase in concentration of atmospheric carbon dioxide in 1998, J. Meteor. Soc. Japan, **78**, 673-682, 2000.
- Wittenberg, U., M. Heimann, G. Esser, A.D. Mcguire, and W. Sauf, On the influence of biomass burning on the seasonal CO₂ signal as observed at monitoring stations, *Global Biogeochem. Cycles*, **12**, 531-544, 1998.
- WMO, Scientific assessment of ozone depletion: 1998. WMO global ozone research and monitoring project - Report No. 44, World Meteorological Organization, Geneva, 1999a.
- WMO, WMO statement on the status of the global climate in 1998, WMO- No.896, World Meteorological Organization, Geneva, 1999b.
- WMO, World Data Centre for Greenhouse Gases (WDCGG) Data Summary, WDCGG No. 22,

- 84pp, 2000.
 WMO, Strategy for the Implementation of the Global Atmosphere Watch Programme (2001-2007), WMO/GAW Report No. 142, 62pp, 2001.
 WMO, World Data Centre for Greenhouse Gases (WDCGG) Data Summary, WDCGG No. 28, 98pp, 2004.

APPENDICES

Appendix A Calibration and Standard Scales

1. Calibration System in the GAW programme

Under the Global Atmosphere Watch (GAW) programme, World Calibration Centres (WCCs) are responsible for maintaining calibration standards for certain species, establishing instrument calibrations and providing training to the stations. A Reference Standard is designated for each species to be used for all GAW measurements of that species. Table 1 lists the organizations that serve as WCCs and maintain Reference Standards for GAW [*WMO*, 2001].

Table 1. Overview of the GAW Reference Standards and World Calibration Centres for Greenhouse and Other Related Gases (as of December 2000). The World Calibration Centres Have Assumed Global Responsibilities, Except Where Indicated (Am, Americas; E/A, Europe and Africa; A/O, Asia and the South-West Pacific)

Species	Reference Standard	World Calibration Centre
Carbon Dioxide (CO ₂)	CMDL	CMDL
Methane (CH ₄)	CMDL	EMPA (Am, E/A)
	(currently being	JMA (A/O)
	established)	
Nitrous Oxide (N ₂ O)	CMDL	IFU
Chlorofluorocarbons (CFCs)		
Surface Ozone (O ₃)	NIST	EMPA
Carbon Monoxide (CO)	CMDL	EMPA
Volatile Organic Compounds (VOCs)		IFU
Sulphur Dioxide (SO ₂)		
Nitrogen Oxides (NO _x)		

2. Carbon Dioxide (CO₂)

In 1995, Climate Monitoring and Diagnostics Laboratory (CMDL) took over the role of CCL from the Scripps Institution of Oceanography (SIO) in San Diego, California, USA. NOAA CMDL, Boulder, Colorado, USA has been designated by WMO as the Central Calibration Laboratory (CCL) responsible for maintenance of the GAW Reference Standard for CO₂. As the World Calibration Centre (WCC) for CO₂, CMDL maintains a high-precision manometric system for absolute calibration of CO₂ as the reference used for GAW measurements throughout the world [*Zhao et al.*, 1997]. It is recommended that the standards of the GAW measurement laboratories be calibrated every two years at the CCL (WMO, 2003).

Under the WMO calibration system, there have been several calibration scales for CO_2 data, *e.g.*, SIO-based X74, X85, X87 and X93 scales and the CMDL-based WMO Mole Fraction Scale partially based on the past SIO scales. The CMDL and SIO are working to resolve the possible small differences between their scales. The CCL will adopt the WMO X2002 scale,

reflecting historical manometric calibrations of the WMO CCL set of 15 cylinders and the possible small differences between SIO and CMDL calibrations [*CMDL*, 2002].

To assess the differences in standard scales among CO₂ measuring laboratories, CMDL organizes intercomparisons or Round Robin experiments endorsed by WMO every few years. Many laboratories participated in the experiments organized in 1991-1992, 1996-1997 and 1999-2000. Table 2 shows the results of the experiments performed in 1996-1997 in which the concentrations measured by various laboratories are compared with the concentrations measured by NOAA/CMDL [*Peterson et al.*, 1999]. In addition, many laboratories compare their standards bilaterally or multilaterally among themselves.

Table 3 lists laboratories contributing CO_2 measurement data to WDCGG with standard scales of reported data and history of participation in the WMO intercomparison experiments.

 Table 2. Round Robin Results for Carbon Dioxide Concentration.
 Differences Between the Concentrations

 Measured by Various Laboratories and the Concentration Measured by NOAA (Laboratory minus NOAA, ppm)

Laboratory	Analysis Date	Conc	entration Difference (ppm)
		Low	Medium	High

		340-350 ppm	350-360 ppm	370-380 ppm
NIWA	1996-02	0.02	0.10	0.20
CSIRO	1996-05	-0.07	-0.02	-0.02
AES	1997-06	-0.04	0.00	-0.02
CMA	1995-12	-0.07	-0.01	-0.02
Tohoku Univ.	1996-06	-0.01	0.04	0.02
NIES	1996-08	-0.02	0.09	0.12
MRI	1996-12	0.04	0.07	0.14
JMA	1997-01	0.07	0.31	0.30
SNU	1997-03	0.24	0.13	0.29
CFR	1996-01	0.10	0.08	0.16
IMS	1996-03	0.04	0.06	0.07
ENEA	1996-04	-0.29	-0.06	0.19
UBA	1996-07	0.00	-0.02	0.11
HMS	1996-12	-1.22	-1.04	-0.80

 Table 3. Status of Standard Scales and Calibration/Intercomparison for Carbon Dioxide at Laboratories

 Contributing to the WDCGG as of October 2002.

Laboratory	watowy WDCCC Site Index	Calibration	Most Recent	WMO
Laboratory	wDCGG Site Index	Scale	Calibration	Intercomparison
Aichi	MKW234N0	WMO	JMA	
CAMS	WLG236N0	WMO	1994-01 at SIO	96/97, 99/00
CESI	PLR645N00	WMO	2001-12 at CMDL	99/00
CMDL	BRW471N0, MLO519N0,	WMO	2002-07 at CMDL	91/92, 96/97, 99/00
	SPO789S0, SMO514S0,			
	CMDL flask network*			
CNR	JBN762S0	WMO	ENEA	
CSIRO	CGR540S0, CSIRO flask	WMO	2001-11 at CMDL	91/92, 96/97, 99/00
	network**			
ENEA	LMP635N0	WMO	2000-08 at CMDL	91/92, 96/97, 99/00
Heidelberg		WMO	1998-10 at CMDL	96/97, 99/00
HMS	KPS646N0	WMO	2000-05 at CMDL	91/92, 96/97, 99/00
IFU	WNK647N0, ZSP647N00	SIO 1974		99/00
IGP	HUA312S0	X81		
IMS	CMN644N0	WMO	1998-10 at CMDL	91/92, 96/97
INM	IZA128N0	WMO	2002-03 at CMDL	91/92, 96/97, 99/00
NIWA	BAR541S0	WMO	1995-11 at SIO	91/92, 96/97, 99/00
METRI/SN	KSN233N0	WMO	2001-09	96/97
U				
JMA	MNM224N0, RYO239N0,	WMO	2002-03 at CMDL	91/92, 96/97, 99/00
	YON224N0, ALG99990,			
	EOM99990, RYF99990			
KMA	AMY236N0			
KSNU	ISK242N0		MGO	
LSCE	AMS137S0, MCH653N0	WMO	2002-02 at CMDL	91/92, 96/97, 99/00
MGO	BER255N0, KOT276N0,	X97	1991 at SIO	
	KYZ240N0, STC652N0,			
	TER669N0			
MISU/NIL	ZEP678N0	WMO	1996-07 at CMDL	96/97, 99/00
U				
MRI	TKB236N0, INS9999A,	MRI 1997		91/92, 96/97, 99/00
	HKH99990, KIY99990,			
	NTU99990, RFM99990,			
	WLT99990			

MSC	ALT482N0, CSJ451N0,	WMO	2001-12 at CMDL	91/92, 96/97, 99/00
	SBL443N0			
NIES	COI243N0, HAT224N0	NIES 95	2001-09 at CMDL	96/97, 99/00
NIMH	FDT645N20		SIAD SpA, Italy	
NIST		NIST		91/92, 96/97, 99/00
RIVM	KMW653N0	NIST		
Saitama	DDR236N0, URW235N0	WMO	JMA	
SAWS	CPO134S0	WMO	1997-06 at CMDL	99/00
Shizuoka	HMM234N0		Nippon Sanso	
SIO		SIO		91/92, 96/97, 99/00
Tohoku	SYO769S0	Tohoku		91/92, 96/97, 99/00
Univ.				
UBA	BRT648N0, DEU649N0,	WMO	1998-10 at CMDL	91/92, 96/97, 99/00
	NGL653N0, SSL647N0,			
	LGB652N0, WST654N0,			
	ZGT654N0, ZGP647N0			
ZAMG	SNB647N00	WMO	UBA	

* CMDL flask network: ALT482N10, AMS137S10, ASC107S10, ASK123N10, BAL655N10, BRW471N10, SGI354S10, BSC644N10, NMB123S10, CGO540S10, KUM519N10, CHR501N10, CBA455N10, CRZ146S10, GOZ636N10, EIC329S10, ITN435N10, GMI513N10, HBA775S10, HUN646N10, ICE663N10, KEY425N10, MHD653N10, SEY104S10, MLO519N10, MBC476N10, WLG236N10, NWR440N10, ZEP678N10, STC654N10, STM666N10, POC9XXX10, PSA764S10, LEF445N10, RPB413N10, MID528N10, WIS631N10, SHM452N10, SCS9XXX10, SPO789S10, BMW432N10, AVI417N10, BME432N10, SYO769S10, TAP236N10, AZR638N10, TDF354S10, SMO514S10, UUM244N10, UTA439N10

** CSIRO flask network: AIA999930, ALT482N30, CFA519S30, CGR540S30, EPC449N30, MQA554S30, MLO519N30, MAA767N30, SIS660N30, SPO789S30

3. Methane (CH₄)

There is no Reference Standard for methane designated in the framework of the GAW programme [*Aoki et al.*, 1992; *Dlugokencky et al.*, 1994; *Prinn et al.*, 2000]. The GAW programmes have established two World Calibration Centres (WCCs) for methane: the Swiss Federal Laboratory for Materials Testing and Research (EMPA), Dübendorf, Switzerland and the Japan Meteorological Agency (JMA), Tokyo, Japan [*WMO*, 2001].

Many laboratories maintain their own set of standard gases and perform intercomparisons of the concentrations with other laboratories bilaterally or multilaterally. To improve traceability of methane data measured in different laboratories, several organizations have taken the initiative in calibrating standard gases and organising intercomparison experiments; for example, the CMDL offers calibration, the JMA organizes Round Robin experiments mainly among Asian countries, and EMPA visits GAW Global Stations to audit measurement equipment.

Table 4 summarizes the status of methane standard scales at the laboratories contributing to the WDCGG and lists multiplying conversion factors applied for the analysis in the present issue of *Data Summary* to make the data on different scales more intercomparable on an interim basis pending the designation of the GAW Reference Standard for methane. The CMDL scale is lower than an absolute gravimetric scale [*Aoki et al.*, 1992] by ~1.5% [*Dlugokencky et al.*, 1994] and lower than the AES (MSC) scale by a factor of 1.0151 [*Worthy et al.*, 1998]. The CSIRO scale can be converted to the Tohoku University standard by multiplying by 1.01069 [*Prinn et al.*, 1999].

Conversion Laboratory WDCGG Site Index **Calibration Scale** Factor 1* AGAGE CGR540SX, MAT514SX, CME445NX, Tohoku MCH653NX, RGP413NX, TRH441N0 CESI CMDL 1.0151 PLR645N00 CHMI KOS649N0 NIST 1* CMDL BRW471N0, MLO519N0, CMDL flask CMDL 1.0151 network** CSIRO flask network*** **CSIRO** CSIRO 94 1.0119

 Table 4. Status of Methane Standard Scales at Laboratories Contributing to the WDCGG with Conversion

 Factors Used in the Present Issue of Data Summary.

ENEA	LMP635N0	ENEA	1*
INM	IZA128N0	CMDL	1.0151
JMA	MNM224N0, RYO239N0, YON224N0,	JMA	1*
	RYF99990, RYF9999A		
METRI/SNU	KSN233N0	CMDL	1.0151
MRI	EOM99990, INS9999A, MRI9999A,	MRI	1*
	TKB236N0		
NIES	COI243N0, HAT224N0	NIES	1*
RIVM	KMW653N0	NIST	1*
SAWS	CPO134S0	CMDL	1.0151
Tohoku Univ.	MZH770S0, GRL666N0	Tohoku	1*
UBA	ZGP647N0	CMDL	1.0151

* In analysis for *Data Summary*, no conversion is applied because the differences in scales among these laboratories are considered to be negligible.

