
10.
SULPHUR DIOXIDE
(SO<sub>2</sub>)



## 10. Sulphur Dioxide (SO<sub>2</sub>)

Sulphur dioxide  $(SO_2)$  is not a greenhouse gas; rather, it is a precursor of atmospheric sulphuric acid  $(H_2SO_4)$  or sulphate aerosol.  $SO_2$  is oxidised by hydroxyl radicals (OH) to form sulphuric acid, which then produces aerosol through photochemical gas-to-particle conversion. While the  $SO_2$  reaction with OH is much slower than with  $NO_2$ ,  $SO_2$  dissolves easily in suspended droplets in the atmosphere.

Sources of  $SO_2$  include fossil fuel combustion by industries, biomass burning, volcanoes, and the oxidation of dimethylsulphide (DMS) from oceans (IPCC, 2001). Major  $SO_2$  sinks are oxidation by OH and deposition onto wet surfaces. Anthropogenic  $SO_2$  has caused acid rain and deposition throughout the industrial era.  $SO_2$  concentrations have large variability in space and time because of the species' short lifetime and uneven anthropogenic source distribution.

Observation stations that submitted data for SO<sub>2</sub> to the WDCGG are shown on the map at the beginning of this chapter. Most of the contributing stations are located in Europe.

Plate 10.1 shows the time series of monthly mean concentrations of  $SO_2$  for individual stations, colour-coded to indicate the concentration level. Please note that the data on  $SO_2$  is reported in various units, viz., ppb,  $\mu g/m^3$ ,  $mg/m^3$  and  $\mu gS/m^3$ . All units are converted to ppb as follows:

```
\begin{split} X_p \ [ppb] &= (R * T / M / P_0) * 10 * X_g \ [\mu g/m^3] \\ X_p \ [ppb] &= (R * T / M / P_0) * 10^4 * X_g \ [mg/m^3] \\ X_p \ [ppb] &= (R * T / M_S / P_0) * 10 * X_g \ [\mu gS/m^3] \end{split}
```

where R is the molar gas constant (8.31451 [J/K/mol]),

T is the absolute temperature reported by an individual station,

M is the molecular weight of SO<sub>2</sub> (64.0648),

 $M_S$  is the atomic weight of S (32.066), and

P<sub>0</sub> is the standard pressure (1013.25 [hPa]).

Certain stations in southern Europe show higher concentrations. However, it is difficult to identify an increasing or decreasing trend for SO<sub>2</sub> concentrations.

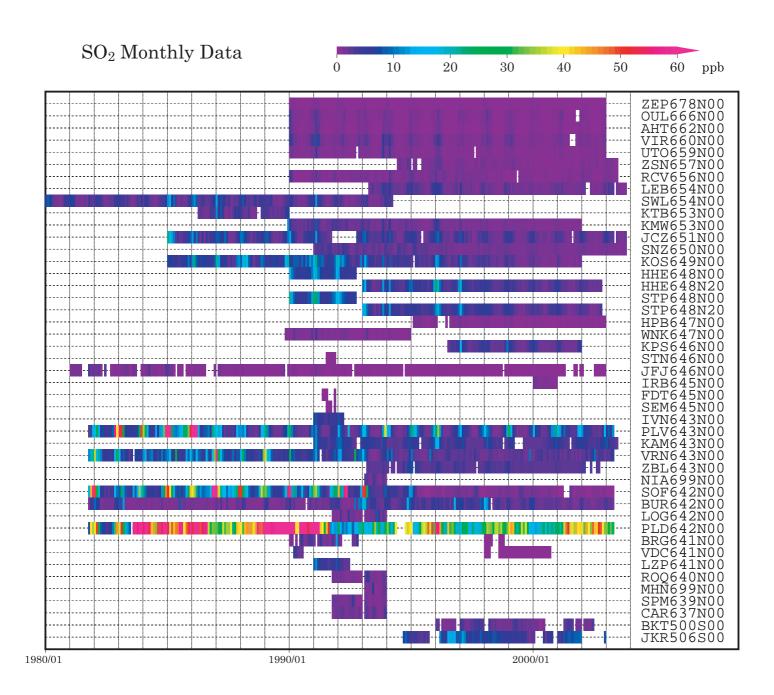



Plate 10.1 Monthly mean concentrations of SO<sub>2</sub> for all stations reported to the WDCGG. The stations are set from north to south.