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7.  Surface Ozone (O3)
Ozone plays an important role in the atmospheric environment through radiative and

chemical processes.  Ozone absorbs UV radiation in the stratosphere, and this energy influences

the temperature profile and circulation in the stratosphere.  Ozone also absorbs IR radiation,

and is thus one of the greenhouse gases in the troposphere.  However, ozone differs greatly from

other greenhouse gases (such as CO2, CH4, N2O and CFCs).  Ozone does not have direct natural

sources, but rather is produced in the atmosphere, and its concentration ranges from around 10

ppb near the remote Earth’s surface to about 10 ppm in the stratosphere.  In contrast to ozone,

CO2, CH4, N2O and halocarbons (e.g., CFCs) are relatively uniform, hence the term “well-mixed

greenhouse gases”.

A variation in ozone near the Earth’s surface (so-called surface ozone) reflects various

reactions involving ozone.  Tropospheric ozone is partly transported from the stratosphere; the

rest is chemically produced in the troposphere itself, especially near the Earth’s surface, where

various ozone precursors are emitted.  At the same time, ozone is destroyed mainly through

chemical reactions with OH radicals and deposition at the Earth’s surface.

Ozone is produced in the troposphere through oxidation of precursors, i.e., CO or

hydrocarbons in the presence of high concentrations of NOx.  As will be mentioned in following

chapters, these substances (so-called “ozone precursors”) are anthropogenic.  As they are

localized and their lifetimes are generally short, the distribution of surface ozone, produced from

anthropogenic precursors, is also localized and time-variant.

Surface ozone is estimated to have increased since pre-industrial times (IPCC, 2001).

The World Data Centre for surface ozone was transferred from NILU to JMA in August

2002. Observation stations that submit surface O3 data to the WDCGG are shown on the map at

the beginning of this chapter.

Plate 7.1 shows the time series of monthly mean concentrations of surface O3 for individual

stations, colour-coded to indicate the concentration level.  Please note that the data on surface O3

is reported in two units, namely mixing ratio (ppb) and weight per volume (µg/m3) at 25°C.

Weights per volume (µg/m3) are converted to mixing ratios (ppb) as follows:

Xp [ppb] = (R * T / M / P0) * 10 * Xg [µg/m3]

  where R is the molar gas constant (8.31451 [J/K/mol]),

T is the absolute temperature reported by an individual station,

M is the molecular weight of O3 (47.9982), and

P0 is the standard pressure (1013.25 [hPa]).

The concentration of surface O3 varies from station to station, many of which are located in

Europe.  Moreover, the seasonal and interannual variation is relatively large at most stations so

that it is difficult to identify a general long-term trend for surface O3 concentrations.

Figures 7.1 and 7.2 show averaged seasonal cycles from which the long-term trends are

subtracted for each 30° latitudinal zone of a single- or multi-peak type.  The seasonal cycles for



each site are separable into two types: a single-peak type that has a maximum monthly mean and

a multi-peak type that has more than one annual maximum.  One single-peak type, the

Southern Hemisphere site is not shown in Figure 7.1.  The maximum concentration of the

single-peak type appears in April in northern high and low latitudes and in May in northern mid-

latitudes.  The delayed peak in the mid-latitudes may be attributed to the air pollution in Europe

given that most mid-latitude stations are located in Europe.  Relatively high spring maximum

concentrations are observed at Sonnblick, Niwot Ridge, Assekrem, and Mauna Loa, all of which

are located at high altitude (higher than 2700 m).
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Plate 7.1  Monthly mean concentrations of surface ozone for all stations reported to the WDCGG.  The stations are set from north to south.

It is shown that an asterisk incidental to station index is one peak type in the analysis shown in Fig 7.1.



Fig. 7.1  Averaged seasonal cycles of single-peak type for each 30° latitudinal zone from which the long-term

trands were subtracted.
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Fig. 7.2  Averaged seasonal cycles of multi-peak type for each 30° latitudinal zone from which the long-term

trands were subtracted.
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