** CMDL flask network: ALT482N10, AMS137S10, ASC107S10, ASK123N10, BAL655N10, BRW471N10, SGI354S10, BSC644N10, CGO540S10, KUM519N10, CHR501N10, CBA455N10, CRZ146S10, GOZ636N10, EIC329S10, ITN435N10, GMI513N10, HBA775S10, HUN646N10, ICE663N10, KEY425N10, MHD653N10, SEY104S10, MLO519N10, MBC476N10, WLG236N10, NWR440N10, ZEP678N10, STM666N10, POC9XXX10, PSA764S10, LEF445N10, RPB413N10, MID528N10, WIS631N10, SHM452N10, SCS9XXX10, SPO789S10, BMW432N10, AVI417N10, BME432N10, SYO769S10, TAP236N10, AZR638N10, TDF354S10, SMO514S10, UUM244N10, UTA439N10, CMO445N10, IZO128N10, KPA432N10, KZD244N10, KZM243N10, MCM777S10, NMB123S10, NZL543S10, OPW448N10, SIO432N10, SUM672N10

*** CSIRO flask network: AIA999930, ALT482N30, CFA519S30, CGR540S30, EPC449N30, MQA554S30, MLO519N30, MAA767N30, SIS660N30, SPO789S30

4. Nitrous Oxide (N₂O)

The Halocarbons and other Atmospheric Trace Species (HATS) Group of the Climate Monitoring and Diagnostics Laboratory (CMDL), NOAA, USA, maintains a set of standards for N₂O [Hall et al., 2001, Hall et al., 2002]. These standards have been designated as Reference Standards of the GAW programme. The HATS Group analyses the standards of laboratories, including the Meteorological Service of Canada (MSC) and the Australian Commonwealth Scientific and Industrial Research Organisation (CSIRO). The Fraunhofer Institut für Atmosphärische Umweltforschung (IFU) in GarmischPartenkirchen, Germany, serves as the GAW World Calibration Centre (WCC).

The NOAA CMDL N₂O calibration scale agrees to within 0.3% of that predicted using NIST Standard Reference Materials (at 300 and 330 ppb). According to a results of the Nitrous Oxide and Halocarbons Intercalibration Experiment (NOHALICE) implemented under the International Global Atmospheric Chemistry (IGAC) programme, the difference between the scales of AGAGE (SIO-98) and NOAA/CMDL is 1% or less [*Prinn et al.*, 2000].

Laboratory	WDCGG Site Index	Calibration Scale
AGAGE	ADR652NA, CGR540SX, MAT514SX,	SIO 1998
	CME445NX, MCH653NX, RGP413NX,	
	TRH441N0	
CMDL	BRW471NX, MLO519NX, NWR440NX,	CMDL 2000
	SPO789SX, SMO514SX	
ENEA	LMP635N0	CMDL 2000
JMA	RYO239N0	JMA
KMA	AMY236N0	
METRI	KSN233N0	SIO
MISU	ZEP678N0	
NIES	HAT224N0	NIES

Table 5. Status of N₂O Standard Scales at Laboratories Contributing to the WDCGG.

5. Surface Ozone (O₃)

The National Institute of Standards and Technology (NIST) has developed and deployed Standard

Reference Photometers (SRPs) in the USA and other countries. The GAW has designated the SRP #2

maintained at NIST as the Reference Standard for the GAW programme. The Swiss Federal Laboratory for Materials Testing and Research (EMPA) maintains NIST SRP #15 as the reference for the activities for the GAW World Calibration Centre for Surface Ozone [*Hofer et al.*, 1998]. Thetraceability and uncertainty of surface ozone within the GAW network were

reported by Klausen *et al.*, (2003). Regional Calibration Centres have been established at the Czech Hydrometeorological Institute (CHMI) in Prague, Czech Republic, and Servicio Meteorológico Nacional (SMN) in Buenos Aires, Argentina [*WMO*, 2001]. The former maintains the SRP #17 directly purchased by NIST.

Laboratory	WDCGG Site Index	Calibration Scale	Audit EMPA-WCC
AWI/DWD	NMY770S0		
BMG	(Bukit Kototabang)	WMO (NIST & EMPA)	1999, 2001
CAMS	(Mt. Waliguan)	WMO (NIST & EMPA)	2000
CMDL	BRW471N4, ICE663N4,	CMDL	
	MLO519N4, NWR440N4,		
	RPB413N4, SPO789S4,		
	BME432N4, SUM672N4,		
	SMO514S4		
DEFRA	EDM655N0		
DWD	(Hohenpeissenberg)	WMO (NIST & EMPA)	1997
EAS	KVK646N0, KVV646N0,		
	ZRN646N0		
EMPA	(Jungfraujoch)	WMO (NIST & EMPA)	1999
HKPU	HKG222N0		
IM	MVH638N0		
INM	IZA128N0	WMO (NIST & EMPA)	1996, 1998, 2000
INMET	(Arembepe)	WMO (NIST & EMPA)	2001
IVL	VDL664N0		
JMA	RYO239N0, MNM224N0,	JMA	
	YON224N0, SYO769S20		
JMA/AO	TKB236N3		
KMD	(Mt. Kenya)	WMO (NIST & EMPA)	2000, 2002
LHMA	RCV656N0		
NILU	(Ny Ålesund/Mt. Zeppelin)	WMO (NIST & EMPA)	1997, 2001
NUI	(Mace Head)	WMO (NIST & EMPA)	1996, 1998, 2002
ONM	ASK123N0		
RIVM	KMW653N0		
SAWS	(Cape Point)	WMO (NIST & EMPA)	1997, 1998, 2002
SMN	(Ushuaia)	WMO (NIST & EMPA)	1998
UBA	(Zugspitze)	WMO (NIST & EMPA)	1996, 1997, 2001
UBA Austria	SNB647N0	WMO (NIST & EMPA)	1998
UM	GLH636N0		

Table 6. Status of Surface Ozone Standard Scales at Laboratories Contributing to the WDCGG.

6. Carbon Monoxide (CO)

The Swiss Federal Laboratory for Materials Testing and Research (EMPA) serves as the World Calibration Centre (WCC) under GAW based on its secondary standards calibrated against the standard at NOAA/CMDL designated as the Reference Standard for GAW.

Table 7. Status of Carbon Monoxide Standard Scales at Laboratories Contributing to the WDCGG.

Laboratory	WDCGG Site Index	Calibration Scale	Audit EMPA-WCC
AGAGE	CGR540SX, MCH653NX	SIO 98	
CAMS	(Mt. Waliguan)	WMO (CMDL & EMPA)	2000
CHMI	KOS649N0	Observer	

CMDL	CMDL flask network*	WMO (CMDL & EMPA)	
CSIRO	CSIRO flask network**	WMO (CMDL & EMPA)	
DWD	HPB647N0	WMO (CMDL & EMPA)	
EMPA	JFJ646N0	WMO (CMDL & EMPA)	1999
HKPU	HKG222N0	Observer	
INM	(Izaña)	WMO (CMDL & EMPA)	2000
JMA	RYO239N0, MNM224N0,	JMA	
	YON224N0		
NILU	(Ny Ålesund/Mt. Zeppelin)	WMO (CMDL & EMPA)	2001
NUI	(Mace Head)	WMO (CMDL & EMPA)	1998, 2002
RIVM	KTB653N0, KMW653N0	National	
SAWS	(Cape Point)	WMO (CMDL & EMPA)	1998, 2002
SMN	(Ushuaia)	WMO (CMDL & EMPA)	1998
UBA	ZGP647N0	WMO (CMDL & EMPA)	2001
UBA Austria	(Sonnblick)	WMO (CMDL & EMPA)	1998

* CMDL flask network: ALT482N10, ASC107S10, ASK123N10, BAL655N10, BRW471N10, BSC644N10, CGO540S10, KUM519N10, CHR501N10, CBA455N10, CRZ146S10, GOZ636N10, EIC329S10, ITN435N10, GMI513N10, HUN646N10, ICE663N10, KEY425N10, MHD653N10, SEY104S10, MLO519N10, MBC476N10, WLG236N10, NWR440N10, ZEP678N10, POC9XXX10, PSA764S10, LEF445N10, RPB413N10, MID528N10, SHM452N10, SCS9XXX10, SPO789S10, BMW432N10, BME432N10, SYO769S10, TAP236N10, AZR638N10, SMO514S10, UUM244N10, UTA439N10, CMO445N10, IZO128N10, KPA432N10, KZD244N10, KZM243N10, MCM777S10, NZL543S10, OPW448N10, SIO432N10

** CSIRO flask network: AIA999930, ALT482N30, CFA519S30, CGR540S30, EPC449N30, MQA554S30, MLO519N30, MAA767N30, SIS660N30, SPO789S30

Acronyms and Abbreviations:

AES:	Meteorological Service of Canada (formerly Atmospheric Environment Service)
Aichi:	Aichi Prefecture, Japan
AGAGE:	Advanced Global Atmospheric Gases Experiment
AWI:	Alfred Wegener Institute, Germany
BMG:	Bureau of Meteorology and Geophysics, Indonesia
CAMS:	Chinese Academy of Meteorological Sciences, China
CESI:	Italian Electrical Experimental Center, Italy
CFR:	Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS, France
CHMI:	Czech Hydrometeorological Institute, Prague, Czech Republic
CMA:	Chinese Academy of Meteorological Sciences, China Meteorological Administration
CMDL:	Climate Monitoring and Diagnostics Laboratory, NOAA, USA
CNR:	Istituto di Fisica dell'Atmosfera, Consiglio Nazionale delle Ricerche, Italy
CSIRO:	Commonwealth Scientific and Industrial Research Organisation, Australia
DEFRA:	Department for Environment, Food and Rural Affairs, London, United Kingdom
DWD:	Deutscher Wetterdienst, Germany
EAS:	Environmental Agency of Slovenia
EMPA	Swiss Federal Laboratories for Materials Research and Testing, Dübendorf, Switzerland
ENEA:	Italian National Agency for New Technology, Energy and the Environment, Italy
HKPU:	Hong Kong Polytechnik University, Hong Kong, China
HMS:	Hungarian Meteorological Service, Hungary
IFU	Fraunhofer Institut für Atmosphärische Umweltforschung, Garmich-Partenkirchen, Germany
IGP:	Instituto Geofísico del Perú
IM:	Instituto de Meteorologia, Portugal
IMS:	Centro Aeronautico di Montagna, Italian Air Force Meteorological Service, Italy
INM:	Instituto Nacional de Meteorología, Spain
INMET:	Instituto Nacional de Meteorologia, Brazil
IVL:	Swedish Environmental Research Institute, Göteborg, Sweden
JMA:	Japan Meteorological Agency, Tokyo, Japan
JMA/AO:	Aerological Observatory, Japan Meteorological Agency, Tsukuba, Japan
KMA:	Korea Meteorological Administration, Republic of Korea
KMD:	Kenya Meteorological Department, Kenya

KSNU:	Kyrgyz State National University, Kyrgyzstan
LHMA:	Latvian Hydrometeorological Agency, Latvia
LSCE:	Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS, France
METRI:	Meteorological Research Institute, KMA, Republic of Korea
MISU:	Department of Meteorology, Stockholm University, Sweden
MGO:	Main Geophysical Observatory, Russian Federation
MRI:	Meteorological Research Institute, Japan Meteorological Agency, Japan
MSC:	Meteorological Service of Canada
NIES:	National Institute for Environmental Studies, Japan
NILU:	Norwegian Institute for Air Research, Norway
NIMH:	Institutul National de Meteorologie, Hidrologie si Gospodarirea Apelor, Romania
NIST	National Institute of Standards and Technology, Gaithersburg MD, USA
NIWA:	National Institute of Water and Atmospheric Research, New Zealand
NUI:	National University of Ireland, Galway, Ireland
ONM:	Office National de la Météorologie, Algeria
RIVM:	National Institute of Public Health and the Environment, Bilthoven, Netherlands
Saitama:	Saitama Prefecture, Japan
SAWS:	South African Weather Service, South Africa
Shizuoka:	Shizuoka University, Japan
SIO:	Scripps Institution of Oceanography, USA
SMN:	Servicio Meteorológico Nacional, Argentina
SNU:	Seoul National University, Republic of Korea
Tohoku Univ.:	Tohoku University, Japan
UBA:	Umweltbundesamt (Federal Environmental Agency), Germany
UBA Austria:	Umweltbundesamt (Federal Environmental Agency), Austria
UHEI-IUP:	Institut für Umweltphysik, Universität Heidelberg, Germany
UM:	University of Malta
ZAMG:	Central Institute of Meteorology and Geodynamics, Austria

References

- Aoki, S., T. Nakazawa, S. Murayama and S. Kawaguchi, Measurements of atmospheric methane at the Japanese Antarctic station, Syowa, *Tellus, Ser. B*, 44, 273-281, 1992.
- CMDL, Climate Monitoring and Diagnostics Laboratory Summary Report No.26 2000-2001, 2002.
- Dlugokencky, E. J., L. P. Steele, P. M. Lang, and K. A. Masarie, The growth rate and distribution of atmospheric methane, *J. Geophys. Res.*, 99, 17021-17043, 1994.
- Hall, B. D. (ed.), J. W. Elkins, J. H. Butler, S. A. Montzka, T. M. Thompson, L. Del Negro, G S. Dutton, D. F. Hurst, D. B. King, E. S. Kline, L. Lock, D. Mactaggart, D. Mondeel, F. L. Moore, J. D. Nance, E. A. Ray, and P. A. Romashkin, Halocarbons and Other Atmospheric Gases, Section 5 in Climate Monitoring and Diagnostics Laboratory, Summary Report N. 25, 1998-1999, R. S. Schnell, D. B. King, R. M. Rosson (eds.), NOAA-CMDL, Boulder, CO., USA, 2001.
- Hall, B. D. (ed.), J. H. Butler, A. D. Clarke, G. S. Dutton, J. W. Elkins, D. F. Hurst, D. B. King, E. S. Kline, J. Lind, L. Lock, D. Mondeel, F. L. Moore, S. A. Montzka, J. D. Nance, E. A.

