Errata for "WMO WDCGG DATA SUMMARY WDCGG No.43"

3 June 2020

"2. METHANE (CH₄)" (p. 12)

Correct

(currently available version)

2. METHANE (CH₄)

Atmospheric mole fractions of methane (CH₄) – the second most significant anthropogenic greenhouse gas – have been increasing since the beginning of the industrial era in around 1750. The global mean mole fraction of CH₄ was 1,859±2 ppb in 2017, representing an increase of 7 ppb relative to the previous year and 257% of the preindustrial level of 722 ppb CH₄ is responsible for around 17% of radiative forcing (relative to the pre-industrial era) caused by long-lived greenhouse gases (WMO, 2018a).

Incorrect

(former version until 3 June 2020)

2. METHANE (CH₄)

Atmospheric mole fractions of methane (CH₄) – the second most significant anthropogenic greenhouse gas – have been increasing since the beginning of the industrial era in around 1750. The global mean mole fraction of CH₄ was 1,859±2 ppb in 2017, representing an increase of 7 ppb relative to the previous year and 257% of the preindustrial level of 722 ppm CH₄ is responsible for around 17% of radiative forcing (relative to the pre-industrial era) caused by long-lived greenhouse gases (WMO, 2018a).

Correct

(currently available version)

3. NITROUS OXIDE (N2O)

Atmospheric mole fractions of nitrous oxide (N_2O) – a significant factor in global warming – have been increasing since the beginning of the industrial era in around 1750. The global mean mole fraction in 2017 was 329.9 \pm 0.1 ppb, representing an increase of 0.9 ppb relative to the previous year and 122% of the pre-industrial level of 270 ppb. N_2O is responsible for approximately 6% of total radiative forcing (relative to the pre-industrial era) from long-lived greenhouse gases (WMO, 2018a).

N₂O sources include microbial processes (nitrification and denitrification), oceans, nitrogen fertilizers generally used in agriculture, fossil fuel combustion and biomass burning. The gas is relatively stable in the troposphere with a lifetime of around 121 years. Its mole fraction is relatively uniformly distributed in the troposphere and declines in the stratosphere where N₂O is destroyed via ultraviolet (UV) photo-decomposition.

Incorrect

(former version until 3 June 2020)

3. NITROUS OXIDE (N2O)

Atmospheric mole fractions of nitrous oxide (N_2O) – a significant factor in global warming – have been increasing since the beginning of the industrial era in around 1750. The global mean mole fraction in 2017 was 329.9±0.1 ppb, representing an increase of 0.9 ppb relative to the previous year and 122% of the pre-industrial level of 270 ppb. N_2O is responsible for approximately 6% of total radiative forcing (relative to the pre-industrial era) from long-lived greenhouse gases (WMO, 2018a).

 N_2O sources include microbial processes (nitrification and denitrification), oceans, nitrogen fertilizers generally used in agriculture, fossil fuel combustion and biomass burning. The gas is relatively stable in the troposphere with a lifetime of around 121 years. Its mole fraction is relatively uniformly distributed in the troposphere and declines in the the stratosphere where N_2O is destroyed via ultraviolet $\overline{(UV)}$ photo-decomposition.