Ray, P. A. Romashkin, and T. M. Thompson, Halocarbons and Other Atmospheric Gases, Section 5 in Climate Monitoring and Diagnostics Laboratory, Summary Report N. 26, 2000-2001, D. B. King, R. C. Schnell, C. Sweet, R. M. Rosson (eds.), NOAA-CMDL, Boulder, CO., USA, 2002.

- Hofer, P., B. Buchmann and A. Herzog, Traceability, Uncertainty and Assessment Criteria of Surface Ozone Measurements, *EMPA-WCC Report* 98/5, 20 pp, 1998.
- Klausen, J., C. Zellweger, B. Buchmann, and P. Hofer, Uncertainty and bias of surface ozone measurements at selected Global Atmosphere Watch sites, *J. Geophys. Res.*, *108*(D19), 4622, doi:10.1029/2003JD003710, 2003.
- Peterson, J., P. Tans, and D. Kitzis, "CO₂ Round-Robin Reference Gas Intercomparison" in Report of the Ninth WMO Meeting of Experts on Carbon Dioxide Concentration and Related Tracer Measurement Techniques, Aspendale, Vic. Australia, 1 - 4 September 1997, edited by R. Francey, WMO/GAW Report No. 132, 1999.
- Prinn, R. G., R. Zander, D. M. Cunnold, J. W. Elkins, A. Engel, P. J. Fraser, M. R. Gunson, M. K. W. Ko, E. Mahieu, P. M. Midgley, J. M. Russell III, C. M.

Volk, and R. F. Weiss, Long-lived ozone-related compounds, in Scientific Measurement of Ozone Depletion: 1998, Global Ozone Res. and Monit. Proj. Rep. 44, pp. 1.1-1.54, World Meteorol. Org., Geneva, 1999.

- Prinn, R. G, R. F. Weiss, P. J. Fraser, P. G. Simmonds, D. M. Cunnold, F. N. Alyea, S. O'Doherty, P. Salameh, B. R. Miller, J. Huang, R. H. J. Wang, D. E. Hartley, C. Harth, L. P. Steele, G. Sturrock, P. M. Midgley, and A. McCulloch, A history of chemically and radiatively important gases in air deduced from ALE/GAGE/AGAGE, J. Geophys. Res., 105, 17751-17792, 2000.
- WMO, Strategy for the Implementation of the Global Atmosphere Watch Programme (2001-2007), WMO/GAW Report No. 142, 62pp, 2001.
- WMO, Report of the Eleventh WMO/IAEA Meeting of Experts on Carbon Dioxide Concentration and Related Tracer Measurement Techniques, Global Atmosphere Watch Report Series No.148, 2003.
- Worthy, D. E. J., I. Levin, N. B. A. Trivett, A. J. Kuhlmann, J. F. Hopper and M. K. Ernst, Seven years of continuous methane observations at a remote boreal site in Ontario, Canada, J. Geophys. Res., 103, 15995-16007, 1998.
- Zhao, C. L., P. P. Tans, and K. W. Thoning, A high precision manometric system for absolute calibrations of CO₂ in dry air, *J. Geophys. Res.*, 102, 5885-5894, 1997.

Station	Country/Territory	Index Number	Latitude (° ')	Location Longitude (° ')	Altitude (m)	e Parameter
REGION I (Africa)						
Amsterdam Island	France	AMS137S00	37 48 S	77 32 E	65	CO ₂
Amsterdam Island	France	AMS137S10	37 57 S	77 32 E	150	CO ₂ , CH ₄
Ascension Island	United Kingdom	ASC107S10	7 55 S	14 25 W	54	CO ₂ , CH ₄ , CO, H ₂ , ¹³ CO ₂ , C ¹⁸ O ₂
Assekrem	Algeria	ASK123N00	23 16 N	5 38 E	2710	O ₃
Assekrem	Algeria	ASK123N10	23 11 N	5 25 E	2728	CO ₂ , CH ₄ , CO, H ₂ , ¹³ CO ₂ , C ¹⁸ O ₂
Cape Point	South Africa	CPO134S00	34 21 S	18 29 E	230	CO ₂ , CH ₄ , O ₃ , CO, N ₂ O
Crozet	France	CRZ146S10	46 27 S	51 51 E	120	CO ₂ , CH ₄ , CO, H ₂ , ¹³ CO ₂ , C ¹⁸ O ₂
Funchal	Portugal	FUN132N00	32 39 N	16 53 W	58	O ₃
Gobabeb	Namibia	NMB123S10	23 35 S	15 02 E	408	CO ₂ , CH ₄ , ¹³ CO ₂
Izaña	Spain	IZA128N00	28 18 N	16 30 W	2367	CO ₂ , CH ₄ , O ₃
Mahe Island	Seychelles	SEY104S10	4 40 S	55 10 E	3	CO ₂ , CH ₄ , CO, H ₂ , ¹³ CO ₂ , C ¹⁸ O ₂
Tenerife	Spain	IZO128N10	28 18 N	16 29 W	2360	CO ₂ , CH ₄ , CO, H ₂ , ¹³ CO ₂ , C ¹⁸ O ₂
REGION II (Asia)						
Anmyeon-do	Rep. of Korea	AMY236N00	36 32 N	126 19 E	47	CO ₂ , CH ₄ , N ₂ O, CFCs
Bering Island	Russian Federation	BER255N00	55 12 N	165 59 E	13	CO ₂
Cape Ochi-ishi	Japan	COI243N00	43 09 N	145 30 E	45	CO ₂ , CH ₄
Gosan	Rep. of Korea	KSN233N00	33 17 N	126 10 E	72	CO ₂ , CH ₄ , N ₂ O, CFCs
Hamamatsu	Japan	HMM234N00	34 43 N	137 43 E	35	CO ₂
Hateruma	Japan	HAT224N00	24 03 N	123 48 E	10	CO ₂ , CH ₄ , N ₂ O
Hok Tsui	Hong Kong, China	HKG222N00	22 13 N	114 15 E	60	CO, O ₃
Issyk-Kul	Kyrgyzstan	ISK242N00	42 37 N	76 59 E	1640	CO ₂ , O ₃ , CH ₄
Kaashidhoo	Maldives	KCO204N10	4 58 N	73 28 E	1	CO ₂ , CH ₄ , ¹³ CO ₂
Kisai	Japan	KIS236N00	36 05 N	139 33 E	13	CO ₂
Kotelny Island	Russian Federation	KOT276N00	76 00 N	137 52 E	5	CO_2
Kyzylcha	Uzbekistan	KYZ240N00	40 52 N	66 09 E	340	CO ₂
Memanbetsu	Japan	MMB243N00	43 55 N	144 12 E	32.9	N ₂ O
Mikawa-Ichinomiya	Japan	MKW234N00	34 51 N	137 26 E	50	CO ₂
Minamitorishima	Japan	MNM224N00	24 18 N	153 58 E	8	CO_2 , CH_4 , CO , O_3
Mt. Dodaira	Japan	DDR236N00	36 00 N	139 11 E	840	CO_2
Mt. Waliguan	China	WLG236N00	36 17 N	100 54 E	3810	CO_2
Mt. Waliguan	China	WLG236N10	36 17 N	100 54 E	3810	$CO_2, CH_4, CO, H_2, {}^{13}CO_2, C{}^{18}O_2$
Nagoya	Japan	NGY235N00	35 09 N	136 58 E	35	N ₂ O
Plateau Assy	Kazakhstan	KZM243N10	43 15 N	77 53 E	2519	CO ₂ , CH ₄ , CO, H ₂ , ¹³ CO ₂
Ryori	Japan	RYO239N00	39 02 N	141 49 E	260	CO_2 , CH_4 , N_2O , $CFCs$, CCl_4 , CH_2CCl_2 , CO_2O_2
Sary Taukum	Kazakhstan	KZD244N10	44 27 N	77 34 E	412	$CO_2 CH_4 CO H_2 ^{13}CO_2$
Tae-ahn Peninsula	Rep of Korea	TAP236N10	36 44 N	126 08 F	20	CO_2 CH ₄ , CO, H ₂ , ¹³ CO ₂ Cl ⁸ O ₂
Takayama	Ianan	TKY236N00	36 08 N	120 00 E 137 25 F	1420	CO_2
Tsukuba	Japan	TKB236N00	36 03 N	140 08 E	26	CH ₄
Tsukuba	Japan	TKB236N20	36 03 N	140 08 E	26	CO_2
Tsukuba	Japan	TKB236N30	36 03 N	140 00 E 140 08 F	20	O_2
Illaan Hul	Mongolia	1111M244N10	44 27 N	111 06 E	914	$CO_2 CH_4 CO H_2 \frac{13}{13}CO_2 C^{18}O_2$
Urawa	Ianan	URW235N00	35 52 N	139 36 E	10	CO_2
Yonaguniiima	Japan	YON224N00	24 28 N	123 01 E	30	CO_2 CH_4 CO_2 O_3
Tonagangina	bupun	101122 11100	212011	125 01 2	50	002, 0114, 00, 05
REGION III (South America)						
Arembepe	Brazil	ABP312S00	12 46 S	38 10 W	0	
Bird Island	United Kingdom	SGI354S10	54 00 S	38 03 W	30	CO ₂ , CH ₄
Easter Island	Chile	EIC329S10	27 09 S	109 27 W	50	CO ₂ , CH ₄ , CO, H ₂ , ¹³ CO ₂ , C ¹⁸ O ₂

				Location			
Station	Country/Territory	Index Number	Latitude	Longitude	Altitude Parameter		
			(°')	(°')	(m)		
Uuancavo	Doru	HI1A 312500	12.04 \$	75 32 W	3313 CO2		
Tiorra dal Eugo	Argonting	TDE354S10	12 04 S	68 20 W	$20 CO_2 CH_4 CO_2 H_2 13CO_2 C18O_2$		
Lishuaia	Argontina	1DF354S10	54 51 8	68 10 W	20° CO ₂ , CH ₄ , CO, H ₂ , -6 CO ₂ , C ⁴⁸ O ₂		
Usiluala	Aigentina	031334300	54 51 5	00 19 W	18 03, 00		
DECION IV (North on	d Control Amorico)						
KEGIUN IV (NORTH AND CENTRAL AMERICA)							
Alart	Canada	AT T482N00	82 27 N	62 31 W	210 CO2		
Alert	Canada	ALT482N10	82 27 N	62 31 W	$210 CO_2$ 210 CO ₂ CH ₄ CO H ₂ 13CO ₂ C18O ₂		
Alert	Canada	AL 1482N10	82 27 N	62 31 W	$210 \ CO_2, CH4, CO, H_2, CO_2, CO_2$		
Alert	Canada	AL14021120	02 27 1	02 51 W	CH_2Cl_2 SEc N ₂ O		
Alert	Canada	AI T482N30	82 27 N	62 31 W	$210 \text{ CO}_2 \text{ CH}_4 \text{ CO} \text{ H}_2$		
Alert	Canada	AI T482NX0	82 27 N	62 31 W	210 HFCs		
	Canada	AL G447N00	47.02 N	84 23 W	411 O2		
Barrow		RRW471N00	71 19 N	156 36 W	8 CO2 CH		
Barrow	USA	BRW471N10	71 19 N	156 36 W	$11 CO_2 CH_4 CO_4 H_2 13CO_2 13CH_4$		
Darrow	0. 5. 71.	DR ((+)11(10	/1 1/10	150 50 W	$C^{18}O_2$		
Barrow	U.S.A.	BRW471N20	71 19 N	156 36 W	8 CFCs, HCFCs, CH ₃ CCl ₃ , C ₂ Cl ₄ ,		
					CH ₂ Cl ₂ . SF ₆ . N ₂ O		
Barrow	U. S. A.	BRW471N40	71 19 N	156 36 W	8 Q ₃		
Barrow	U. S. A.	BRW471NX0	71 19 N	156 36 W	8 N ₂ O, CFCs, HFCs, CCl ₄ ,		
					CH ₃ CCl ₃ , SF ₆ , HCFCs		
Bratt's Lake	Canada	BRA450N00	50 12 N	104 12 W	588 O ₃		
Cape Meares	U. S. A.	CME445NX0	45 29 N	123 58 W	30 CH ₄ , N ₂ O, CFCs, CCl ₄ , CH ₃ CCl ₃		
Cape Meares	U. S. A.	CMO445N10	45 29 N	123 58 W	30 CO ₂ , CH ₄ , CO, H ₂ , ¹³ CO ₂ , C ¹⁸ O ₂		
Cape St. James	Canada	CSJ451N00	51 56 N	131 01 W	89 CO ₂		
Chalk River	Canada	CHA446N00	46 04 N	77 24 W	184 O ₃		
Chapais	Canada	CPS449N00	49 49 N	74 59 W	381 O ₃		
Cold Bay	U. S. A.	CBA455N10	55 12 N	162 43 W	25 CO ₂ , CH ₄ , CO, H ₂ , ¹³ CO ₂ , C ¹⁸ O ₂		
Egbert	Canada	EGB444N00	44 14 N	79 47 W	253 O ₃		
Estevan Point	Canada	EPC449N30	49 23 N	126 32 W	39 CO ₂ , CH ₄ , CO, H ₂		
Esther	Canada	EST451N00	51 40 N	110 12 W	707 O ₃		
Experimental Lakes	Canada	ELA449N00	49 40 N	93 43 W	369 O ₃		
Area							
Grifton	U. S. A.	ITN435N10	35 21 N	77 23 W	9 CO ₂ , CH ₄ , CO, H ₂ , ¹³ CO ₂ , C ¹⁸ O ₂		
Grifton	U. S. A.	ITN435N20	35 21 N	77 23 W	9 CFCs, SF ₆ , N ₂ O		
Harvard Forest	U. S. A.	HFM442N20	42 54 N	72 18 W	340 CFCs, HCFCs, CH ₃ CCl ₃ , SF ₆ ,		
					N ₂ O		
Harvard Forest	U. S. A.	HFM442NX0	42 54 N	72 18 W	340 HFCs		
Kejimkujik	Canada	KEJ444N00	44 26 N	65 12 W	127 O ₃		
Key Biscayne	U. S. A.	KEY425N10	25 40 N	80 12 W	3 CO ₂ , CH ₄ , CO, H ₂ , ¹³ CO ₂ , C ¹⁸ O ₂		
Kitt Peak	U. S. A.	KPA432N10	32 N	112 W	2083 CH ₄		
La Jolla	U. S. A.	SIO432N10	32 50 N	117 16 W	14 CH ₄		
La Palma	Cuba	PLM422N00	22 45 N	83 32 W	47 NO ₂		
Longwoods	Canada	LON442N00	42 53 N	81 29 W	239 O ₃		
Moody	U. S. A.	WKT431N10	31 19 N	97 20 W	723 CH ₄		
Mould Bay	Canada	MBC476N10	76 15 N	119 21 W	58 CO ₂ , CH ₄ , CO, H ₂ , ¹³ CO ₂ , C ¹⁸ O ₂		
Niwot Ridge	U. S. A.	NWR440N10	40 03 N	105 35 W	3475 CO ₂ , CH ₄ , CO, H ₂ , ¹³ CO ₂ , ¹³ CH ₄ ,		
Niwot Ridge	U. S. A.	NWR440N20	40 03 N	105 35 W	3475 CFCs, HCFCs, HFCs, CH ₃ CCl ₃ ,		
			10.000	105 25	C_2Cl_4 , CH_2Cl_2 , SF_6 , N_2O		
Niwot Ridge	U.S.A.	NWR440N40	40 02 N	105 32 W	3022 O ₃		
Niwot Kidge	U. S. A.	NWR440NX0	40 03 N	105 35 W	5475 N2O, CFCs, HFCs, CCl4, CH3CCl3, SF6, HCFCs		
Niwot Ridge (Saddle)	U. S. A.	NTL440N40	40 03 N	105 35 W	3538 O ₃		

Station	Country/Torritory	Inday Number	Latituda	Location	Altitudo Paramotor
Station	Country/ remitory	Index Number	(° ')	(°')	(m)
Niwot Ridge C-1	U. S. A.	NWC440N20	40 00 N	105 36 W	3475 HFCs
Olympic Peninsula	U. S. A.	OPW448N10	48 15 N	124 25 W	488 CH4, H2
Park Falls	U. S. A.	LEF445N10	45 56 N	90 16 W	472 CO ₂ , CH ₄ , CO, H ₂ , 13 CO ₂ , C ¹⁸ O ₂
Park Falls	U. S. A.	LEF445N20	45 56 N	90 16 W	868 CFCs, CH ₃ CCl ₃ , HCFCs, SF ₆ ,
D. 1 F.11			45 56 N	00 1 C W	$N_2 U$
Park Falls	U.S.A.	LEF445NX0	45 56 N	90 16 W	868 HFCs
Point Arena	U. S. A.	P1A438N10	38 5 / N	123 44 W	$17 \text{ CO}_2, \text{CH}_4, 13 \text{CO}_2$
Ragged Point	Barbados	RGP413NX0	13 10 N	59 26 W	45 CH4, N2O, CFC8, CC14, CHC13, CH3CCl3
Ragged Point	Barbados	RPB413N10	13 10 N	59 26 W	45 CO ₂ , CH ₄ , CO, H ₂ , ¹³ CO ₂ , C ¹⁸ O ₂
Ragged Point	Barbados	RPB413N40	13 10 N	59 26 W	45 O ₃
Sable Island	Canada	SBL443N00	43 56 N	60 01 W	5 CO ₂
Saturna	Canada	SAT448N00	48 47 N	123 08 W	178 O ₃
Shemya Island	U. S. A.	SHM452N10	52 43 N	174 06 E	40 CO ₂ , CH ₄ , CO, H ₂ , ¹³ CO ₂ , C ¹⁸ O ₂
St. Croix	U. S. A.	AVI417N10	17 45 N	64 45 W	3 CO ₂ , CH ₄
St. David's Head	United Kingdom	BME432N10	32 22 N	64 39 W	30 CO ₂ , CH ₄ , CO, H ₂ , ¹³ CO ₂ , C ¹⁸ O ₂
Sutton	Canada	SUT445N00	45 05 N	72 41 W	243 O ₃
Trinidad Head	U. S. A.	TRH441N00	41 03 N	124 09 W	120 CH ₄ , N ₂ O, CFCs, CCl ₄ , CHCl ₃ ,
					CH ₃ CCl ₃
Trinidad Head	U. S. A.	TRH441N10	41 03 N	124 09 W	120 CH ₄
Trinidad Head	U. S. A.	TRH441N20	41 03 N	124 09 W	120 CFCs, HCFCs, SF ₆ , N ₂ O,
					CH ₃ CCl ₃
Trinidad Head	U. S. A.	TRH441N40	41 03 N	124 09 W	120 O ₃
Trinidad Head	U. S. A.	TRH441NX0	41 03 N	124 09 W	120 HFCs
Tudor Hill	Bermuda, United	BME432N40	32 22 N	64 39 W	30 O ₃
	Kingdom				
Tudor Hill	United Kingdom	BMW432N10	32 16 N	64 53 W	30 CO ₂ , CH ₄ , CO, H ₂ , ¹³ CO ₂ , C ¹⁸ O ₂
Wendover	U. S. A.	UTA439N10	39 54 N	113 43 W	1320 CO ₂ , CH ₄ , CO, H ₂ , ¹³ CO ₂ , C ¹⁸ O ₂
REGION V (South-Wes	st Pacific)				
Baring Head	New Zealand	BAR541S00	41 25 S	174 52 E	85 CH ₄ , CO, CO ₂ , N ₂ O, O ₃
Baring Head	New Zealand	BAR541SA0	41 25 S	174 52 E	85 CO
Bukit Koto Tabang	Indonesia	BKT500S00	0 12 S	100 19 E	864.5 NO ₂ , SO ₂
Cape Ferguson	Australia	CFA519S30	19 17 S	147 03 E	2 CO ₂ , CH ₄ , CO, H ₂
Cape Grim	Australia	CGO540S10	40 41 S	144 41 E	94 CO ₂ , CH ₄ , CO, H ₂ , ¹³ CO ₂ , ¹³ CH ₄ ,
L					$C^{18}O_2$
Cape Grim	Australia	CGO540S20	40 41 S	144 41 E	94 CFCs, HCFCs, CH ₃ CCl ₃ , C ₂ Cl ₄ ,
					CH ₂ Cl ₂ , SF ₆ , N ₂ O
Cape Grim	Australia	CGO540SX0	40 41 S	144 41 E	94 HFCs
Cape Grim	Australia	CGR540S00	40 41 S	144 41 E	94 CO ₂
Cape Grim	Australia	CGR540S30	40 41 S	144 41 E	94 CO ₂ , CH ₄ , CO, ¹³ CO ₂ , ¹³ CH ₄ , H ₂
Cape Grim	Australia	CGR540SX0	40 41 S	144 41 E	94 CH ₄ , N ₂ O, CFCs, HFCs, HCFCs,
•					CCl ₄ , CHCl ₃ , CH ₃ CCl ₃ , CO, H ₂
Cape Kumukahi	U. S. A.	KUM519N10	19 31 N	154 49 W	3 CO ₂ , CH ₄ , CO, H ₂ , ¹³ CO ₂ , C ¹⁸ O ₂
Cape Kumukahi	U. S. A.	KUM519N20	19 31 N	154 49 W	3 CFCs, HCFCs, CH ₃ CCl ₃ , C ₂ Cl ₄ ,
					CH ₂ Cl ₂ , SF ₆ , N ₂ O
Cape Kumukahi	U. S. A.	KUM519ND0	19 31 N	154 49 W	3 HFCs
Cape Matatula	U. S. A.	MAT514SX0	14 15 S	170 34 W	42 CH ₄ , N ₂ O, CFCs, CCl ₄ , CHCl ₃ ,
-					CH ₃ CCl ₃
Cape Matatula	American Samoa, U. S.	SMO514S40	14 15 S	170 34 W	42 O ₃
-	A.				
Christmas Island	Kiribati	CHR501N10	1 42 N	157 10 W	3 CO ₂ , CH ₄ , CO, H ₂ , ¹³ CO ₂ , C ¹⁸ O ₂
Guam	U. S. A.	GMI513N10	13 26 N	144 47 E	2 CO ₂ , CH ₄ , CO, H ₂ , ¹³ CO ₂ , C ¹⁸ O ₂

				Location		
Station	Country/Territory	Index Number	Latitude	Longitude	Altitude	e Parameter
			(° ')	(°')	(m)	
.	.			106 50 5	-	
Jakarta	Indonesia	JKR506S00	6 11 S	106 50 E	7	NO_2 , SO_2
Kaitorete Spit	New Zealand	NZL543S10	43 50 S	172 38 E	3	CH ₄
Lauder	New Zealand	LAU545S40	45 02 S	169 40 E	370	O ₃
Macquarie Island	Australia	MQA554S30	54 29 S	158 58 E	12	CO_2 , CH_4 , CO , H_2
Mauna Loa	U. S. A.	MLO519N00	19 32 N	155 35 W	3397	CO ₂ , CH ₄
Mauna Loa	U. S. A.	MLO519N10	19 32 N	155 35 W	3397	CO ₂ , CH ₄ , CO, H ₂ , ¹³ CO ₂ , ¹³ CH ₄ ,
						C ¹⁸ O ₂
Mauna Loa	U. S. A.	MLO519N20	19 32 N	155 35 W	3397	CFCs, HCFCs, HFCs, CH ₃ CCl ₃ ,
						C ₂ Cl ₄ , CH ₂ Cl ₂ , SF ₆ , N ₂ O
Mauna Loa	U. S. A.	MLO519N30	19 32 N	155 35 W	3397	CO ₂ , CH ₄ , CO, H ₂
Mauna Loa	USA	ML 0519N40	19 32 N	155 35 W	3397	O_2
Mauna Loa		ML0519N40	19 32 N	155 35 W	3397	$N_{2}O$ CECs HECs CC1
Wadina Loa	0. J. A.	MLOJIJIA	17 52 1	155 55 ₩	5571	$CH_{2}C(L) = SE_{2} + CEC_{3}$
Sand Jaland		MID520N10	20 12 M	177 22 W	4	$CO_{13}CCI_{3}, SI_{6}, HCFCS$
	U. S. A.		20 13 N	101 22 E	4 1 <i>5 4 5</i>	$CO_2, CH_4, CO, H_2, FCO_2, CFO_2$
	Malaysia	TAK504N00	4 28 N	101 23 E	1545	
Tutuila	U. S. A.	SM0514S00	14 15 8	170 34 W	42	
Tutuila	U. S. A.	SMO514S10	14 14 S	170 34 W	42	$CO_2, CH_4, CO, H_2, {}^{13}CO_2, {}^{13}CH_4,$
						$C^{18}O_2$
Tutuila	U. S. A.	SMO514S20	14 15 S	170 34 W	42	CFCs, HCFCs, CH ₃ CCl ₃ , C ₂ Cl ₄ ,
						CH_2Cl_2, SF_6, N_2O
Tutuila	U. S. A.	SMO514SX0	14 15 S	170 34 W	42	N ₂ O, CFCs, HFCs, CCl ₄ ,
						CH ₃ CCl ₃ , SF ₆ , HCFCs
REGION VI (Europe)						
Adrigole	Ireland	ADR652NA0	52 N	10 W	50	N ₂ O, CFC ₈ , CCl ₄ , CH ₃ CCl ₃
Ähtäri	Finland	AHT662N00	62 35 N	24 12 E	180	NO_2 , SO_2 , O_3
Angra do Heroismo	Portugal	ANG638N00	38 40 N	27 13 W	74	O_2
Raltic Sea	Poland	BAI 655N10	55 25 N	17 04 F	7	$CO_2 CH_4 CO_1H_2 13CO_2 C18O_2$
Baia	Portugal	BEI638N00	38 01 N	7 52 W	246	$CO_2, CO_4, CO_3, O_2, CO_2, CO_2$
Black Soo	Pomonio	BSC644N10	44 10 N	28 / 1 E	2+0	C_{0} C_{1} C_{0} H_{1} C_{0} C_{18}
Diack Sea	Nomania	DSC044N10	44 10 N 41 49 N	20 + 1 L	600	$CO_2, CH4, CO, H2, CO_2, CO_2$
Bragança Destinal laises l	Foltugal	DRU041100	41 40 IN	044 W	1010	
Brotjackinegel	Germany	BK1648N00	48 49 N	13 13 E	1010	CO_2, O_3
Burgas	Bulgaria	BUR642N00	42 29 N	27 29 E	16	NO_2, SO_2
Castelo Branco	Portugal	CAS639N00	39 50 N	728 W	386	03
Danki	Russian Federation	DAK654N00	54 54 N	37 48 E	140	O ₃
Deuselbach	Germany	DEU649N00	49 46 N	7 03 E	480	CO_2, O_3, CH_4
Dwejra Point	Malta	GOZ636N10	36 03 N	14 11 E	30	CO ₂ , CH ₄ , CO, H ₂ , ¹³ CO ₂ , C ¹⁸ O ₂
Eskdalemuir	United Kingdom	EDM655N00	55 19 N	3 12 W	242	O ₃
Fundata	Romania	FDT645N00	45 28 N	25 18 E	1371	NO_2 , SO_2
Fundata	Romania	FDT645N20	45 28 N	25 18 E	1383.5	CO ₂ , NO ₂ , O ₃
Giordan Lighthouse	Malta	GLH636N00	36 04 N	14 13 E	167	O ₃ , CO
Hegyhatsal	Hungary	HUN646N10	46 57 N	16 39 E	344	CO ₂ , CH ₄ , CO, H ₂ , ¹³ CO ₂ , C ¹⁸ O ₂
Heimaev	Iceland	ICE663N10	63 20 N	20 17 W	100	CO ₂ , CH ₄ , CO, H ₂ , ¹³ CO ₂ , C ¹⁸ O ₂
Heimaev	Iceland	ICE663N40	63 24 N	20 17 W	100	O3
Hohe Warte	Austria	HHE648N00	48 15 N	16 22 E	202	$NO NO_2 SO_2$
Hohe Warte	Austria	HHE6/18N20	18 15 N	16 22 E	202	$NO_1 NO_2 SO_2$
Hohenneissenberg	Germany	HPB647N00	40 13 N	10 22 E	085	$CO NO NO_2 NO_2 NO_2 NO_2 SO_2$
rionenperssenuerg	Germany	III D0+/1000	+/ 40 IN	TIVIE	703	$\mathbf{POOH} \; \mathbf{H}_{2}\mathbf{O}_{2} \; \mathbf{POAN}$
Uchannaissanharr	Cormony	UDD 647NOO	17 10 NT	11.01 E	005	VOC_{\circ}
Hohempelssenberg	Correction	$\Pi P D 04/IN20$	4748 N		985	222D-
Honenpeissenberg	Germany	HPB64/N50	4/48 N	11 01 E	985	KN
Iskrba	Slovenia	IKB645N00	45 34 N	14 52 E	520	SU_2, U_3
Ivan Sedlo	Bosnia and Herzegovina	IVN643N00	43 46 N	18 02 E	970	NO_2 , SO_2
Jarczew	Poland	JCZ651N00	51 49 N	21 59 E	180	NO_2 , SO_2

~ .	~ ~ .			Location		_
Station	Country/Territory	Index Number	Latitude	Longitude	Altitude	e Parameter
			(* ')	(* ')	(m)	
Jungfraujoch	Switzerland	JFJ646N00	46 33 N	7 59 E	3578	CO. O3. NO. NO2. NOx. SO2.
K-puszta	Hungary	KPS646N00	46 58 N	19 33 E	125	CO ₂ . NO ₂ . SO ₂ . O ₃
Kamenicki Vis	Serbia and Montenegro	KAM643N00	43 24 N	21 57 E	813	NO_2 , SO_2
Kloosterburen	Netherlands	KTB653N00	53 24 N	6 25 E	0	CO NO NOx NO2 SO2
Kollumerwaard	Netherlands	KMW653N00	53 20 N	6 17 E	Ő	$CO_2 CH_4 CO NO NOx NO_2$
Konumerwaard	rementances	1111100551100	55 20 1	017 L	0	SO ₂ , O ₃
Kosetice	Czech Republic	KOS649N00	49 35 N	15 05 E	534	CH_4 , CO , NO , NO_2 , SO_2 , O_3
Kovk	Slovenia	KVK646N00	46 07 N	15 06 E	600	O ₃
Krvavec	Slovenia	KVV646N00	46 18 N	14 32 E	1720	O ₃
La Cartuja	Spain	CAR637N00	37 12 N	3 36 W	720	NO_2 , SO_2
Lampedusa	Italy	LMP635N00	35 31 N	12 38 E	45	CO ₂ , CH ₄ , N ₂ O, CFCs
Lazaropole	The former Yugoslav Republic of Macedonia	LZP641N00	41 32 N	20 42 E	1320	NO ₂ , SO ₂
Leba	Poland	LEB654N00	54 45 N	17 32 E	2	$NO_2 SO_2$
Lisboa / Gago Coutinho	Portugal	LIS638N00	38 46 N	9 08 W	105	Ω_2
Listou / Gugo Coutilito	Snain	LIS6561100	42 27 N	2 30 W	370	$NO_2 SO_2$
Mace Head	Ireland	MCH653N20	53 20 N	2 50 W	25	CECs HCECs CHaCCla SE
Wate Head	Iteland	WCH055IV20	<i>33 20</i> N) J+ W	25	N ₂ O
Mace Head	Ireland	MCH653NX0	53 20 N	9 54 W	25	CH ₄ , N ₂ O, CFCs, HFCs, HCFCs, CCl ₄ , CHCl ₃ , CH ₃ CCl ₃ , CO, H ₂
Mace Head	Ireland	MHD653N10	53 20 N	9 54 W	25	CO ₂ , CH ₄ , CO, H ₂ , ¹³ CO ₂ , C ¹⁸ O ₂
Mace Head	Ireland	MHD653N20	53 20 N	9 54 W	25	CO ₂
Mace Head	Ireland	MHD653NX0	53 20 N	9 54 W	25	HFCs
Mahón	Spain	MHN639N00	39 52 N	4 19 E	78	NO2, SO2, O3
Monte Cimone	Italy	CMN644N00	44 11 N	10 42 E	2165	$CO_2 O_3$
Monte Velho	Portugal	MVH638N00	38.05 N	8 48 W	43	O_3
Neuglobsow	Germany	NGL653N00	53 10 N	13 02 E	65	$CO_2 O_3 CH_4$
Noia	Spain	NIA642N00	42.44 N	8 55 W	685	$NO_2 SO_2 O_3$
Nv-Alesund	Norway	ZEP678N10	78 54 N	11 53 E	474	$CO_2, CH_4, CO, H_2, {}^{13}CO_2, C{}^{18}O_2$
Ocean Station "C"	U S A	STC654N10	54 00 N	35.00 W	6	CO_2
Ocean Station "M"	Norway	STM666N10	66 00 N	2.00 E	7	$CO_2 CH_4 CO H_2 {}^{13}CO_2 C^{18}O_2$
Ocean Station Charlie	Russian Federation	STC652N00	52.45 N	35 30 W	5	CO_2
Oulanka	Finland	OUL 666N00	66 19 N	29 24 E	310	$NO_2 SO_2 O_3$
Pallas-Sammaltunturi	Finland	PAL 667N00	67 58 N	227 E	565	$CO_2 O_2$
Pallas-Sammaltunturi	Finland	PAL667N10	67 58 N	24 07 E	565	CH ₄
Penhas Douradas	Portugal	PFN640N00	40 25 N	7 33 W	1380	02
Plateau Rosa	Italy	PL R645N00	40 25 N	7 42 F	3/80	CO ₂ CH ₄
Pleven	Bulgaria	PL V643N00	43 25 N	24 36 F	5400 64	NO_2 SO_2
Ploydiy	Bulgaria	PL D642N00	42 08 N	21 30 E 24 45 F	179	NO_2 , SO_2
Puszcza Borecka/Diabla	Poland	DIG654N00	54 09 N	24 45 E 22 04 F	157	$CO_2 NO_2 O_2 SO_2$
Gora	1 oland	D10054100	54 07 10	22 04 L	157	002,1102,03,502
Roquetes	Snain	R00640N00	40 49 N	0 29 F	50	$NO_2 SO_2 O_2$
Rucava	L atvia	RCV656N00	56 10 N	21 11 E	18	NO_2, SO_2, O_3
San Pablo de los Montes	Spain	SPM630N00	30 33 N	$\frac{2111}{12}$	017	NO_2, SO_2, O_3
Scheuinsland	Gormany	SI M0391000	47 55 N	+ 21 W	1205	CO_2, SO_2, O_3
Seda Bokar	Israal	WIS631N10	47 33 N 31 09 N	7 JJ E 34 53 E	400	$CO_2, CI_3, CI14, 1020, SI^{6}$
Sette Dokei	Domania	SEM645N00	45 07 N	21 58 E	1/32	$VO_2, CH4, CO, H2, FCO_2, CFO_2$
Shapalayo	Romanna Dussian Endoration	SLID650N00	40 07 IN	21 JO E 20 07 E	1432	NO_2, SO_2
Shetland	Lupited Kingdom	SHF0J9IN00	59 50 N	2907E	4 20	
Site I	Donmark	CDI CCANOO	66 20 M	1 13 W	2020	
Sile J Spiozko	Deliniark	GREOODINUU	50 44 M	40 12 W	2030	
Sillezka	r Utatiu Bulgorie	SINCOJUINUU	JU 44 IN	10 44 E 22 22 E	1003 502	1002, 502
Sonnhlielt	Austria	SUFU42INUU	42 37 N	25 25 E	2106	$100_2, 50_2$
Sumulat-	Austria	SIND04/INUU	4/ US IN	12 J/ E	3100	
Stephansplatz	Ausuna	511048INUU	48 I 3 IN	10 23 E	1/1	100, 1002, 502
				Location		
--------------------------	--------------------------	--------------	----------	--------------------	----------	--
Station	Country/Territory	Index Number	Latitude	Longitude	Altitude	e Parameter
			(° ')	(° ')	(m)	
		· · · ·				
Stephansplatz	Austria	STP648N20	48 13 N	16 23 E	171	NO, NO ₂ , SO ₂
Stîna de Vale	Romania	STN646N00	46 41 N	22 37 E	1116	NO_2 , SO_2
Summit	Denmark	SUM672N10	72 35 N	38 29 W	3238	CH ₄ , CO ₂
Summit	Greenland, Denmark	SUM672N40	72 35 N	38 29 W	3238	O ₃
Suwalki	Poland	SWL654N00	54 08 N	22 57 E	184	NO ₂ , SO ₂
Terceira Island	Portugal	AZR638N10	38 46 N	27 23 W	40	CO ₂ , CH ₄ , CO, H ₂ , ¹³ CO ₂ , C ¹⁸ O ₂
Teriberka	Russian Federation	TER 669N00	69 12 N	35.06 E	40	CO ₂ CH ₄
Utö	Finland	LITO659N00	59 /7 N	21 22 E	.0	$NO_2 SO_2 O_2$
Varna	Bulgorio	VDN643N00	13 12 N	21 22 L 27 55 E	/ /1	NO_2, SO_2, O_3
Vana Viene de Cestele	Duigaila	VDCC41N00	45 12 IN	27 JJ E	41	NO ₂ , SO ₂
	Portugal	VDC041N00	41 42 N	040 W	10	302
Vindeln	Sweden	VDL664N00	64 IS N	19 46 E	2/1	\mathbf{U}_3
Virolahti	Finland	VIR660N00	60 32 N	2740 E	4	NO_2, SO_2, O_3
Waldhof	Germany	LGB652N00	52 48 N	10 46 E	74	CO_2, O_3
Wank Peak	Germany	WNK647N00	47 31 N	11 09 E	1780	CO_2 , NOx, SO_2
Westerland	Germany	WST654N00	54 56 N	8 19 E	12	CO ₂ , O ₃
Zabljak	Serbia and Montenegro	ZBL643N00	43 09 N	19 08 E	1450	NO ₂ , SO ₂
Zavodnje	Slovenia	ZRN646N00	46 26 N	15 00 E	770	O ₃
Zeppelinfjellet	Norway	ZEP678N00	78 54 N	11 53 E	475	CO ₂ , N ₂ O, CFCs, CCl ₄ ,
11 5						CH ₃ CCl ₃ , O ₃ , SO ₂
Zingst	Germany	ZGT654N00	54 26 N	12.44 E	1	$CO_2 O_2 CH_4$
Zoseni	Latvia	ZSN657N00	57 08 N	25 55 E	183	$NO_2 SO_2$
Zugenitze	Cormony	ZGR647N00	47 25 N	20 50 E	2060	CO_{2} , SO_{2}
Zugspitze	Germany	ZUF04/1000	47 23 IN	10 39 E	2900	CO_2 , CH4, CO, NO, NOX, NOY,
A	a				• • • •	03
Zugspitze	Germany	ZSP647N00	47 25 N	10 59 E	2960	CO_2
Zugspitze/Schneefernerh	Germany	SFH647NA0	47 25 N	10 59 E	2656	CH ₄ , CO, CO ₂ , N ₂ O, NO, NO ₂ ,
aus						NOy, O_3 , SF_6
Zugspitze/Schneefernerh	Germany	SFH647N00	47 25 N	10 59 E	2656	SO ₂
aus						
ANTARCTICA						
Arrival Heights	Antarctica / New	ARH778S00	77 48 S	166 40 E	184	CH_4 CO N ₂ O
Annvai Heights	Zealand	11111/0500	// 10.5	100 10 E	101	
Arrival Haights	Anteration / New	ADU7795AO	77 19 5	166 40 E	194	<u>CO</u>
Anival Heights	Antaictica / New	AKH//05AU	// 40 5	100 40 E	104	0
			75 25 9	2 < 20 MJ	10	
Halley Bay	United Kingdom	HBA7/5810	/5 35 8	26 30 W	10	$CO_2, CH_4, CO, H_2, {}^{13}CO_2, C{}^{18}O_2$
Jubany	Argentina	JBN762S00	62 14 S	58 40 W	15	CO_2
Mawson	Australia	MAA767S30	67 37 S	62 52 E	32	CO_2 , CH_4 , CO , H_2
McMurdo / Arrival	U. S. A. / New Zealand /	MCM777S40	77 48 S	166 46 E	50	O ₃
Height	Antarctica					
McMurdo Station	U. S. A.	MCM777S10	77 50 S	166 36 E	11	CH ₄
Mizuho	Japan	MZH770S00	70 42 S	44 18 E	2230	CH ₄
Neumayer	Germany	NMY770S00	70 39 S	8 15 W	42	03
Palmer Station		PSA764S10	64 55 S	64 00 W	10	CO_{2} CH ₄ CO H ₂ 13CO ₂ C18O ₂
Dalmar Station		DSA764S20	64 55 8	64 00 W	10	CEC_2 , CH_4 , CO_1 , H_2 , CCO_2 , CEO_2
Paimer Station	U. S. A.	PSA/04520	04 33 3	04 00 W	10	СГСS, ПСГСS, СП3ССІ3, SГ6,
				64 00 M	10	N ₂ O
Palmer Station	U. S. A.	PSA/64SX0	64 55 S	64 00 W	10	HFCs
South Pole	U. S. A.	SPO789S00	89 59 S	24 48 W	2810	CO_2
South Pole	U. S. A.	SPO789S10	89 59 S	24 48 W	2810	CO ₂ , CH ₄ , CO, H ₂ , ¹³ CO ₂ , ¹³ CH ₄ ,
						$C^{18}O_2$
South Pole	U. S. A.	SPO789S20	89 59 S	24 48 W	2810	CFCs, HCFCs, CH ₃ CCl ₃ , C ₂ Cl ₄ ,
						CH ₂ Cl ₂ , SF ₆ , N ₂ O
South Pole	U. S. A.	SPO789S30	89 59 S	24 48 W	2810	CO ₂ , CH ₄ , CO. H ₂
South Pole	U.S.A.	SPO789S40	89 59 5	24 48 W	2810	03
	- /				-010	

LIST OF OBSERVING STATIONS (continued)

LIST OF OBSERVING STATIONS (continued)

Station	Country/Territory	Index Number	Latitude (° ')	Location Longitude (° ')	Altitude (m)	e Parameter
South Pole	U. S. A.	SPO789SX0	89 59 S	24 48 W	2810	N ₂ O, CFCs, HFCs, CCl ₄ , CH ₃ CCl ₃ , SF ₆ . HCFCs
Svowa Station	Japan	SYO769S00	69 00 S	39 35 E	29	CO ₂
Svowa Station	Japan	SYO769S10	69 00 S	39 35 E	11	CO ₂ , CH ₄ , CO, H ₂ , ¹³ CO ₂ , C ¹⁸ O ₂
Syowa Station	Japan	SYO769S20	69 00 S	39 35 E	29	O ₃
MOBILE STATION	- of our		.,		_,	- 5
Aircraft (over Bass Strait and Cape Grim)	Australia	AIA999930				CO ₂ , CH ₄ , CO, H ₂
Akademik Korolev, R/V	U. S. A.	AKD999910				CH ₄
Alligator liberty, M/V	Japan	ALG999900				CO ₂
Discoverer 1983 & 1984, R/V	U. S. A.	DIS999910				CH ₄
Discoverer 1985, R/V	U. S. A.	DSC999910				CH ₄
Environmental	Japan	EOM999900				CO ₂ , CH ₄
observation and						
monitoring project						
HATS Ocean Projects	U. S. A.	HOP9999X0				HFCs
INSTAC-I (International	Japan	INS9999A0				CO ₂ , CH ₄ , ¹³ CO ₂
Strato/Tropospheric Air						
Chemistry Project)						
John Biscoe, R/V	U. S. A.	JBS999910				CH ₄
Keifu Maru, R/V	Japan	KEF999900				CO_2
Kofu Maru, R/V	Japan	KOF999900				CO_2
Korolev, R/V	U. S. A.	KOR999910				CH ₄
Long Lines Expedition, R/V	U. S. A.	LLE9999910				CH4
Mexico Naval H-02, R/V	U. S. A.	MXN999910				CH ₄
MRI Research, 1978-1986, R/V	Japan	MRI9999A0				CH ₄
MRI Research, Hakuho Maru, R/V	Japan	HKH999900				CO ₂
MRI Research, Kaiyo Maru, R/V	Japan	KIY999900				CO ₂
MRI Research, Mirai, R/V	Japan	MMR999900				CO ₂
MRI Research, Natushima, R/V	Japan	NTU999900				CO ₂
MRI Research, Ryofu Maru, R/V	Japan	RFM999900				CO ₂
MRI Research, Wellington Maru, R/V	Japan	WLT999900				CO ₂
Oceanographer, R/V	U. S. A.	OCE999910				CH ₄
Pacific Ocean	U. S. A.	POC9XXX10			8	CO ₂ , CH ₄ , CO, H ₂ , ¹³ CO ₂ , C ¹⁸ O ₂
Polar Star, R/V	U. S. A.	PLS999910				CH ₄
Ryofu Maru, R/V	Japan	RYF999900				CO ₂ , CH ₄ , N ₂ O, CFCs
Ryofu Maru, R/V	Japan	RYF9999A0				CO ₂ , CH ₄
South China Sea	U. S. A.	SCS9XXX10			15	CO ₂ , CH ₄ , CO, H ₂ , ¹³ CO ₂ , C ¹⁸ O ₂
Surveyor, R/V	U. S. A.	SUR999910				CH ₄
The Observation of	Japan	OAS999900				SF ₆
Atmospheric Sulfur						
Hexafluoride Over Japan						

LIST OF CONTRIBUTORS

Station Country/Territory	Name	Address
REGION I (Africa)		
Assekrem (Algeria)	Mimouni Mohamed	Office National de la Meteorologie POBox 31 Tamanrasset 11000, Algeria
Amsterdam Island (France)	M. Ramonet P. Ciais V. Kazan L. Jourd'Heuil S.G. Jennings	LSCE (Laboratoire des Sciences du Climat et de l'Environnement) UMR CEA-CNRS LSCE - CEA Saclay - Orme des Merisiers - Bat.709 91191 Gif-sur-Yvette, France
Funchal (Portugal)	Antonio Dias Baptista	Instituto de Meteorologia Rua C, Aeroporto 1749-077 Lisboa, Portugal
Cape Point (South Africa)	Casper Labuschagne Ernst-Günther Brunke and Gerrie Coetzee	South African Weather Service (Climate Division) SAWS, c/o CSIR (Environmentek), P.O. Box 320, Stellenbosch 7599, South Africa.
Izaña (Spain)	Ramon Ramos Ramon Juega	Observatorio Atmosferico de Izana, Instituto Nacional de Meteorologia, Spain C/ La Marina, 20, atico Apartado 880 38071 Santa Cruz de Tenerife, Spain
Izaña (Spain)	Juanma Sancho Ramon Ramos	Observatorio Atmosferico de Izana, Instituto Nacional de Meteorologia, Spain C/ La Marina, 20, atico Apartado 880 38071 Santa Cruz de Tenerife, Spain
REGION II (Asia)		
Mt. Waliguan (China)	Wen Yupu Zhang Xianchun	Chinese Academy of Meteorological Sciences 46 Zhongguancun Nandajie, Haidian, Beijing 100081, P.R. of China
Hok Tsui (Hong Kong, China)	Ka Se Lam	Department of Civil and Structural Engineering, Hong Kong Polytechnic University Hung Hom, Kowloon, Hong Kong
Takayama (Japan)	Shohei Murayama Susumu Yamamoto Nobuko Saigusa and Hiroaki Kondo	Research Institute for Environmental Management Technology National Institute of Advanced Industrial Science and Technology (AIST) AIST Tsukuba West, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
Tsukuba (Japan)	M. Hirota K. Shibata	Atmospheric Environment and Applied Meteorology Research Department, Meteorological Research Institute 1-1, Nagamine, Tsukuba, Ibaraki 305-0052, Japan

Station Country/Territory	Name	Address
Country/ remitory		
Minamitorishima Ryori Yonagunijima (Japan)	Hideyuki SASAKI	Atmospheric Environment Division, Observations Department, Japan Meteorological Agency (JMA) 1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan
Tsukuba (Japan)	H. Y. Inoue H. Matsueda M. Ishii	Geochemical Research Department, Meteorological Research Institute 1-1, Nagamine, Tsukuba, Ibaraki 305-0052, Japan
Kisai Mt. Dodaira Urawa (Japan)	Yosuke MUTO	Center for Environmental Science in Saitama 914 Kamitanadare, Kisai-machi, Kita-Saitama-gun, Saitama 347-0115, Japan
Mikawa-Ichinomiya (Japan)	Seiko Iwata	Aichi Environmental Research Center 7-6 Aza-Nagare, Tuji-machi, Kita-ku, Nagoya, Aichi 462-0032, Japan
Cape Ochi-ishi Hateruma (Japan)	Hitoshi Mukai Toshinobu Machida Yukihiro Nojiri Yasumi Fujinuma Masayuki Katsumoto	Center for Global Environmental Research, National Institute for Environmental Studies 16-2, Onogawa, Tsukuba-shi, Ibaraki, 305-0053, Japan
Nagoya (Japan)	K. Kitagawa A. Matsunami	Research Center for Advanced Energy Conversion, Nagoya University Furo-cho, Chikusaku, Nagoya 464-8603, Japan
Hamamatsu (Japan)	Mitsuo TODA	Shizuoka University 3-5-1 Jyohoku, Hamamatsu 432-8561, Japan
Memanbetsu (Japan)	M. Hirota H. Muramatsu	Meteorological Research Institute Nagamine, Tsukuba, Ibaraki 305-0082, Japan
	F. Muromatsu M. Hashimoto T. Koike	Memanbetsu Magnetic Observatory Memanbetsu, Hokkaido 099-2356, Japan
Tsukuba (Japan)	Tosiro Kimura Eiji Ogura Takeo Ueno Yuuzou Ikeda	Lower Aerological Observations Division, Aerological Observatory, Japan Meteorological Agency (JMA) Lower Aerological Observations Division, Aerological Observatory 1-2 Nagamine, Tsukuba, Ibaraki, 305-0052, Japan
Issyk-Kul (Kyrgyzstan)	V. Semenov V. Sinyakov L. Sorokina N. Ignatova	Laboratory of Geophysics, Institute of Fundamental sciences at the Kyrgyz National University, Kyrgyzstan Manas Street 101, Bishkek, 720033, Kyrgyz Republic
	V. Aref'ev N. Kamenogradsky F. Kashin	Institute of Experimental Meteorology SPA 'Typhoon', Russia Lenin St. 82, Obninsk, Kaluga reg. 249020, Russian Federation

Station Country/Territory	Name	Address
Gosan (Rep. of Korea)	Jae-Cheol Nam So-young Bang Kyung-Ryul Kim Mi-Kyung Park	Applied Meteorology Research Laboratory, Meteorological Research Institute (METRI), Korea Meteorological Administration (KMA) 460-18, Shindaebang-dong, Tongjak-gu, Seoul 156-720, Rep. of Korea
Anmyeon-do (Rep. of Korea)	Jeong-Sik Kim Ki-Jun Park	Climate Policy Division, Climate Bureau, Korea Meteorology Administration 460-18, Shindaebang-dong, Dongjak-gu Seoul 156-720, Republic of Korea
Bering Island Kotelny Island (Russian Federation)	A. ShashkovN. ParamonovaV. PrivalovA. Reshetnikov	Main Geophysical Observatory (MGO) Karbyshev Street 7, St. Petersburg, 194021, Russian Federation
Kyzylcha (Uzbekistan)	A. Shashkov N. Paramonova V. Privalov A. Reshetnikov	Main Geophysical Observatory (MGO) Karbyshev Street 7, St. Petersburg, 194021, Russian Federation

REGION III (South America)

Ushuaia	Miguel Pereyra	Estacion VAG Ushuaia, Servicio Meteorológico Nacional
(Argentina)	Sergio Luppo	Subsecretaria de Planeamiento
		Fagnano 486, Planta Alta
		9410 Ushuaia, Tierra del Fuego, Argentina

Arembepe (Brazil)

HuancayoM. IshitukaObservatorio de Huancayo, Instituto Geofisico del Peru(Peru)Apartado 46, Huancayo, Peru

REGION IV (North and Central America)

Alert	V. Hudec	Meteorological Service of Canada (MSC)
Cape St. James	C.S. Wong	4905 Dufferin Street,
Sable Island		Downsview, Ontario, Canada, M3H 5T4
(Canada)		

Chalk River Chapais Egbert Esther Experimental Lakes Area Kejimkujik Longwoods Saturna Sutton (Canada) Environment Canada Meteorological Service of Canada Air Quality Research Branch 4905 Dufferin St. Toronto, Ontario CANADA M3H 5T4

Station Name Address Country/Territory La Palma Osvaldo Cuesta Santos Institute of Meteorology, Atmospheric Environment Research Center (Cuba) Apdo. 17032, Postal Code 11700, Havana 17, Cuba Barrow Pieter P. Tans Climate Monitoring and Diagnostics Laboratory (CMDL), (U. S. A.) Kirk Thoning National Oceanic and Atmospheric Administration (NOAA) Lee Waterman 325 Broadway, Boulder, CO 80303-3328, U.S.A. Thomas Mefford **REGION V (South-West Pacific)** Paul Fraser Cape Grim Commonwealth Scientific and (Australia) Industrial Research Organization (CSIRO) CSIRO, Division of Atmospheric Research 107-121 Station Street, Aspendale, Victoria 3195, Australia Postal adress: PMB 1 Aspendale Vic 3195 Bukit Koto Tabang Tuti Mulyani Bureau of Meteorology and Geophysics Jalan Angkasa 1 No.2 Jakarta Jakarta 10720, Indonesia (Indonesia) Tanah Rata Malaysian Meteorological Service (Malaysia) **Baring Head** M.R. Manning National Institute of Water & Atmospheric Research Ltd. (New Zealand) A.J. Gomez 301 Evans Bay Parade, Greta Point G.W. Brailsford Private Bag 14-901, S.E. Nichol Kilbirnie, Wellington, New Zealand Pieter P. Tans Mauna Loa Climate Monitoring and Diagnostics Laboratory (CMDL), Kirk Thoning National Oceanic and Atmospheric Administration (NOAA) Tutuila Lee Waterman (U. S. A.) 325 Broadway, Boulder, CO 80303-3328, U.S.A. Thomas Mefford **REGION VI (Europe)** Hohe Warte Wolfgang Spangl Federal Environmental Agency Stephansplatz Spittelauer L?de 5 A-1090 Wien, Austria (Austria) wolfgang.spangl@umweltbundesamt.at Sonnblick Wolfgang Spangl Federal Environment Agency Austria (Austria) Spittelauer Lande 5, A-1090 Wien, Austria Municipal Department 22 - Environmental Protection Hohe Warte Guenther Schermann Stephansplatz Air quality subdepartment, (Austria) City of Vienna Ebendorferstrasse 4, A-1082 Vienna, Austria

Station	Name	Address
Country/Territory		
Ivan Sedlo (Bosnia and Herzegovina)	Enes Sarac	Meteoroloski zavod Bosne i Hercegovine Bardakcije 12, 71000 Sarajevo, Bosnia and Herzegovina
Burgas Pleven Plovdiv Sofia Varna (Bulgaria)	N. Valkov E. Batchvarova	National Institute of Meteorology and Hydrology 66 Tzarigradsko chaussee, 1784 Sofia, Bulgaria
Kosetice (Czech Republic)	Milan Vana	Air Quality Protection Department, Czech Hydrometeorological Institute Czech Hydrometeorological Institute, Kosetice Observatory, 394 22 Kosetice, Czech Republic
Site J (Denmark)	S. Morimoto G. Hashida	National Institute of Polar Research Kaga 1-9-10, Itabashi-ku, Tokyo 173-8515, Japan
	S. Aoki T. Nakazawa	Center for Atmospheric and Oceanic Studies, Graduate School of Science, Tohoku University Sendai 980-8578, Japan
Pallas-Sammaltunturi (Finland)	Dr. Tuula Aalto	Finnish Meteorological Institute Sahaajankatu 20 E, FIN-00880 Helsinki, Finland
Ähtäri Oulanka Pallas-Sammaltunturi Utö Virolahti (Finland)	Jussi Paatero Yrjö Viisanen	Finnish Meteorological Institute Sahaajankatu 20 E, FIN-00880 Helsinki, Finland
Hohenpeissenberg (Germany)	U.Kaminski	Deutscher Wetterdienst (DWD) Meteorologisches Observatorium Hohenpeissenberg Albin-Schwaiger-Weg 10 D-82383 Hohenpeissenberg, Germany
Hohenpeissenberg Zugspitze/Schneefernerhaus (Germany)	S. Gilge	German Meteorological Service (DWD) Meteorological Observatory Hohenpeissenberg Albin-Schwaiger-Weg 10 D-82383 Hohenpeissenberg, Germany
Brotjacklriegel Deuselbach Neuglobsow Schauinsland Waldhof Westerland Zingst Zugspitze Zugspitze/Schneefernerhaus (Germany)	R. Graul K. Uhse L. Ries U. Treffert	Federal Environmental Agency (Umweltbundesamt) Federal Environmental Agency Paul-Ehrlich Strasse 29, D-63225 Langen, Germany

Station	Name	Address
Country/Territory		
Wank Peak Zugspitze (Germany)	H.E. Scheel R. Sladkovic	Fraunhofer-Institute for Atmospheric Environmental Research, since 1.1.2002: Forschungszentrum Karlsruhe, IMK-IFU D-82467 Garmisch-Partenkirchen, Germany
Hohenpeissenberg (Germany)	Christian Plass-Duelmer Harald Berresheim	Deutscher Wetterdienst (DWD), Meteorologisches Observatorium Hohenpeissenberg Albin-Schwaiger-Weg 10 D-82383 Hohenpeissenberg, Germany
K-puszta (Hungary)	L. Horvath	Hungarian Meteorological Service P.O. Box 39 H-1675 Budapest, Hungary
Mace Head (Ireland)	M. Ramonet P. Ciais V. Kazan L. Jourd'Heuil S.G. Jennings	LSCE (Laboratoire des Sciences du Climat et de l'Environnement) UMR CEA-CNRS LSCE - CEA Saclay - Orme des Merisiers - Bat.709 91191 Gif-sur-Yvette, France
Monte Cimone (Italy)	Riccardo Santaguida Francesco De Nile Luigi Lauria	Italian Air Force Meteorological Service C.A.M.M. Mt. CIMONE, Via delle Ville 40, 41029-Sestola (MO), Italy
Lampedusa (Italy)	 P. Chamard F. Artuso L. De Silvestri A. di Sarra P. Grigioni F. Monteleone S. Piacentino 	Italian National Agency for New Technology, Energy and the Environment (ENEA) ENEA CLIM-OSS Via Anguillarese 301, 00060 S. 00060 Maria di Galeria, Rome, Italy
Plateau Rosa (Italy)	Claudio Vannini	Italian Electrical Experimental Center (CESI) Via Rubattino, 54, 20134 Milano, Italy
Monte Cimone (Italy)	Paolo Bonasoni Paolo Cristofanelli	National Research Council, Institute of Atmospheric Sciences and Climate, Mt. Cimone Station Via Gobetti 101 40129 Bologna, Italy
Rucava Zoseni (Latvia)	Iraida Lyulko	Observation Network Department, Latvian Hydrometeorological Agency, Ministry of Environmental 165 Maskavas str. LV-1019, Riga, Latvia
Giordan Lighthouse (Malta)	Raymond Ellul Martin Saliba	Atmospheric Research Unit / Physics Department /University of Malta Msida MSD 06, Malta
Kloosterburen Kollumerwaard (Netherlands)	J.P. Beck	Air Research Laboratory, National Institute of Public Health and the Environment P.O. Box 1, 3720 BA Bilthoven, Netherlands
Zeppelinfjellet (Norway)	Johan Strom	The Air Pollution Laboratory (ITMI), Stockholm University SE-106 91 Stokholm, Sweden

Station Country/Territory	Name	Address
Zeppelinfjellet (Norway)	Ove Hermansen	Norwegian Institute for Air Research (NILU) P. O. Box 100 Instituttveien 18, N-2027 Kjeller, Norway
Puszcza Borecka/Diabla Gora (Poland)	Institute of Environmental Protection Warsaw	Institute of Environmental Protection Kolektorska 4 01-692 Warsaw, Poland
Jarczew Leba Sniezka Suwalki (Poland)	prof. dr eng. Henryk Slota	Laboratory of Atmospheric Chemistry, Institute of Meteorology and Water Management (IMWM) Podlesna Street 61, 01-673 Warszawa, POLAND
Angra do Heroismo Beja Bragança Castelo Branco Lisboa / Gago Coutinho Monte Velho Penhas Douradas Viana do Castelo (Portugal)	Antonio Dias Baptista	Instituto de Meteorologia Rua C, Aeroporto 1749-077 Lisboa, Portugal
Fundata Semenic Stîna de Vale (Romania)	Daniela ZISU	National Research and Development Institute for Environmental Protection Splaiul Independentei nr. 294, sector 6, 77703 Bucuresti Romania
Fundata (Romania)	Adriana Nicodim Florin Nicodim	National Meteorological Administration Sos. Bucuresti-Ploiesti nr. 97, 71552 Bucharest, Romania
Ocean Station Charlie Teriberka (Russian Federation)	A. Shashkov N. Paramonova V. Privalov A. Reshetnikov	Main Geophysical Observatory (MGO) Karbyshev Street 7, St. Petersburg, 194021, Russian Federation
Danki Shepelevo (Russian Federation)		
Kamenicki Vis	Tanja Vukovic	Republic Hydrometeorological Institute of Serbia
(Serbia and Montenegro)		P. O. Box 604, Bircaninova 6, 11001 Beograd, Serbia and Montenegro
Iskrba Kovk Krvavec Zavodnje (Slovenia)	Brigita Jesenovec	Ministry of Environment and Spatial Planning Environmental Agency of the Republic of Slovenia (EARS) Vojkova 1/b, Sl-1000 Ljubljana, Slovenia

<u>a</u>	N.7.	
Station Country/Territory	Name	Address
La Cartuja Logroño Mahón Noia Roquetes San Pablo de los Montes (Spain)	J.M. Saenz R.G. Marin	Instituto Nacional de Meteorologia, Ministerio de Medio Ambiente Leonardo Prieto Castro, 8, 28071 Madrid, Spain
Vindeln (Sweden)	Karin Sjoberg	Swedish Environmental Research Institute (IVL) P.O.Box 47086 S-402 58 Goteborg, Sweden
Jungfraujoch (Switzerland)	Brigitte Buchmann	EMPA, Swiss Federal Laboratories for Materials Testing and Research Air Pollution / Environmental Technology Uberlandstrasse 129 CH-8600 Dubendorf, Switzerland
Lazaropole (The former Yugoslav Republic of Macedonia)	Suzana Alcinova Monevska	Hydrometeorological Service Skupi bb, 1000 Skopie, The former Yugoslav Republic of Macedonia
Eskdalemuir (United Kingdom)	Peter Kuria	Air and Environment Quality Division, DEFRA 4/F15, Ashdown House 123 Victoria Street London, SW1E 3DE, United Kingdom
ANTARCTICA		
Arrival Heights (Antarctica / New Zealand)	M.R. Manning A.J. Gomez G.W. Brailsford S.E. Nichol	National Institute of Water & Atmospheric Research Ltd. 301 Evans Bay Parade, Greta Point Private Bag 14-901, Kilbirnie, Wellington, New Zealand
Jubany (Argentina)	L. Ciattaglia	Consiglio Nazionale delle Ricerche Istituto di Scienze dell'Atmosfera e del Clima (CNR-ISAC) Area della Ricerca di Roma Tor Vergata via Fosso del Cavaliere, 100, 00133 Rome, Italy
	J. Araujo H.Rodriguez	Direccion Nacional del Antartico Instituto Antmgtico Argentino (DNA-IAA) Cerrito 1248, 1010 Buenos Aires, Argentina
Neumayer (Germany)	Rolf Weller	Alfred Wegener Institute Am Handelshafen 12, 27570 Bremerhaven, Germany
	Uwe Kaminski	Deutscher Wetterdienst, Meteorologisches Observatorium, GAW Global station Albin-Schwaiger-Weg 10, 82383 Hohenpeissenberg, Germany

Station	Name	Address
Country/Territory		
Syowa Station	S. Morimoto	National Institute of Polar Research
(Japan)	G. Hashida	Kaga 1-9-10, Itabashi-ku, Tokyo 173-8515, Japan
		Center for Atmospheric and Occasio Studies, Creducts School of
	S. AOKI	Center for Atmospheric and Oceanic Studies, Graduate School of
	1. Nakazawa	Science, Tohoku University
		Sendai 980-8578, Japan
Mizuho	Takakiyo Nakazawa	Center for Atmospheric and Oceanic Studies, Graduate School of
(Japan)	I allally of I allala in a	Science Tohoku University
(rupun)		Aoba, Sendai 980-8578, Japan
Syowa Station	Yasuo Shudou	Office of Antarctic Observations,
(Japan)		Japan Meteorological Agency (JMA)
		1-3-4 Otemachi, Chiyoda-ku,
		Tokyo 100-8122, Japan
South Pole	Pieter D. Tans	Climate Monitoring and Diagnostics Laboratory (CMDL)
	Kirk Thoning	National Oceanic and Atmospheric Administration (NOAA)
(0. 5. A.)	Lee Waterman	325 Broadway, Boulder, CO 80303-3328, U.S. A
	Thomas Mefford	525 Dioduway, Doulder, CO 80505-5528, 0.5.A.
	monitas mentora	
MOBILE STATION		
MODILESTATION		
Keifu Maru, R/V	T. Miyao	Climate and Marine Department, Japan Meteorological Agency
Kofu Maru, R/V	,	1-3-4 Otemachi, Chiyoda-ku, Tokyo 100-8122, Japan
Ryofu Maru, R/V		
(Japan)	H. Matsueda	Meteorological Research Institute
		1-1 Nagamine, Tsukuba, Ibaraki 305-0052, Japan
	V Saiton	Kaba Marina Obsaryatary
	K. Sallou	1 4 3 Wakinghama Kaigandori Chuo ku Kobe 651 0073 Japan
		1-4-5 wakinonaina-Kaigandon, Chuo-ku, Kooc 051-0075, Japan
MRI Research	H Matsueda	Geochemistry Research Department
1978-1986 R/V	H Yoshikawa	Meteorological Research Institute
Hakubo Maru R/V	II. I Osiiikawa	Nagamine 1-1 Tsukuba
Kaivo Maru R/V		Ibaraki 305-0052 Japan
Natushima R/V		10araki 505-0052, 3apan
Ryofu Maru R/V		
Wellington Maru R/V		
(Japan)		
()		
Alligator liberty, M/V	S. Kato	Foundation for Promoting Perspnal Mobility and
(Japan)		Ecological Transportation (Eco-Mo Foundation)
		808, Syuwakioicho-TBR-Building, 5-7, Koujimachi,
		Chiyodaku, Tokyo 102-0083, Japan
	I. Ouema	Dellutante Chemical Analysis Conten Marine Division Oliverty of
	J. Oyama	Marine Department
		Ispan Mataorological Agency (IMA)
		1.3.4 Otamaahi Chiyoda ku Takwa 100 8122 Janan
		1-5-4 Otematin, Chiyotta-ku, 10ky0 100-0122, Japan

Station Country/Territory	Name	Address
Environmental observation and monitoring project INSTAC-I (International Strato/Tropospheric Air Chemistry Project) (Japan)	H. Matsueda H. Yoshikawa M. Ishii	Geochemical Research Department, Meteorological Research Institute Nagamine 1-1, Tsukuba, Ibaraki 305-0052, Japan
The Observation of Atmospheric Sulfur Hexafluoride Over Japan (Japan)	M. Hirota H. Muramatsu	Meteorological Research Institute/JMA 1-1 Nagamine, Tsukuba, Ibaraki 305-0052, Japan
MRI Research Mirai, R/V (Japan)	Masao Ishii	Geochemistry Research Department, Meteorological Research Institute Nagamine 1-1, Tsukuba, Ibaraki 305-0052, Japan

NOAA/CMDL Flask Network

Halley Bay (United Kingdom / Antarctica)	T. J. Conway* P. P. Tans* (CO ₂)	(*) Climate Monitoring and Diagnostics Laboratory (CMDL), National Oceanic and Atmospheric Administration (NOAA), 325 Broadway, Boulder, CO 80305, U.S.A.
Tierra del Fuego (Argentina)	Edward J. Dlugokencky* Patricia M. Lang* Kenneth A. Masarie*	(**) Institute of Arctic and Alpine Research (INSTAAR), Campus box 450, University of Colorado, Boulder, CO 80309-0450, U.S.A.
Cape Grim (Australia)	(CH ₄)	
Ragged Point (Barbados)	Paul C. Novelli* Kenneth A. Masarie* (CO)	
Alert Mould Bay (Canada)	Paul C. Novelli* (H ₂)	
Easter Island (Chile)	Bruce Vaughn** (¹³ CO ₂ and C ¹⁸ O ₂)	
Mt. Waliguan (China)	John Miller* James White** (¹³ CH ₄)	
Summit (Denmark)		
Pallas-Sammaltunturi (Finland)		
Amsterdam Island Crozet (France)		
Hegyhatsal (Hungary)		
Heimaey (Iceland)		

Station Country/Territory	Name	Address	
Mace Head (Ireland)			
Sede Boker (Israel)			
Syowa Station (Japan / Antarctica)			
Plateau Assy Sary Taukum (Kazakhstan)			
Christmas Island (Kiribati)			
Kaashidhoo (Maldives)			
Dwejra Point (Malta)			
Ulaan Uul (Mongolia)			
Gobabeb (Namibia)			
Kaitorete Spit (New Zealand)			
Ny-Alesund Ocean Station "M" (Norway)			
Baltic Sea (Poland)			
Terceira Island (Portugal)			
Tae-ahn Peninsula (Rep. of Korea)			
Black Sea (Romania)			
Mahe Island (Seychelles)			
Tenerife (Spain)			
Akademik Korolev, R/V Barrow Cape Kumukahi Cape Meares			

NOAA/CMDL/HATS Network

Cape Grim (Australia)

Alert (Canada)

Mace Head (Ireland) James W. Elkins James H. Butler Thayne M. Thompson Geoffrey S. Dutton Stephen A. Montzka Bradley D. Hall Halocarbons and Other Atmosphere Trace Species Group (HATS) /CMDL/NOAA 325 Broadway R/CMDL1 Boulder, CO 80305, U.S.A.

Station	Name	Address
Country/Territory		
Barrow		

Cape Kumukahi Grifton Harvard Forest HATS Ocean Projects Mauna Loa Niwot Ridge Niwot Ridge C-1 Park Falls Trinidad Head Tutuila (U. S. A.)

Palmer Station South Pole (U. S. A. / Antarctica)

NOAA/CMDL Surface Ozone Network

McMurdo / Arrival Height Sam Oltmans (U. S. A. / New Zealand / Antarctica)

Ragged Point (Barbados)

Tudor Hill (Bermuda, United Kingdom)

Summit (Greenland, Denmark)

Heimaey (Iceland)

Lauder (New Zealand)

Barrow Mauna Loa Niwot Ridge Niwot Ridge (Saddle) Trinidad Head (U. S. A.)

South Pole (U. S. A. / Antarctica)

Cape Matatula (American Samoa, U. S. A.) Climate Monitoring and Diagnostics Laboratory (CMDL)/NOAA 325 Broadway Boulder, CO 80305-3328, U.S.A.

Station	Name	Address
Country/Territory		
CSIRO Flask Network		
Aircraft (over Bass Strait and	Paul Steele	Commonwealth Scientific and
Cape Grim)	Paul Krummel	Industrial Research Organisation (CSIRO)
Cape Ferguson	Ray Langenfelds	CSIRO Atmospheric Research
Cape Grim	Roger Francey	107-121 Station Street,
Macquarie Island		Aspendale, Victoria 3195, Australia
(Australia)		Postal address: PMB 1, Aspendale, Victoria 3195, Australia
Mawson		
(Australia / Antarctica)		

Alert Estevan Point (Canada)

Mauna Loa (U. S. A.)

South Pole (U. S. A. / Antarctica)

Shetland (United Kingdom)

ALE/GAGE/AGAGE Network

Cape Grim	R. Prinn	TEPCO Professor of Atmospheric Chemistry,
(Australia)		Director, Center for Global Change Science
		Head, Dept. of Earth, Atmospheric & Planetary Sciences
Ragged Point		MIT, Bldg. 54-1312, Cambridge, MA 02139-4307, U.S.A.
(Barbados)		
	D. Cunnold	School of Earth and Atmospheric Sciences,
Adrigole	R. H. J. Wang	Georgia Institute of Technology
Mace Head	-	30332-0340 Atlanta, GA, U.S.A.
(Ireland)		
	P. Fraser	CSIRO Atmospheric Research,
Cape Matatula	L. P. Steele	PMB #1 Aspendale Victoria 3195, Australia
Cape Meares		-
Trinidad Head	R. Weiss	Scripps Institution of Oceanography,
(U. S. A.)	P. Salameh	University of California,
		San Diego, La Jolla, California 92093-0244, U.S.A.
	P. Simmonds	39 Avon Castle Drive, Ringwood, Hants, BH24 2BB,
	S. O'Poherty	United Kingdom

GLOSSARY

AGENCIES AND PROGRAMMES:

AGAGE	Advanced Global Atmospheric Gases Experiment
ALE	Atmospheric Lifetime Experiment
AES	Atmospheric Environment Service (Canada, presently MSC)
CAMS	Chinese Academy of Meteorological Sciences (China)
CESI	Italian Electrical Experimental Center (Italy)
CFR	Centre des Faibles Radioactivites (France)
CHMI	Czech Hydrometeorological Institute (Czech Republic)
СМА	China Meteorological Administration (China)
CMDL	Climate Monitoring and Diagnostics Laboratory (USA/NOAA)
CNR	Consiglio Nazionale delle Ricerche (Italy)
CNRS	Centre National de la Recherche Scientifique (France)
CSIRO	Commonwealth Scientific and Industrial Research Organisation (Australia)
DNA-IAA	Direccion Nacional del Antartico-Instituto Antartico Argentino (Argentina)
DWD	Deutscher Wetterdienst (German Meteorological Service, Germany)
EMPA	Swiss Federal Laboratories for Material Testing and Research (Switzerland)
ENEA	Italian National Agency for New Technology, Energy and the Environment
	(Italy)
GAGE	Global Atmospheric Gases Experiment
GAW	Global Atmosphere Watch (WMO)
HATS	Halocarbons and other Atmospheric Trace Species
HMS	Hungarian Meteorological Service (Hungary)
IFU	Institute of the Research of the Atmospheric Environment (Germany)
IGP	Instituto Geofísico del Perú (Peru)
IMS	Centro Aeronautico di Montagna, Italian Air Force Meteorological Service
	(ltaly)
INM	Instituto Nacional de Meteorología (Spain)
JMA	Japan Meteorological Agency (Japan)
KMA	Korea Meteorological Administration (Republic of Korea)
LSCE	Laboratoire des Sciences du Climat et de l'Environnement (France)
METRI	Meteorological Research Institute (Republic of Korea /KMA)
MGU	Main Geophysical Observatory (Russian Federation)
MISU	Department of Meteorology, Stockholm University (Sweden)
MRI	Meteorological Research Institute (Japan/JMA)
MSC	Meteorological Service of Canada (Canada, formerly AES)
NCEP	National Centers for Environmental Prediction (USA/NOAA)
NIES	National Institute for Environmental Studies (Japan)
	Norwegian Institute for Alf Research (Norway)
NIMH	Institutul National de Meteorologie, Hidrologie si Gospodarirea Apelor
NICT	(Komania) National Institute of Standards and Technology (USA)
	National Institute of Standards and Technology (USA)
	National Oceania and Atmospheric Administration (USA)
NCED	National Contara for Environmental Dradiation (USA/NOAA)
NUEP	National Linguity for Logith and Environmental Vietbarlanda)
	National Institute for Health and Environment (Netherlands)
SAWS	South Affical weather Service (South Affica)
510	(USA)

UBA	Umweltbundesamt (Germany)
WDCGG	World Data Centre for Greenhouse Gases, operated by JMA, Japan (WMO)
WMO	World Meteorological Organization
ZAMG	Central Institute of Meteorology and Geodynamics (Austria)

ATMOSPHERIC SPECIES:

CCl ₄	tetrachloromethane (carbon tetrachloride)
CFC-11	chlorofluorocarbon-11 (trichlorofluoromethane, CCl ₃ F)
CFC-12	chlorofluorocarbon-12 (dichlorodifluoromethane, CCl ₂ F ₂)
CFC-113	chlorofluorocarbon-113 (1,1,2-trichlorotrifluoroethane, CCl ₂ FCClF ₂)
CFCs	chlorofluorocarbons
HCFC-141b	hydrochlorofluorocarbon-141b (1,1-dichloro-1-fluoroethane, CH ₃ CCl ₂ F)
HCFC-142b	hydrochlorofluorocarbon-142b (1,1-difluoro-1-chloroethane, CH ₃ CClF ₂)
HCFCs	hydrochlorofluorocarbons
CH ₄	methane
CH ₃ CCl ₃	trichloroethane (methyl chloroform)
CO	carbon monoxide
CO_2	carbon dioxide
N_2O	nitrous oxide
NO	nitrogen monoxide
NO ₂	nitrogen dioxide
NO _x	nitrogen oxides
0,	ozone
SO ₂	sulphur dioxide

UNITS:

ppb	parts per billion
ppm	parts per million
ppt	parts per trillion

Others:

ENSO	El Niño-Southern Oscillation
M/V	merchant vessel
R/V	research vessel
SOI	Southern Oscillation Index
SST	Sea Surface Temperature

LIST OF WMO WDCGG PUBLICATIONS

DATA REPORTING MANUAL:

WDCGG No. 1	January	1991
-------------	---------	------

WMO WDCGG DATA REPORT:

WDCGG No. 2 Part A	October	1992
WDCGG No. 2 Part B	October	1992
WDCGG No. 3	October	1993
WDCGG No. 5	March	1994
WDCGG No. 6	September	1994
WDCGG No. 7	March	1995
WDCGG No. 9	September	1995
WDCGG No.10	March	1996
WDCGG No.11	September	1996
WDCGG No.12	March	1997
WDCGG No.14	September	1997
WDCGG No.16	March	1998
WDCGG No.17	September	1998
WDCGG No.18	March	1999
WDCGG No.20	September	1999
WDCGG No.21	March	2000
WDCGG No.23	September	2000
WDCGG No.25	March	2001

WMO WDCGG DATA CATALOGUE:

WDCGG No. 4	December	1993
WDCGG No.13	March	1997
WDCGG No.19	March	1999
WDCGG No.24	March	2001

WMO WDCGG DATA SUMMARY:

WDCGG No 8	October	1995
WDCGG No.15	March	1998
WDCGG No.22	March	2000
WDCGG No.26	March	2002
WDCGG No.27	March	2003
WDCGG No.28	March	2004
WDCGG No.29	March	2005

WMO WDCGG CD-ROM:

March	1995
March	1996
March	1997
March	1998
March	1999
March	2000
March	2001
March	2002
March	2003
March	2004
March	2005
	March March March March March March March March March March March

(period of data accepted)

0 + 1	1000		. .	1000
October	1990	\sim	August	1992
October	1990	\sim	August	1992
September	1992	\sim	March	1993
April	1993	\sim	September	1993
September	1993	\sim	March	1994
April	1994	\sim	December	1994
January	1995	\sim	June	1995
July	1995	\sim	December	1995
January	1996	\sim	June	1996
July	1996	\sim	November	1996
December	1996	\sim	June	1997
July	1997	\sim	December	1997
January	1998	\sim	June	1998
July	1998	\sim	December	1998
January	1999	\sim	June	1999
July	1999	\sim	December	1999
January	2000	\sim	June	2000
July	2000	\sim	December	2000

(period of data accepted)

October	1990	\sim	December	1994
October	1990	\sim	June	1995
October	1990	\sim	June	1996
October	1990	\sim	December	1997
October	1990	\sim	December	1998
October	1990	\sim	December	1999
October	1990	\sim	December	2000
October	1990	\sim	January	2002
October	1990	\sim	December	2002
October	1990	~	December	2003
October	1990	\sim	December	2004